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Kernel embedding of measures and low-rank
approximation of integral operators

Bertrand GAUTHIER∗

Abstract

We describe a natural coisometry from the Hilbert space of all Hilbert-
Schmidt operators on a separable reproducing kernel Hilbert space (RKHS) 
and onto the RKHS  associated with the squared-modulus of the reproducing
kernel of . Through this coisometry, trace-class integral operators defined
by general measures and the reproducing kernel of  are isometrically rep-
resented as potentials in , and the quadrature approximation of these opera-
tors is equivalent to the approximation of integral functionals on . We then
discuss the extent to which the approximation of potentials in RKHSs with
squared-modulus kernels can be regarded as a differentiable surrogate for the
characterisation of low-rank approximation of integral operators.

Keywords: reproducing kernel Hilbert spaces, integral operators, low-rank approx-
imation, kernel embedding of measures, differentiable relaxation.
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1 Introduction
Integral operators with positive-semidefinite (PSD) kernels play a central role in the
theory of reproducing kernel Hilbert spaces (RKHSs) and their applications; see
for instance [4, 5, 19, 26, 20]. As an important instance, this class of operators
encompasses the PSD matrices.

Under suitable conditions, an integral operator defined by a PSD kernel 𝐾 and
a measure 𝜇 can be regarded as a Hilbert-Schmidt (HS) operator 𝐿𝜇 on the RKHS
 associated with 𝐾; see e.g. [21, 22, 20]. Let  be the RKHS for which the
squared-modulus kernel |𝐾|

2 is reproducing. Following [10], when the integral of
the diagonal of 𝐾 with respect to the variation of 𝜇 is finite, the HS operator 𝐿𝜇 on
 can be isometrically represented as the Riesz representation 𝑔𝜇 ∈  of the integral
functional on  defined by the measure 𝜇, the conjugate of 𝜇. The operator 𝐿𝜇 is in
this case trace-class, and 𝑔𝜇 is the potential, or kernel embedding, of the measure 𝜇
in the RKHS . In the Hilbert space HS() of all HS operators on , the quadrature
approximation of trace-class integral operators with kernel 𝐾 is hence equivalent to
the approximation of integral functionals on . Considering another measure 𝜈 and
denoting by 𝐵 the closed unit ball of , we more specifically have

‖𝐿𝜇 − 𝐿𝜈‖HS() = ‖𝑔𝜇 − 𝑔𝜈‖ = sup
𝑔∈𝐵

|

|

|

|

∫ 𝑔(𝑡)d𝜇(𝑡) − ∫ 𝑔(𝑡)d𝜈(𝑡)
|

|

|

|

,

so that the map (𝜇, 𝜈) ↦ ‖𝐿𝜇 − 𝐿𝜈‖HS() corresponds to a generalised integral
probability metric, or maximum mean discrepancy (see e.g. [16, 24, 2, 15, 27]).

We give an overall description of the framework surrounding such an isometric
representation, and illustrate that it follows from the definition of a natural coisome-
try Γ from HS() onto ; this coisometry maps self-adjoint operators to real-valued
functions, and PSD operators to nonnegative functions (Section 2). Under adequate
measurability conditions on 𝐾 and assuming that the diagonal of 𝐾 is integrable
with respect to |𝜇|, we show that 𝐿𝜇 always belongs to the initial space of Γ, and
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that Γ[𝐿𝜇] = 𝑔𝜇. We then describe the equivalence between the quadrature approx-
imation of integral operators with PSD kernels and the approximation of potentials
in RKHSs with squared-modulus kernels (Section 3).

For an approximate measure 𝜈, and denoting by 𝜈 the closure in  of the range
of 𝐿

|𝜈| (so that when 𝜈 is finitely-supported, 𝜈 is fully characterised by the support
of 𝜈), we next investigate the extent to which the approximation of potentials in 
can be used as a differentiable surrogate for the characterisation of approximations
of 𝐿𝜇 of the form 𝑃𝜈𝐿𝜇, 𝐿𝜇𝑃𝜈 or 𝑃𝜈𝐿𝜇𝑃𝜈, with 𝑃𝜈 the orthogonal projection from
 onto 𝜈 (Section 4). When the measure 𝜇 is nonnegative, the operator 𝐿𝜇 admits
the decomposition 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇, with 𝜄𝜇 the natural embedding of  in 𝐿2(𝜇). The
three operators

𝜄∗𝜇 ∶ 𝐿2(𝜇) → , 𝜄𝜇𝜄
∗
𝜇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), and 𝜄𝜇𝜄

∗
𝜇𝜄𝜇 ∶  → 𝐿2(𝜇),

can then also be regarded as integral operators defined by the kernel 𝐾 and the mea-
sure 𝜇, and through the partial embedding 𝜄𝜇𝑃𝜈, a measure 𝜈 characterises approxi-
mations of each of these operators. We study the properties of these approximations
and further illustrate the connections between the low-rank approximation of in-
tegral operators with PSD kernels and the approximation of potentials in RKHSs
with squared-modulus kernels. We also describe the link between the considered
framework and the low-rank approximation of PSD matrices through column sam-
pling (Section 5). The presentation ends with a concluding discussion (Section 6)
and some technical results are gathered in appendix (Appendix A). The approxima-
tion schemes considered in this note should be apprehended from the the point of
view of numerical strategies for discretisation or dimension reduction; in practical
applications, approximations will generally be characterised by finitely-supported
measures.

2 Framework, notations and basic properties
By default, all the Hilbert spaces considered in this note are complex; they are oth-
erwise explicitly referred to as real Hilbert spaces; we use a similar convention for
vector spaces. Inner products of complex Hilbert spaces are assumed to be linear
with respect to their right argument. For 𝑧 ∈ ℂ, we denote by 𝑧, |𝑧| and ℜ(𝑧) the
conjugate, modulus and real part of 𝑧, respectively, and i ∈ ℂ is the imaginary unit.
By analogy, for a complex-valued function 𝑓 on a general set 𝑆, we denote by 𝑓 and
|𝑓 | the functions defined as 𝑓 (𝑠) = 𝑓 (𝑠) and |𝑓 |(𝑠) = |𝑓 (𝑠)|, 𝑠 ∈ 𝑆; we also use
the notation |𝑓 |2 to refer to the function 𝑠 ↦ |𝑓 (𝑠)|2.

For two Hilbert spaces 𝐻 and 𝐹 , we denote by 𝐴∗ the adjoint of a bounded
linear operator 𝐴 ∶ 𝐻 → 𝐹 . The map 𝐴 is an isometry if 𝐴∗𝐴 = id𝐻 , the identity
operator on 𝐻 , and 𝐴 is a coisometry if 𝐴∗ is an isometry (and so 𝐴𝐴∗ = id𝐹 ).
A coisometry 𝐴 is a surjective partial isometry (that is, 𝐴𝐴∗𝐴 = 𝐴), and 𝐴∗𝐴 is
then the orthogonal projection from 𝐻 onto the initial space (𝐴) of 𝐴, with (𝐴)
the orthogonal complement in 𝐻 of the nullspace of 𝐴. We denote by null(𝐴) the
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nullspace of 𝐴, and by range(𝐴) its range. Also, for a subset 𝐶 of 𝐻 , we denote by
𝐶⟂𝐻 the orthogonal complement of 𝐶 in 𝐻 , and by 𝐶

𝐻 the closure of 𝐶 in 𝐻 .

2.1 RKHSs and Hilbert-Schmidt operators
Below, we introduce the various Hilbert spaces relevant to our study.

Underlying RKHS. Let  be a separable RKHS of complex-valued functions on a
general set X , with reproducing kernel 𝐾 ∶ X × X → ℂ; see e.g. [1, 17]. For
𝑡 ∈ X , let 𝑘𝑡 ∈  be defined as 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡), 𝑥 ∈ X . For all ℎ ∈ , we have
⟨𝑘𝑡 |ℎ⟩ = ℎ(𝑡), where ⟨⋅ | ⋅⟩ stands for the inner product of  (this equality is
often referred to as the reproducing property); we denote by ‖⋅‖ the norm of ,
and we use a similar convention for the inner products and norms of all the Hilbert
spaces encountered in this note.

Hilbert-Schmidt space. Let HS() be the Hilbert space of all HS operators on ;
see e.g. [7, 3]. For 𝑇 ∈ HS(), we denote by 𝑇 [ℎ] ∈  the image of ℎ ∈ 
through 𝑇 , and by 𝑇 [ℎ](𝑥) the value of the function 𝑇 [ℎ] at 𝑥 ∈ X ; we use similar
notations for all function-valued operators. For 𝑎 and 𝑏 ∈ , let 𝑇𝑎,𝑏 ∈ HS() be
the rank-one operator given by

𝑇𝑎,𝑏[ℎ] = 𝑎⟨𝑏 |ℎ⟩ , ℎ ∈ ;

we also set 𝑆𝑏 = 𝑇𝑏,𝑏.
Remark 2.1. An operator 𝑇 ∈ HS() always admits a singular value decomposi-
tion (SVD) of the form 𝑇 =

∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖
, 𝕀 ⊆ ℕ, where {𝜎𝑖}𝑖∈𝕀 ∈ 𝓁2(𝕀) is the set

of all strictly-positive singular values of 𝑇 , and where {𝑢𝑖}𝑖∈𝕀 and {𝑣𝑖}𝑖∈𝕀 are two
orthonormal systems in ; the series converges in HS(). ⊲

Remark 2.2. Let ′ be the continuous dual of . For ℎ ∈ , let 𝜉ℎ ∈ ′ be the
bounded linear functional such that 𝜉ℎ(𝑓 ) = ⟨ℎ | 𝑓 ⟩ , 𝑓 ∈ . Endowed with the
inner product ⟨𝜉𝑓 | 𝜉ℎ⟩′ = ⟨ℎ | 𝑓 ⟩ , the vector space ′ is a Hilbert space, and the
Riesz map ℎ ↦ 𝜉ℎ is a bijective conjugate-linear isometry form  to ′ (we may
notice that 𝜉𝛼ℎ = 𝛼𝜉ℎ, 𝛼 ∈ ℂ). The linear map densely defined as 𝑇𝑎,𝑏 ↦ 𝑎⊗ 𝜉𝑏 (see
Remark 2.1) is then a bijective isometry from the Hilbert space HS() to the tensor
Hilbert space  ⊗′. ⊲

Conjugate RKHS. Let  be the RKHS of complex-valued functions on X asso-
ciated with the conjugate kernel 𝐾 , with 𝐾(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), 𝑥 and 𝑡 ∈ X . For all
ℎ ∈ , we have ℎ ∈  (that is, the function ℎ ∶ 𝑥 ↦ ℎ(𝑥) is a vector of ),
and the map ℎ ↦ ℎ is a bijective conjugate-linear isometry from  to . We have
𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡) = 𝑘𝑡(𝑥), and

⟨𝑘𝑥 | 𝑘𝑡⟩ = 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) = ⟨𝑘𝑡 | 𝑘𝑥⟩ .
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We denote by Ψ the bijective linear isometry from HS() to the tensor Hilbert
space  ⊗, densely defined as Ψ(𝑇𝑎,𝑏) = 𝑎 ⊗ 𝑏, 𝑎 and 𝑏 ∈ .
Remark 2.3. Following Remark 2.2, the linear map 𝜉ℎ ↦ ℎ is a bijective isometry
form ′ to . Further, the linear map densely defined as 𝑎 ⊗ 𝜉𝑏 ↦ 𝑎 ⊗ 𝑏 is a
bijective isometry form  ⊗′ to  ⊗; the composition of this isometry with
the bijective isometry from HS() to  ⊗ ′ discussed in Remark 2.2 yields the
isometry Ψ ∶ HS() →  ⊗; see the diagram (5). ⊲

Squared-kernel RKHS. The kernels 𝐾 and 𝐾 being PSD, by the Schur-product
theorem, so is the squared-modulus kernel |𝐾|

2 = 𝐾𝐾 , with
|𝐾|

2(𝑥, 𝑡) = 𝐾(𝑥, 𝑡)𝐾(𝑥, 𝑡) = |𝐾(𝑥, 𝑡)|2 = |𝑘𝑡|
2(𝑥), 𝑥 and 𝑡 ∈ X .

Let be the RKHS of complex-valued functions on X for which |𝐾|

2 is reproducing
( =  ⊙ is the product of the two RKHSs  and ; see e.g. [1, 17]).

Following [17, Chapter 5], we denote by 𝐶Δ ∶  ⊗  →  the coisometry
densely defined as 𝐶Δ(𝑎 ⊗ 𝑏) = 𝑎𝑏, 𝑎 and 𝑏 ∈ , where 𝑎𝑏 ∈  is the complex-
valued function on X given by

(

𝑎𝑏
)

(𝑥) = 𝑎(𝑥)𝑏(𝑥) = ⟨|𝑘𝑥|
2
| 𝑎𝑏⟩ = ⟨𝑘𝑥 ⊗ 𝑘𝑥 | 𝑎 ⊗ 𝑏⟩⊗ , 𝑥 ∈ X .

For Υ ∈  ⊗, we more generally have
𝐶Δ[Υ](𝑥) = ⟨|𝑘𝑥|

2
|𝐶Δ[Υ]⟩ = ⟨𝑘𝑥 ⊗ 𝑘𝑥 |Υ⟩⊗ . (1)

The initial space of 𝐶Δ is (𝐶Δ) = spanℂ{𝑘𝑥 ⊗ 𝑘𝑥|𝑥 ∈ X }
⊗

, the closure in
 ⊗ of the linear space spanned by the simple tensors 𝑘𝑥 ⊗ 𝑘𝑥, 𝑥 ∈ X .
Remark 2.4. From (1), for all 𝑥 ∈ X , we have 𝐶∗

Δ[|𝑘𝑥|
2] = 𝑘𝑥 ⊗ 𝑘𝑥. The linear

space spanℂ{|𝑘𝑥|
2
|𝑥 ∈ X } being dense in  (see for instance [17, Chapter 2]), we

have 𝐶Δ𝐶
∗
Δ = id, so that 𝐶∗

Δ is an isometry. ⊲

2.2 Natural coisometry from HS() onto 
We can now define a natural coisometry from the Hilbert space HS() of all HS
operators on a RKHS , and onto the RKHS  associated with the squared-modulus
of the reproducing kernel of . The terminology natural is used to emphasise that
the considered construction does not depend on the choice of any specific basis.
Lemma 2.1. The linear map Γ = 𝐶ΔΨ ∶ HS() →  is a coisometry, and its initial
space is

(Γ) = spanℂ{𝑆𝑘𝑥
|𝑥 ∈ X }

HS()
; (2)

in addition, for all 𝑇 ∈ HS(), we have

Γ[𝑇 ](𝑥) = ⟨𝑆𝑘𝑥
| 𝑇 ⟩HS() = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ = 𝑇 [𝑘𝑥](𝑥), 𝑥 ∈ X . (3)
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Proof. The linear isometry Ψ being bijective, we have ΨΨ∗ = id⊗ , and so
ΓΓ∗ = 𝐶ΔΨΨ

∗𝐶∗
Δ = 𝐶Δ𝐶

∗
Δ = id .

By definition of 𝐶Δ and Ψ, we have Γ∗[|𝑘𝑥|
2] = Ψ∗[𝑘𝑥⊗𝑘𝑥] = 𝑆𝑘𝑥

, 𝑥 ∈ X , so that
(2) follows from the density of spanℂ{|𝑘𝑥|

2
|𝑥 ∈ X } in  (see Remark 2.4). The

reproducing property in  then gives
Γ[𝑇 ](𝑥) = ⟨|𝑘𝑥|

2
|Γ[𝑇 ]⟩ = ⟨𝑆𝑘𝑥

| 𝑇 ⟩HS(), 𝑇 ∈ HS().

We next observe that
⟨𝑇𝑎,𝑏 | 𝑇 ⟩HS() = ⟨𝑎 | 𝑇 [𝑏]⟩ , 𝑎 and 𝑏 ∈ ; (4)

indeed, as 𝑇𝑎,0 = 0, equality (4) trivially holds for 𝑏 = 0, and for 𝑏 ≠ 0, we have
⟨𝑇𝑎,𝑏 | 𝑇 ⟩HS() = ⟨𝑇𝑎,𝑏[𝑏] | 𝑇 [𝑏]⟩∕‖𝑏‖

2
 , with 𝑇𝑎,𝑏[𝑏] = 𝑎‖𝑏‖2 . Taking 𝑎 = 𝑏 = 𝑘𝑥in (4) gives ⟨𝑆𝑘𝑥

| 𝑇 ⟩HS() = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ = 𝑇 [𝑘𝑥](𝑥), concluding the proof.
The following diagram summarises the construction of Γ (the ≅ symbol refers

to the two bijective linear isometries discussed in Remarks 2.2 and 2.3).
HS() Γ //

Ψ
%%



 ⊗′
≅
//

��
≅

 ⊗
𝐶Δ

<<

(5)

Through Γ, the HS operators on  belonging to (Γ) can be isometrically repre-
sented as functions in the RKHS  associated with the squared-modulus kernel |𝐾|

2.
In the framework of Remark 2.1, we may notice that if 𝑇 =

∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖
∈ HS(),

then Γ[𝑇 ] =
∑

𝑖∈𝕀 𝜎𝑖𝑢𝑖𝑣𝑖.
Lemma 2.2. The following assertions hold:

(i) if 𝑇 ∈ HS() is self-adjoint, then the function Γ[𝑇 ] is real-valued;

(ii) if 𝑇 ∈ HS() is PSD, then the function Γ[𝑇 ] is nonnegative;

(iii) if 𝑇 ∈ HS() is PSD and Γ[𝑇 ] = 0, then 𝑇 = 0; and

(iv) if 𝑇 ∈ (Γ), then 𝑇 ∗ ∈ (Γ).

Proof. Assertions (i) and (ii) follow directly form (3). We assume that 𝑇 ∈ HS()
is PSD, and we consider a spectral expansion 𝑇 =

∑

𝑗∈𝕀 𝜆𝑗𝑆𝜑𝑗
of 𝑇 , with 𝜆𝑗 ⩾ 0,

𝜑𝑗 ∈  and 𝕀 ⊆ ℕ; observing that Γ[𝑆𝜑𝑗
] = |𝜑𝑗|

2, 𝑗 ∈ 𝕀, we obtain (iii). To prove
assertion (iv), we first observe that if 𝑔 ∈ , then 𝑔 ∈  (that is, the function 𝑔 is
a vector of ); the map Γ is indeed surjective, and if 𝑔 = Γ[𝑇 ], 𝑇 ∈ HS(), then
𝑔 = Γ[𝑇 ∗]. By linearity, the real and imaginary parts of 𝑔 are then also vectors of ,
and so ‖𝑔‖ = ‖𝑔‖ (see for instance [17, Chapter 5]; see also Remark 2.6). Since
Γ is a partial isometry, for 𝑇 ∈ HS(), we have ‖𝑇 ‖HS() ⩾ ‖Γ[𝑇 ]‖, with equality
if and only if 𝑇 ∈ (Γ); as ‖𝑇 ‖HS() = ‖𝑇 ∗

‖HS(), the result follows.
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Remark 2.5. The diagram (5) is also well-defined when the involved Hilbert spaces
are real. We in this case have (Γ) = spanℝ{𝑆𝑘𝑥

|𝑥 ∈ X }
HS() and the operators

in (Γ) are self-adjoint; also if 𝑇 ∗ = −𝑇 , then Γ[𝑇 ] = 0. By comparison, in the
complex case, if 𝑇 ∗ = −𝑇 , then the function Γ[𝑇 ] is pure-imaginary. ⊲

Remark 2.6. The PSD kernel |𝐾|

2 being real-valued, it is the reproducing kernel of
a real RKHS ℝ of real-valued functions on X . The decomposition  = ℝ + iℝholds, and ℝ is the real-linear subspace of all real-valued functions in . This
decomposition mirrors the decomposition HS() = HSℝ() + iHSℝ(), with
HSℝ() ⊂ HS() the real-linear subspace of all self-adjoint HS operators on .
Also, the real convex cone HS+

ℝ() ⊂ HSℝ() of all PSD HS operators on  is gen-
erating in HSℝ(), and the real convex cone +

ℝ ⊂ ℝ of all nonnegative functions
in ℝ is generating in ℝ. ⊲

Remark 2.7. Let be another separable RKHS of complex-valued functions on X ,
with reproducing kernel 𝐽 ∶ X × X → ℂ. We denote by HS( ,) the Hilbert
space of all HS operators from  to , and let  ⊙ be the product of the RKHSs
 and  , that is, the RKHS with kernel 𝐾𝐽 . Following (5), we can more generally
define a natural coisometry from HS( ,) onto  ⊙  . ⊲

3 Trace-class integral operators with PSD kernels
From Lemma 2.1, if 𝑇 ∈ HS() is of the form 𝑇 =

∑𝑛
𝑗=1 𝜔𝑗𝑆𝑘𝑠𝑗

, with 𝑛 ∈ ℕ,
𝑠𝑗 ∈ X and 𝜔𝑗 ∈ ℂ, then 𝑇 ∈ (Γ). We in this case have

𝑇 [ℎ](𝑥) =
𝑛
∑

𝑗=1
𝜔𝑗𝑘𝑠𝑗

(𝑥)⟨𝑘𝑠𝑗
|ℎ⟩ =

𝑛
∑

𝑗=1
𝜔𝑗𝐾(𝑥, 𝑠𝑗)ℎ(𝑠𝑗), ℎ ∈ , 𝑥 ∈ X ,

so that 𝑇 can be regarded as an integral operator on  defined by the kernel 𝐾 and
the finitely-supported measure ∑𝑛

𝑗=1 𝜔𝑗𝛿𝑠𝑗 , with 𝛿𝑥 the Dirac measure at 𝑥 ∈ X .
We also have Γ[𝑇 ] =

∑𝑛
𝑗=1 𝜔𝑗|𝑘𝑠𝑗

|

2, so that ⟨Γ[𝑇 ] | 𝑔⟩ =
∑𝑛

𝑗=1 𝜔𝑗𝑔(𝑠𝑗), 𝑔 ∈ , and
Γ[𝑇 ] is thus the Riesz representation of the integral functional on  defined by the
measure ∑𝑛

𝑗=1 𝜔𝑗𝛿𝑠𝑗 . Under measurability conditions, this observation holds for all
trace-class integral operators on  defined by the reproducing kernel 𝐾 of  and
general measures on X , as illustrated below.

3.1 Integral operators and kernel embedding of measures
Let  be a 𝜎-algebra of subsets of X . We consider the Borel 𝜎-algebra of ℂ, and
make the following assumptions on 𝐾 and the measurable space (X ,):
(A.1) for all 𝑡 ∈ X , the function 𝑘𝑡 ∶ X → ℂ is measurable;
(A.2) the diagonal of 𝐾 is measurable.
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We recall that 𝐾(𝑡, 𝑡) = ‖𝑘𝑡‖
2
 = ‖𝑆𝑘𝑡

‖HS() = ‖|𝑘𝑡|
2
‖, 𝑡 ∈ X .

Remark 3.1. The RKHSs  and  being separable, (A.1) ensures that all the func-
tions in  and  are measurable; see for instance [25, Lemma 4.24]. Consequently,
under (A.1), the maps 𝑡 ↦ 𝑘𝑡, 𝑡 ↦ |𝑘𝑡|

2 and 𝑡 ↦ 𝑆𝑘𝑡
, 𝑡 ∈ X , are weakly-measurable,

and since the Hilbert spaces ,  and HS() are separable, by the Pettis measura-
bility theorem, these maps are also strongly-measurable (see e.g. [8, 28]). ⊲

We denote by +, , and ℂ the set of all nonnegative, signed and complex
measures1 on (X ,), and we set 𝔽 =  ∪ℂ (we have + ⊂ ). Noticing
that 𝐾(𝑡, 𝑡) ⩾ 0, 𝑡 ∈ X , from (A.2), we define

𝜏𝜇 = ∫X

𝐾(𝑡, 𝑡)d|𝜇|(𝑡) ∈ ℝ⩾0 ∪ {+∞}, 𝜇 ∈ 𝔽 .

We next introduce the sets +(𝐾),  (𝐾) and ℂ(𝐾) of all measures 𝜇 in +, ,
and ℂ such that 𝜏𝜇 is finite, respectively; the inclusion +(𝐾) ⊂  (𝐾) holds, and
we set 𝔽 (𝐾) =  (𝐾) ∪ ℂ(𝐾).

Integral operators on with kernel𝐾 . By assumption, for 𝜇 ∈ 𝔽 (𝐾), the integral
∫

X
‖𝑆𝑘𝑡

‖HS()d|𝜇|(𝑡) = 𝜏𝜇 is finite, and the map 𝑡 ↦ 𝑆𝑘𝑡
is thus Bochner-integrable

with respect to 𝜇 (Bochner integrability criterion, see e.g. [8, 28]; see also Re-
mark 3.1). We set

𝐿𝜇 = ∫X

𝑆𝑘𝑡
d𝜇(𝑡) ∈ HS().

From (4), for ℎ ∈  and 𝑥 ∈ X , we have

𝐿𝜇[ℎ](𝑥) = ⟨𝑇𝑘𝑥,ℎ
|𝐿𝜇⟩HS() = ∫X

⟨𝑇𝑘𝑥,ℎ
|𝑆𝑘𝑡

⟩HS()d𝜇(𝑡) = ∫X

𝐾(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡),

so that 𝐿𝜇 ∈ HS() can be regarded as an integral operator on  defined by the
kernel 𝐾 and the measure 𝜇.
Remark 3.2. For 𝜇 ∈ 𝔽 (𝐾), the operator 𝐿𝜇 ∈ HS() is the Riesz representation
of the bounded linear functional 𝑍𝜇 ∶ HS() → ℂ given by

𝑍𝜇(𝑇 ) = ∫X

⟨𝑆𝑘𝑡
| 𝑇 ⟩HS()d𝜇(𝑡), 𝑇 ∈ HS(),

that is, 𝑍𝜇(𝑇 ) = ⟨𝐿𝜇 | 𝑇 ⟩HS(); from the CS inequality in HS(), we in particular
have |𝑍𝜇(𝑇 )| ⩽ ∫

X
|⟨𝑆𝑘𝑡

| 𝑇 ⟩HS()|d|𝜇|(𝑡) ⩽ ‖𝑇 ‖HS()𝜏𝜇.
By boundedness of the linear evaluation map 𝑇 ↦ 𝑇 [ℎ] from HS() to , we

obtain (see for instance [28, Chapter 5])

𝐿𝜇[ℎ] = ∫X

𝑆𝑘𝑡
[ℎ]d𝜇(𝑡) = ∫X

𝑘𝑡ℎ(𝑡)d𝜇(𝑡), ℎ ∈ ,

1We only consider finite complex measures, while signed measures may not be finite.
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with, from the CS inequality in , ∫
X

‖𝑘𝑡‖|ℎ(𝑡)|d|𝜇|(𝑡) ⩽ ‖ℎ‖𝜏𝜇. We also have

⟨𝐿𝜇[ℎ] | 𝑓 ⟩ = ∫X

ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡), ℎ and 𝑓 ∈ , (6)

so that 𝐿𝜇[ℎ] is the Riesz representation of the bounded linear functional Θℎ,𝜇 on
, with Θℎ,𝜇 ∶ 𝑓 ↦ ∫

X
ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡), 𝑓 ∈  (and |Θℎ,𝜇(𝑓 )| ⩽ ‖ℎ‖‖𝑓‖𝜏𝜇). ⊲

Lemma 3.1. For all 𝜇 ∈ 𝔽 (𝐾), the operator 𝐿𝜇 is trace-class.

Proof. Let {ℎ𝑖}𝑖∈𝕀 be an orthonormal basis (ONB) of , with 𝕀 ⊆ ℕ. For all 𝑡 ∈ X ,
we have 𝑘𝑡 =

∑

𝑖∈𝕀 ℎ𝑖ℎ𝑖(𝑡), so that {ℎ𝑖(𝑡)}𝑖∈𝕀 ∈ 𝓁2(𝕀) and ∑

𝑖∈𝕀 |ℎ𝑖(𝑡)|
2 = 𝐾(𝑡, 𝑡); see

e.g. [17, Chapter 2]. Let {𝑓𝑖}𝑖∈𝕀 be another ONB of ; from (6), and by monotone
convergence and the CS inequality in 𝓁2(𝕀), we obtain

∑

𝑖∈𝕀

|

|

⟨𝑓𝑖 |𝐿𝜇[ℎ𝑖]⟩|| ⩽
∑

𝑖∈𝕀
∫X

|𝑓𝑖(𝑡)||ℎ𝑖(𝑡)|d|𝜇|(𝑡)

= ∫X

∑

𝑖∈𝕀
|𝑓𝑖(𝑡)||ℎ𝑖(𝑡)|d|𝜇|(𝑡) ⩽ ∫X

√

𝐾(𝑡, 𝑡)
√

𝐾(𝑡, 𝑡)d|𝜇|(𝑡) = 𝜏𝜇,

so that trace(|𝐿𝜇|) ⩽ 𝜏𝜇, with |𝐿𝜇| = (𝐿∗
𝜇𝐿𝜇)

1∕2 the modulus of 𝐿𝜇.

Kernel embedding of measures in . By assumption again, for 𝜇 ∈ 𝔽 (𝐾), the
integral ∫

X
‖|𝑘𝑡|

2
‖d|𝜇|(𝑡) is finite, and the map 𝑡 ↦ |𝑘𝑡|

2 is therefore Bochner-
integrable with respect to 𝜇. We set

𝑔𝜇 = ∫X

|𝑘𝑡|
2d𝜇(𝑡) ∈ .

We have ⟨𝑔𝜇 | 𝑔⟩ = ∫
X

𝑔(𝑡)d𝜇(𝑡), 𝑔 ∈ , so that 𝑔𝜇 is the Riesz representation of
the linear functional 𝐼𝜇 ∶  → ℂ, with 𝐼𝜇(𝑔) = ∫

X
𝑔(𝑡)d𝜇(𝑡); we may observe that

|𝐼𝜇(𝑔)| ⩽ ‖𝑔‖𝜏𝜇, and that 𝑔𝜇(𝑥) = ∫
X

|𝐾(𝑥, 𝑡)|2d𝜇(𝑡), 𝑥 ∈ X . The vector 𝑔𝜇 is
referred to as the kernel embedding, or potential, of the measure 𝜇 in the RHKS ;
see for instance [24, 6, 15].
Theorem 3.1. For all 𝜇 ∈ 𝔽 (𝐾), we have 𝐿𝜇 ∈ (Γ) and Γ[𝐿𝜇] = 𝑔𝜇.

Proof. From Lemma 2.1 and by definition of𝐿𝜇 and 𝑔𝜇, for all 𝑇 ∈ HS(), we have

⟨Γ∗[𝑔𝜇] | 𝑇 ⟩HS() = ⟨𝑔𝜇 |Γ[𝑇 ]⟩ = ∫X

⟨𝑆𝑘𝑡
| 𝑇 ⟩HS()d𝜇(𝑡) = ⟨𝐿𝜇 | 𝑇 ⟩HS(),

so that Γ∗[𝑔𝜇] = 𝐿𝜇.
Remark 3.3. Following Lemma 2.2, for a signed measure 𝜇 ∈  (𝐾), the function
𝑔𝜇 is real-valued, and the operator 𝐿𝜇 = Γ∗[𝑔𝜇] is self-adjoint. Also, for a nonneg-
ative measure 𝜇 ∈ +(𝐾), the function 𝑔𝜇 is nonnegative, and the operator 𝐿𝜇 is
PSD. We may notice that 𝐿𝛿𝑥

= 𝑆𝑘𝑥
, 𝑥 ∈ X . ⊲
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From Theorem 3.1, for 𝜇 and 𝜈 ∈ 𝔽 (𝐾), the following equalities hold:

⟨𝐿𝜈 |𝐿𝜇⟩HS() = ⟨𝑔𝜈 | 𝑔𝜇⟩ = ∬X

|𝐾(𝑥, 𝑡)|2d𝜇(𝑡)d𝜈(𝑥)

= ∫X

𝑔𝜇(𝑥)d𝜈(𝑥) = ∫X

𝑔𝜈(𝑡)d𝜇(𝑡),
(7)

relating the evaluation of inner products in HS() between trace-class integral op-
erators with kernel 𝐾 to the integration of potentials in .

3.2 Quadrature approximation
Let 𝐵 = {𝑔 ∈ |‖𝑔‖ ⩽ 1} be the closed unit ball of . We set

𝔐(𝜇, 𝜈) = sup
𝑔∈𝐵

|

|

|

|

∫X

𝑔(𝑡)d𝜇(𝑡) − ∫X

𝑔(𝑡)d𝜈(𝑡)
|

|

|

|

, 𝜇 and 𝜈 ∈ 𝔽 (𝐾).

The map 𝔐 defines a pseudometric on 𝔽 (𝐾); for probability measures, such pseu-
dometrics are referred to as integral probability metrics, or maximum mean discrep-
ancies; see for instance [16, 24, 23, 15, 27].

The following Corollary 3.1 describes the equivalence between the quadrature
approximation of trace-class integral operators with PSD kernels and the approxi-
mation of integral functionals on RKHSs with squared-modulus kernels.
Corollary 3.1. For all 𝜇 and 𝜈 ∈ 𝔽 (𝐾), we have ‖𝐿𝜇 − 𝐿𝜈‖HS() = 𝔐(𝜇, 𝜈).

Proof. Form Theorem 3.1 and by linearity of Γ∗, we have Γ∗[𝑔𝜇 − 𝑔𝜈] = 𝐿𝜇 − 𝐿𝜈.Since Γ∗ is an isometry, it follows that ‖𝐿𝜇 − 𝐿𝜈‖HS() = ‖𝑔𝜇 − 𝑔𝜈‖. The CS
inequality in  and the definition of 𝑔𝜇 and 𝑔𝜈 then give

‖𝑔𝜇 − 𝑔𝜈‖ = sup
𝑔∈𝐵

|

|

⟨𝑔𝜇 − 𝑔𝜈 | 𝑔⟩|| = sup
𝑔∈𝐵

|

|

|

|

∫X

𝑔(𝑡)d𝜇(𝑡) − ∫X

𝑔(𝑡)d𝜈(𝑡)
|

|

|

|

.

We conclude by observing that for all 𝑔 ∈ , we have 𝑔 ∈  and ‖𝑔‖ = ‖𝑔‖ (see
the proof of Lemma 2.2), so that ‖𝑔𝜇 − 𝑔𝜈‖ = 𝔐(𝜇, 𝜈).

3.3 Further properties
In this section and in anticipation of the forthcoming developments, we discuss some
further properties verified by the integral operators considered in Theorem 3.1.

For 𝜇 ∈ +(𝐾), let 𝐿2(𝜇) be the Hilbert space of all square-integrable functions
with respect to 𝜇. From the CS inequality in , we have

∫X

|ℎ(𝑡)|2d𝜇(𝑡) = ∫X

|

|

⟨𝑘𝑡 |ℎ⟩||
2d𝜇(𝑡) ⩽ ‖ℎ‖2𝜏𝜇, ℎ ∈ , (8)

so that the linear embedding 𝜄𝜇 ∶  → 𝐿2(𝜇), with 𝜄𝜇[ℎ] the equivalence class of all
measurable functions 𝜇-almost everywhere equal to ℎ, is bounded (see e.g. [26]).
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Lemma 3.2. For all 𝜇 ∈ +(𝐾), the map 𝜄𝜇 is HS and 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇.

Proof. Let {ℎ𝑖}𝑖∈𝕀 be an ONB of , with 𝕀 ⊆ ℕ. As 𝐾(𝑡, 𝑡) =
∑

𝑖∈𝕀
|

|

ℎ𝑖(𝑡)||
2, 𝑡 ∈ X

(see e.g. [17]), from (6) and by monotone convergence, we have
∑

𝑖∈𝕀
‖𝜄𝜇[ℎ𝑖]‖

2
𝐿2(𝜇)

=
∑

𝑖∈𝕀
⟨𝐿𝜇[ℎ𝑖] |ℎ𝑖⟩ = ∫X

∑

𝑖∈𝕀
|ℎ𝑖(𝑡)|

2d𝜇(𝑡) = 𝜏𝜇,

so that 𝜄𝜇 is HS. From (6), we also obtain
⟨𝐿𝜇[ℎ] | 𝑓 ⟩ = ⟨𝜄𝜇[ℎ] | 𝜄𝜇[𝑓 ]⟩𝐿2(𝜇) = ⟨𝜄∗𝜇𝜄𝜇[ℎ] | 𝑓⟩ , ℎ and 𝑓 ∈ ,

and so 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇.
For 𝜈 ∈ 𝔽 (𝐾), we by definition have |𝜈| ∈ +(𝐾) and 𝜈 ∈ 𝔽 (𝐾); from (6), we

also have 𝐿∗
𝜈 = 𝐿𝜈. The following relation (Lemma 3.3) holds between the range of

𝐿𝜈 and the range of 𝐿
|𝜈|.

Lemma 3.3. For all 𝜈 ∈ 𝔽 (𝐾), we have range(𝐿𝜈)

⊆ range(𝐿

|𝜈|)


.

Proof. From (6) and the CS inequality in 𝐿2(|𝜈|), we obtain
|

|

⟨𝐿𝜈[ℎ] | 𝑓 ⟩|| =
|

|

|

|

∫X

ℎ(𝑡)𝑓 (𝑡)d𝜈(𝑡)
|

|

|

|

⩽ ∫X

|

|

ℎ(𝑡)||𝑓 (𝑡)|d|𝜈|(𝑡)

⩽ ‖𝜄
|𝜈|[ℎ]‖𝐿2(|𝜈|)‖𝜄|𝜈|[𝑓 ]‖𝐿2(|𝜈|), ℎ and 𝑓 ∈ ,

(9)

where (8) ensures that the embedding 𝜄
|𝜈| is well-defined. From Lemma 3.2, we have

null(𝐿𝜇) = {ℎ ∈ |𝜄𝜇[ℎ] = 0}; inequality (9) then entails null(𝐿
|𝜈|) ⊆ null(𝐿𝜈), and

so null(𝐿𝜈)
⟂ ⊆ null(𝐿

|𝜈|)
⟂ . Recalling that null(𝑇 ∗) = range(𝑇 )⟂ , 𝑇 ∈ HS(),

we conclude by noticing that 𝐿∗
𝜈 = 𝐿𝜈 and 𝐿∗

|𝜈| = 𝐿
|𝜈|.

Lemma 3.4 illustrates that when the measure 𝜈 is finitely-supported, the range
of 𝐿

|𝜈| is fully characterised by the support of 𝜈.
Lemma 3.4. For 𝜈 =

∑𝑛
𝑖=1 𝜐𝑖𝛿𝑠𝑖 , with 𝑛 ∈ ℕ, 𝜐𝑖 ∈ ℂ, 𝜐𝑖 ≠ 0, and 𝑠𝑖 ∈ X , we have

range(𝐿
|𝜈|) = spanℂ{𝑘𝑠1

,⋯ , 𝑘𝑠𝑛}.

Proof. We have |𝜈| =
∑𝑛

𝑖=1 |𝜐𝑖|𝛿𝑠𝑖 ∈ +(𝐾), and 𝐿
|𝜈| is PSD. From Lemma 3.2, we

obtain that null(𝐿
|𝜈|) = {ℎ ∈ |𝜄

|𝜈|[ℎ] = 0} =
⋂𝑛

𝑖=1{ℎ ∈ |⟨𝑘𝑠𝑖
|ℎ⟩ = 0}, and so

null(𝐿
|𝜈|)

⟂ = spanℂ{𝑘𝑠1
,⋯ , 𝑘𝑠𝑛}. Since 𝐿

|𝜈| is self-adjoint, the result follows.

4 Measures and projection-based approximations
In this section, we illustrate the extent to which the the approximation of potentials
in  can be used as a surrogate for the characterisation of closed linear subspaces of
 for the approximation of 𝐿𝜇 ∈ HS() through projections (see Remark 4.1).
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4.1 Additional notations and general properties
For a closed linear subspace 𝑆 of , we denote by 𝑃𝑆 the orthogonal projection
from  onto 𝑆 . Endowed with the Hilbert structure of , the vector space 𝑆 is
a RKHS, and its reproducing kernel 𝐾𝑆 verifies 𝐾𝑆(𝑥, 𝑡) = 𝑃𝑆[𝑘𝑡](𝑥), 𝑥 and 𝑡 ∈ X .
Remark 4.1. The linear map 𝑇 ↦ 𝑃𝑆𝑇 is the orthogonal projection from HS()
onto(𝑆) = {𝑇 ∈ HS()| range(𝑇 ) ⊆ 𝑆}, the closed linear subspace ofHS()
of all operators with range included in 𝑆 . Also, the linear map 𝑇 ↦ 𝑇𝑃𝑆 is the
orthogonal projection from HS() onto (𝑆) = {𝑇 ∈ HS()| range(𝑇 ∗) ⊆ 𝑆}.
The two orthogonal projections 𝑇 ↦ 𝑃𝑆𝑇 and 𝑇 ↦ 𝑇𝑃𝑆 commute, and their com-
position, that is, the linear map 𝑇 ↦ 𝑃𝑆𝑇𝑃𝑆 , is the orthogonal projection from
HS() onto (𝑆) ∩ (𝑆). As (𝑃𝑆𝑇 )

∗ = 𝑇 ∗𝑃𝑆 , the orthogonal projections
onto (𝑆) and (𝑆) are intrinsically related; for this reason, in what follows,
we mainly focus on approximations of the form 𝑃𝑆𝑇 and 𝑃𝑆𝑇𝑃𝑆 . By orthogonality,
for all 𝑇 ∈ HS(), we have

‖𝑇 − 𝑃𝑆𝑇 ‖
2
HS() = ‖𝑇 ‖2HS() − ‖𝑃𝑆𝑇 ‖

2
HS(), and (10)

‖𝑇 − 𝑃𝑆𝑇𝑃𝑆‖
2
HS() = ‖𝑇 ‖2HS() − ‖𝑃𝑆𝑇𝑃𝑆‖

2
HS(), (11)

with ‖𝑃𝑆𝑇𝑃𝑆‖HS() ⩽ ‖𝑃𝑆𝑇 ‖HS() ⩽ ‖𝑇 ‖HS(); in particular, if 𝑇 is self-adjoint,
then so is 𝑃𝑆𝑇𝑃𝑆 . ⊲

Lemma 4.1. Let 𝑆 and 𝑅 be two closed linear subspaces of , with 𝑅 ⊆ 𝑆 .
For all 𝑇 ∈ HS(), we have

‖𝑃𝑅𝑇 ‖HS() ⩽ ‖𝑃𝑆𝑇 ‖HS() and ‖𝑃𝑅𝑇𝑃𝑅‖HS() ⩽ ‖𝑃𝑆𝑇𝑃𝑆‖HS().

Proof. We denote by 𝑒 the orthogonal complement of 𝑅 in 𝑆 . We then have
𝑃𝑆 = 𝑃𝑅 + 𝑃𝑒 and ⟨𝑃𝑅𝑇 |𝑃𝑒𝑇̃ ⟩HS() = ⟨𝑇𝑃𝑅 | 𝑇̃ 𝑃𝑒⟩HS() = 0, 𝑇 and 𝑇̃ ∈ HS().
We hence obtain ‖𝑃𝑆𝑇 ‖

2
HS() = ‖𝑃𝑅𝑇 ‖

2
 + ‖𝑃𝑒𝑇 ‖

2
HS(), and

‖𝑃𝑆𝑇𝑃𝑆‖
2
HS() = ‖𝑃𝑅𝑇𝑃𝑅‖

2
HS() + ‖𝑃𝑒𝑇𝑃𝑒‖

2
HS()

+ ‖𝑃𝑅𝑇𝑃𝑒‖
2
HS() + ‖𝑃𝑒𝑇𝑃𝑅‖

2
HS(),

completing the proof.
By boundedness of 𝑃𝑆 , for 𝜇 ∈ 𝔽 (𝐾), we have 𝑃𝑆𝐿𝜇 = ∫

X
𝑃𝑆𝑆𝑘𝑡

d𝜇(𝑡), and so

𝑃𝑆𝐿𝜇[ℎ](𝑥) = ∫X

𝐾𝑆(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡), ℎ ∈ , 𝑥 ∈ X .

The operator 𝑃𝑆𝐿𝜇 ∈ HS() can thus be regarded as an integral operator on 
defined by the kernel 𝐾𝑆 and the measure 𝜇. Since 𝐾𝑆(𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡), 𝑡 ∈ X , we
may notice that 𝔽 (𝐾) ⊆ 𝔽 (𝐾𝑆). We have

‖𝐿𝜇 − 𝑃𝑆𝐿𝜇‖
2
HS() = ∬X

𝐾(𝑡, 𝑥)
(

𝐾(𝑥, 𝑡) −𝐾𝑆(𝑥, 𝑡)
)

d𝜇(𝑡)d𝜇(𝑥), and (12)

‖𝐿𝜇 − 𝑃𝑆𝐿𝜇𝑃𝑆‖
2
HS() = ∬X

|𝐾(𝑥, 𝑡)|2 − |𝐾𝑆(𝑥, 𝑡)|
2d𝜇(𝑡)d𝜇(𝑥); (13)

12
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see (10), (11) and Lemma A.1 in Appendix A for a detailed computation (see also
Remark 4.2 for an alternative computation involving Γ).
Remark 4.2. Let 𝑈 and 𝑉 be two closed linear subspaces of . For 𝜇 ∈ 𝔽 (𝐾)
and 𝑥 ∈ X , we have

Γ[𝑃𝑉𝐿𝜇𝑃𝑈 ](𝑥) =
⟨

𝑘𝑥
|

|

𝑃𝑉𝐿𝜇𝑃𝑈 [𝑘𝑥]
⟩

 = ∫X

𝐾𝑈 (𝑡, 𝑥)𝐾𝑉 (𝑥, 𝑡)d𝜇(𝑡).

From Theorem 3.1 and the properties of Γ, we then obtain
‖𝑃𝑉𝐿𝜇𝑃𝑈‖

2
HS() = ⟨Γ∗Γ[𝐿𝜇] |𝑃𝑉𝐿𝜇𝑃𝑈⟩HS() = ⟨𝑔𝜇 |Γ[𝑃𝑉𝐿𝜇𝑃𝑈 ]⟩.

For general subspaces𝑈 and𝑉 , the operator𝑃𝑉𝐿𝜇𝑃𝑈 does not necessarily belong
to (Γ); see Remark 4.3 for an example where this situation occurs. ⊲

4.2 Projections defined by measures

Motivated by Lemmas 3.3 and 4.1, for 𝜈 ∈ 𝔽 (𝐾), we set 𝜈 = range(𝐿
|𝜈|)

 , and
we denote by 𝑃𝜈 the orthogonal projection from  onto 𝜈 .
Lemma 4.2. For all 𝜈 ∈ 𝔽 (𝐾), we have 𝐿𝜈 = 𝑃𝜈𝐿𝜈 = 𝐿𝜈𝑃𝜈 = 𝑃𝜈𝐿𝜈𝑃𝜈.

Proof. From Lemma 3.3, we have 𝐿𝜈 = 𝑃𝜈𝐿𝜈 and 𝐿𝜈 = 𝑃𝜈𝐿𝜈. We then obtain
𝐿𝜈 = 𝐿∗

𝜈 = (𝑃𝜈𝐿𝜈)
∗ = 𝐿𝜈𝑃𝜈, and so 𝐿𝜈 = 𝑃𝜈𝐿𝜈𝑃𝜈.

For an initial operator 𝐿𝜇, with 𝜇 ∈ 𝔽 (𝐾), through the orthogonal projection
𝑃𝜈 and in addition to 𝐿𝜈, an approximate measure 𝜈 ∈ 𝔽 (𝐾) also defines the ap-
proximations 𝑃𝜈𝐿𝜇, 𝐿𝜇𝑃𝜈 or 𝑃𝜈𝐿𝜇𝑃𝜈 of 𝐿𝜇.
Lemma 4.3. For all 𝜇 and 𝜈 ∈ 𝔽 (𝐾), we have

‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖

2
HS() + ‖𝑃𝜈𝐿𝜇 − 𝐿𝜈‖

2
HS(), and (14)

‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖

2
HS() + ‖𝑃𝜈𝐿𝜇𝑃𝜈 − 𝐿𝜈‖

2
HS(). (15)

Proof. Using the notations of Remark 4.1, Lemma 4.2 reads 𝐿𝜈 ∈ (𝜈) ∩(𝜈).Observing that 𝐿𝜇−𝑃𝜈𝐿𝜇 is orthogonal to (𝜈) and that 𝑃𝜈𝐿𝜇−𝐿𝜈 ∈ (𝜈), we
obtain (14). In the same way, 𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈 is orthogonal to (𝜈) ∩ (𝜈), and
we have 𝑃𝜈𝐿𝜇𝑃𝜈 − 𝐿𝜈 ∈ (𝜈) ∩(𝜈), leading to (15).

4.3 Error maps on sets of measures
In the framework of Sections 3.2 and 4.2, the characterisation of measures leading
to accurate approximations of an initial operator 𝐿𝜇, 𝜇 ∈ 𝔽 (𝐾), relates to the min-
imisation of error maps measuring the accuracy of the approximations induced by a
measure 𝜈 ∈ 𝔽 (𝐾).
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Quadrature approximation. We define the error map 𝐷𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0, with
𝐷𝜇(𝜈) = ‖𝐿𝜇 − 𝐿𝜈‖

2
HS() = ‖𝑔𝜇 − 𝑔𝜈‖

2
, 𝜈 ∈ 𝔽 (𝐾).

Lemma 4.4. For 𝜇 ∈ 𝔽 (𝐾), the map 𝐷𝜇 is convex on any convex set C ⊆ 𝔽 (𝐾).
For 𝜈 and 𝜂 ∈ C , the directional derivative of 𝐷𝜇 at 𝜈 along 𝜂 − 𝜈 is

lim
𝜌→0+

1
𝜌
[

𝐷𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

−𝐷𝜇(𝜈)
]

= 2ℜ
(

⟨𝑔𝜈 − 𝑔𝜇 | 𝑔𝜂 − 𝑔𝜈⟩
)

.

Proof. For 𝜉 = (1−𝜌)𝜈+𝜌𝜂, 𝜈 and 𝜂 ∈ C , 𝜌 ∈ [0, 1], we have 𝑔𝜉 = (1−𝜌)𝑔𝜈 +𝜌𝑔𝜂;
the convexity of 𝐷𝜇 on C then follows from the convexity of the map 𝑔 ↦ ‖𝑔𝜇−𝑔‖2
on . Next, the expansion of the squared norm ‖𝑔𝜇 − 𝑔𝜈 − 𝜌(𝑔𝜂 − 𝑔𝜈)‖

2
 provides the

expected expression for the directional derivatives of 𝐷𝜇.

Projection-based approximation. We denote by 𝐶P
𝜇 and 𝐶PP

𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0 the
error maps defined as

𝐶P
𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖

2
HS() and 𝐶PP

𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖
2
HS(), 𝜈 ∈ 𝔽 (𝐾);

we may notice that 𝐶X
𝜇 (𝜈) = 𝐶X

𝜇 (|𝜈|), X ∈ {P,PP}.
Theorem 4.1. For 𝜇 ∈ 𝔽 (𝐾) and X ∈ {P,PP}, the map 𝐶X

𝜇 is convex on the real
convex cone +(𝐾), and for all 𝜈 and 𝜂 ∈ +(𝐾), we have

lim
𝜌→0+

1
𝜌
[

𝐶X
𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

− 𝐶X
𝜇 (𝜈)

]

∈ {−∞, 0}.

Proof. For 𝜈, 𝜂 ∈ +(𝐾) and 𝜌 ∈ (0, 1), we set 𝜉 = 𝜈 + 𝜌(𝜂 − 𝜈) ∈ +(𝐾). The
three operators 𝐿𝜈, 𝐿𝜂 and 𝐿𝜉 being PSD, independently of 𝜌 ∈ (0, 1), we have
null(𝐿𝜉) = null(𝐿𝜈) ∩ null(𝐿𝜂), and so 𝜉 = 𝜈 +𝜂

 . The two maps
𝜌 ↦ 𝐶P

𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
) and 𝜌 ↦ 𝐶PP

𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

are therefore constant on the open interval (0, 1). From Lemma 4.1 and (10), noticing
that 𝜈 ⊆ 𝜉 and 𝜂 ⊆ 𝜉 , we obtain 𝐶P

𝜇 (𝜉) ⩽ 𝐶P
𝜇 (𝜈) and 𝐶P

𝜇 (𝜉) ⩽ 𝐶P
𝜇 (𝜂); from

(11), we also get 𝐶PP
𝜇 (𝜉) ⩽ 𝐶PP

𝜇 (𝜈) and 𝐶PP
𝜇 (𝜉) ⩽ 𝐶PP

𝜇 (𝜂), concluding the proof.
In view of Theorem 4.1, the maps 𝐶P

𝜇 and 𝐶PP
𝜇 are akin to piecewise-constant

functions. By contrast (see Lemma 4.4), the directional derivatives of the map 𝐷𝜇are informative, in the sense that the landscape of 𝐷𝜇 can be explored through steep-
est descents. From Remark 4.1 and Lemma 4.3, we have

𝐶P
𝜇 (𝜈) ⩽ 𝐶PP

𝜇 (𝜈) ⩽ 𝐷𝜇(𝜈), 𝜈 ∈ 𝔽 (𝐾), (16)
with 𝐶P

𝜇 (𝜇) = 𝐷𝜇(𝜇) = 0 and 𝐶P
𝜇 (0) = 𝐷𝜇(0) = ‖𝑔𝜇‖

2
 (see also Remark 4.3).

The quadrature-approximation error map 𝐷𝜇 may hence be regarded as a differen-
tiable relaxation of the projection-based-approximation error maps 𝐶P

𝜇 and 𝐶PP
𝜇 ; see

Figure 1 for an illustration.
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𝜈 ↦ 𝐷𝜇(𝜈)

𝜇
𝜐1

𝜐2

𝜈 ↦ 𝐶PP
𝜇 (𝜈)

𝜇
𝜐1

𝜐2

Figure 1: Graphical representation of the maps𝐷𝜇 and𝐶PP
𝜇 as functions of the weight

parameters characterising an approximate measure 𝜈 ∈ +(𝐾). The measures 𝜇 and
𝜈 are supported by the same set of points {𝑥1, 𝑥2} ⊆ X , and described by their
weight parameters (𝜔1, 𝜔2) and (𝜐1, 𝜐2) ∈ ℝ2

⩾0, respectively; the red star represents
the weight parameters of 𝜇 = 𝜔1𝛿𝑥1 + 𝜔2𝛿𝑥2 . The presented graphs correspond to
the case 𝜔1 = 𝜔2 = 1, with 𝐾 such that 𝐾(𝑥1, 𝑥1) = 1.225, 𝐾(𝑥2, 𝑥2) = 0.894 and
𝐾(𝑥1, 𝑥2) = 0.316. In the graph of 𝐶PP

𝜇 , the point on the vertical axis indicates the
value of the map at 𝜈 = 0, and the bold lines indicate the constant values taken by
the map along the horizontal axes (and following Remark 4.3, the graph of 𝐶PP

𝜇 is
tangent to the graph of 𝐷𝜇 along the horizontal axes).

Remark 4.3. For 𝜇 ∈ 𝔽 (𝐾) and 𝑠 ∈ X , introducing 𝑐𝛿𝑠 = 𝑔𝜇(𝑠)∕|𝐾(𝑠, 𝑠)|2 if
𝐾(𝑠, 𝑠) > 0, and 𝑐𝛿𝑠 = 0 otherwise, we have 𝑃𝛿𝑠

𝐿𝜇𝑃𝛿𝑠
= 𝑐𝛿𝑠𝑆𝑘𝑠

. For 𝐾(𝑠, 𝑠) = 0, we
indeed have 𝑘𝑠 = 0, and so 𝑃𝛿𝑠

= 0, and for 𝐾(𝑠, 𝑠) > 0,

𝑃𝛿𝑠
𝐿𝜇𝑃𝛿𝑠

[ℎ](𝑥) = 𝐾(𝑥, 𝑠)ℎ(𝑠)
|𝐾(𝑠, 𝑠)|2 ∫X

|𝐾(𝑠, 𝑡)|2d𝜇(𝑡), ℎ ∈  and 𝑥 ∈ X .

We obtain 𝑃𝛿𝑠
𝐿𝜇𝑃𝛿𝑠

∈ (Γ) and 𝐶PP
𝜇 (𝛿𝑠) = 𝐷𝜇(𝑐𝛿𝑠𝛿𝑠), 𝑠 ∈ X . ⊲

Remark 4.4. From a numerical standpoint, in view of (12) and (13), for 𝜈 ∈ 𝔽 (𝐾),
the evaluation of𝐶P

𝜇 (𝜈) or𝐶PP
𝜇 (𝜈) requires a suitable characterisation of the reproduc-

ing kernel 𝐾𝜈 of 𝜈 (or equivalently, of the orthogonal projection 𝑃𝜈); in practice,
𝐾𝜈 is a priori unknown and needs to be computed from 𝐾 and 𝜈 (see Remark 4.5).
In comparison and in view of (7), the error map 𝐷𝜇 only involves the kernel 𝐾; the
projection-free nature of 𝐷𝜇 is of notable interest for numerical applications. ⊲

Remark 4.5. Following Lemma 3.4, for a measure 𝜈 supported by  = {𝑠1,⋯ , 𝑠𝑛},
𝑛 ∈ ℕ, the reproducing kernel 𝐾𝜈 of 𝜈 can be expressed as

𝐾𝜈(𝑥, 𝑡) =
𝑛
∑

𝑖,𝑗=1
𝐾(𝑥, 𝑠𝑖)𝜘𝑖,𝑗𝐾(𝑠𝑗 , 𝑡), 𝑥 and 𝑡 ∈ X ,

where 𝜘𝑖,𝑗 is the 𝑖, 𝑗 entry of the pseudoinverse (Moore-Penrose inverse) of the 𝑛 × 𝑛
kernel matrix with 𝑖, 𝑗 entry 𝐾(𝑠𝑖, 𝑠𝑗). The worst-case time complexity of the eval-
uation of 𝐾𝜈 at 𝑀 ∈ ℕ distinct locations in X × X is thus (𝑛3 + 𝑛2𝑀). The
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term (𝑛3) is related to the pseudoinversion of the kernel matrix defined by 𝐾 and
 , while the term (𝑛2𝑀) corresponds to the evaluation, from this pseudoinverse
and the kernel 𝐾 , of 𝐾𝜈 at 𝑀 different locations. ⊲

5 Nonnegative measures and 𝐿2-embeddings

Following Section 3.3, for 𝜇 ∈ +(𝐾), the embedding 𝜄𝜇 ∶  → 𝐿2(𝜇) is HS. For
𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ X , we have

⟨𝑘𝑥 | 𝜄
∗
𝜇[𝑓 ]⟩ = ⟨𝜄𝜇[𝑘𝑥] | 𝑓⟩𝐿2(𝜇) = ∫X

𝐾(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡),

so that in addition to 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), the three operators
𝜄∗𝜇 ∶ 𝐿2(𝜇) → , 𝜄𝜇𝜄

∗
𝜇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), and 𝜄𝜇𝜄

∗
𝜇𝜄𝜇 ∶  → 𝐿2(𝜇), (17)

can also be regarded as integral operators defined by the kernel 𝐾 and the nonnega-
tive measure 𝜇. These four interpretations are inherent to 𝐾 , which characterises ,
and 𝜇, which characterises 𝐿2(𝜇); see for instance [4, 22, 19, 26, 20] for illustrations.
In each case, the corresponding operator is HS, and we denote by HS(𝜇,), HS(𝜇)
and HS(, 𝜇) the Hilbert spaces of all HS operators from 𝐿2(𝜇) to , on 𝐿2(𝜇), and
from  to 𝐿2(𝜇), respectively.

5.1 Partial 𝐿2-embeddings
For a closed linear subspace 𝑆 ⊆ , the embedding 𝜄𝜇 can be approximated by the
partial embedding 𝜄𝜇𝑃𝑆 . For 𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ X , we have

⟨𝑘𝑥 |𝑃𝑆 𝜄
∗
𝜇[𝑓 ]⟩ = ⟨𝜄𝜇𝑃𝑆[𝑘𝑥] | 𝑓⟩𝐿2(𝜇) = ∫X

𝐾𝑆(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡),

so that 𝑃𝑆 𝜄
∗
𝜇 corresponds to an integral operator with kernel 𝐾𝑆 . In the decompo-

sition 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), substituting each 𝜄𝜇 with 𝜄𝜇𝑃𝑆 gives the approximation
𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆 discussed in Section 4. For the operators defined in (17), a similar substi-

tution yields the approximations
𝑃𝑆 𝜄

∗
𝜇 ∈ HS(𝜇,), 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇 ∈ HS(𝜇), and 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆 ∈ HS(, 𝜇);

see also Remark 5.1. In what follows, we mainly focus on the approximations re-
lated to HS(𝜇,) and HS(𝜇); the case of HS(, 𝜇) is more briefly discussed in
Remark 5.2.
Remark 5.1. In addition to 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆 , the approximation of 𝜄𝜇 by 𝜄𝜇𝑃𝑆 gives rise to

the approximations 𝑃𝑆 𝜄
∗
𝜇𝜄𝜇 and 𝜄∗𝜇𝜄𝜇𝑃𝑆 of 𝜄∗𝜇𝜄𝜇 ∈ HS() (see Section 4). Similarly,

for 𝜄𝜇𝜄∗𝜇𝜄𝜇 ∈ HS(, 𝜇) and in addition to 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇𝜄𝜇𝑃𝑆 , the approximations 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇𝜄𝜇and 𝜄𝜇𝜄

∗
𝜇𝜄𝜇𝑃𝑆 of 𝜄𝜇𝜄∗𝜇𝜄𝜇 ∈ HS(, 𝜇) may be considered. In these approximations, the

substitution of 𝜄𝜇 with 𝜄𝜇𝑃𝑆 is not applied invariably. ⊲
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Lemma 5.1. Let 𝑆 be a closed linear subspace of . For 𝜇 ∈ +(𝐾), we have

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ∫X

𝐾(𝑡, 𝑡) −𝐾𝑆(𝑡, 𝑡)d𝜇(𝑡), and (18)

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ∬X

|

|

𝐾(𝑥, 𝑡) −𝐾𝑆(𝑥, 𝑡)||
2d𝜇(𝑡)d𝜇(𝑥). (19)

Proof. Let0𝑆 be the orthogonal complement of𝑆 in; endowed with the Hilbert
structure of , 0𝑆 is a RKHS, and 𝐾0𝑆 = 𝐾 − 𝐾𝑆 . For an ONB {ℎ𝑗}𝑗∈𝕀 of ,
𝕀 ⊆ ℕ, we have

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ‖𝜄𝜇𝑃0𝑆‖

2
HS(,𝜇) =

∑

𝑗∈𝕀
∫X

|

|

𝑃0𝑆[ℎ𝑗](𝑡)||
2d𝜇(𝑡);

since ∑

𝑗∈𝕀
|

|

𝑃0𝑆[ℎ𝑗](𝑡)||
2 = 𝐾0𝑆(𝑡, 𝑡), 𝑡 ∈ X (see e.g. [17]), equality (18) follows by

monotone convergence. We also have
‖𝜄𝜇𝜄

∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ‖𝜄𝜇𝑃0𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖

2
HS(),

so that (19) follows from Lemma A.1 (we recall that 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇).
Remark 5.2. We consider four closed linear subspaces 𝑅,𝑆 ,𝑈 and 𝑉 of ,
and let {ℎ𝑗}𝑗∈𝕀 be an ONB of . For 𝜇 ∈ +(𝐾), we have

⟨𝜄𝜇𝑃𝑅𝜄
∗
𝜇𝜄𝜇𝑃𝑆 | 𝜄𝜇𝑃𝑈 𝜄

∗
𝜇𝜄𝜇𝑃𝑉 ⟩HS(,𝜇)

=
∑

𝑗∈𝕀
∭X

𝑃𝑉 [ℎ𝑗](𝑡)𝑃𝑆[ℎ𝑗](𝑠)𝐾𝑅(𝑠, 𝑥)𝐾𝑈 (𝑥, 𝑡)d𝜇(𝑠)d𝜇(𝑡)d𝜇(𝑥),
(20)

with, form the CS inequality in 𝓁2(𝕀) and in ,

∭X

∑

𝑗∈𝕀

|

|

𝑃𝑉 [ℎ𝑗](𝑡)||||𝑃𝑆[ℎ𝑗](𝑠)||||𝐾𝑅(𝑠, 𝑥)||||𝐾𝑈 (𝑥, 𝑡)||d𝜇(𝑠)d𝜇(𝑡)d𝜇(𝑥) ⩽ 𝜏3𝜇.

From (20) and Fubini’s theorem, we then for instance obtain

‖𝜄𝜇𝜄
∗
𝜇𝜄𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆‖

2
HS(,𝜇) = ∭X

[

𝐾(𝑡, 𝑠)𝐾(𝑠, 𝑥)𝐾(𝑥, 𝑡)

+𝐾𝑆(𝑡, 𝑠)𝐾𝑆(𝑠, 𝑥)
(

𝐾𝑆(𝑥, 𝑡) − 2𝐾(𝑥, 𝑡)
)

]

d𝜇(𝑠)d𝜇(𝑡)d𝜇(𝑥),

where we should observe that ⟨𝜄𝜇𝜄∗𝜇𝜄𝜇 | 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇𝜄𝜇𝑃𝑆⟩HS(,𝜇) = ‖𝜄𝜇𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖

2
HS(,𝜇). ⊲

The following inequality (Lemma 5.2) holds between the approximations inHS(𝜇)
and HS() defined by a subspace 𝑆 . We recall that ‖𝜄𝜇𝜄∗𝜇‖HS(𝜇) = ‖𝜄∗𝜇𝜄𝜇‖HS(), and
that ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS() ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆‖HS() (see Remark 4.1).

Lemma 5.2. Let 𝑆 be a closed linear subspace of . For all 𝜇 ∈ +(𝐾), we have

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS().
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Proof. We have ‖𝜄𝜇𝜄∗𝜇− 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇‖HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖HS(), with 𝑃0𝑆 = id −𝑃𝑆 . The

operators 𝑃0𝑆𝐿𝜇𝑃0𝑆 and 𝑃0𝑆𝐿𝜇𝑃𝑆 being orthogonal in HS(), we obtain
‖𝑃0𝑆𝐿𝜇(𝑃0𝑆 + 𝑃𝑆)‖

2
HS() = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖

2
HS() + ‖𝑃0𝑆𝐿𝜇𝑃𝑆‖

2
HS(),

and so ‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS().

5.2 Trace and Frobenius error maps
Following Section 4.3 and considering subspaces of  defined by measures, we
introduce the error maps 𝐶 tr

𝜇 and 𝐶F
𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0, with

𝐶 tr
𝜇 (𝜈) = ‖𝜄∗𝜇 − 𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇,) and 𝐶F

𝜇 (𝜈) = ‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇), 𝜈 ∈ 𝔽 (𝐾).

The notations 𝐶 tr
𝜇 and 𝐶F

𝜇 are motivated by the relation between these maps and the
trace and Frobenius norms; see Section 5.3. As observed for 𝐶P

𝜇 and 𝐶PP
𝜇 , we may

notice that 𝐶X
𝜇 (𝜈) = 𝐶X

𝜇 (|𝜈|), X ∈ {tr,F}

Theorem 5.1. For 𝜇 ∈ +(𝐾), the statement of Theorem 4.1 also holds for the maps
𝐶 tr

𝜇 and 𝐶F
𝜇 ; that is, these two maps are convex on the real convex cone +(𝐾), and

their directional derivatives take values in the set {−∞, 0}.

Proof. We follow the same reasoning as in the proof of Theorem 4.1. For two mea-
sures 𝜈 and 𝜂 ∈ +(𝐾) and for 𝜌 ∈ (0, 1), we set 𝜉 = 𝜈 + 𝜌(𝜂 − 𝜈) ∈ +(𝐾). We
then have 𝜉 = 𝜈 +𝜂

 independently of 𝜌 ∈ (0, 1). We conclude by combining
the inclusions 𝜈 ⊆ 𝜉 and 𝜂 ⊆ 𝜉 with the inequalities provided in Lemma A.2
(Appendix A).

As illustrated by Lemma 5.1 and Theorem 5.1, and as already observed for the
error maps 𝐶P

𝜇 and 𝐶PP
𝜇 , the error maps 𝐶 tr

𝜇 and 𝐶F
𝜇 are akin to piecewise-constant

functions, and their evaluation requires a suitable characterisation of the kernel of
subspaces of . For 𝜇 ∈ +(𝐾), the error maps 𝐶X

𝜇 , X ∈ {tr,F,P,PP} can be
regarded as alternative ways to asses the accuracy of the approximation of 𝜄𝜇 by
𝜄𝜇𝑃𝜈, 𝜈 ∈ 𝔽 (𝐾). From the relation between the error maps 𝐷𝜇 and 𝐶X

𝜇 , X ∈ {P,PP}
(see Lemma 4.3) the approximation of potentials in  can hence more generally be
regarded as a differentiable and projection-free surrogate for the characterisation of
accurate partial embeddings. From Lemma 5.2, we may notice that 𝐶F

𝜇 (𝜈) ⩽ 𝐶P
𝜇 (𝜈),

𝜈 ∈ 𝔽 (𝐾), extending the sequence of inequalities (16).
Remark 5.3. Let 𝜈 ∈ ℂ(𝐾) be a complex measure with real and imaginary parts
𝜈𝕣 and 𝜈𝕚 ∈  (𝐾). For 𝜇 ∈  (𝐾), the three operators 𝐿𝜇, 𝐿𝜈𝕣

and 𝐿𝜈𝕚
are self-

adjoint; we thus have ‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝐿𝜈𝕣

‖

2
HS() + ‖𝐿𝜈𝕚

‖

2
HS(), and so

𝐷𝜇(𝜈𝕣 ) ⩽ 𝐷𝜇(𝜈). Hence, when 𝐿𝜇 is self-adjoint, the search of an approximate
measure 𝜈 for the approximation of 𝐿𝜇 by 𝐿𝜈 can be restricted to  (𝐾). ⊲
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5.3 Column sampling for PSD-matrix approximation
Let 𝐊 be a 𝑁 ×𝑁 PSD matrix, with 𝑁 ∈ ℕ; we denote by [𝑁] the set of all integers
between 1 and 𝑁 . For a subset 𝐼 ⊆ [𝑁] the Nyström approximation2 of 𝐊 induced
by 𝐼 is the 𝑁 ×𝑁 PSD matrix

𝐊̂(𝐼) = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )
†𝐊𝐼,∙, (21)

where 𝐊∙,𝐼 is the matrix defined by the columns of 𝐊 with index in 𝐼 , and where
(𝐊𝐼,𝐼 )

† is the pseudoinverse of the principal submatrix of 𝐊 defined by 𝐼 (and 𝐊𝐼,∙consists of rows of 𝐊); see e.g. [9, 18, 14, 11].
For 𝑖 and 𝑗 ∈ [𝑁], the 𝑖, 𝑗 entry of 𝐊 may be regarded as the value 𝐾(𝑖, 𝑗) of

a PSD kernel 𝐾 defined on the discrete set X = [𝑁]. The 𝑗-th column of 𝐊 then
corresponds to the function 𝑘𝑗 ∈ , 𝑗 ∈ X , and the subset 𝐼 defines the closed
linear subspace 𝐼 = spanℂ{𝑘𝑗|𝑗 ∈ 𝐼} ⊆ ; in particular, the 𝑖, 𝑗 entry of 𝐊̂(𝐼) is
𝐾𝐼 (𝑖, 𝑗), with 𝐾𝐼 the reproducing kernel of 𝐼 (see e.g. [17], and Remark 4.5).

Introducing 𝜇 =
∑𝑁

𝑖=1 𝛿𝑖, the Hilbert space 𝐿2(𝜇) can be identified with the
Euclidean space ℂ𝑁 ; following Section 5.2, we then observe that

• the trace norm ‖𝐊 − 𝐊̂(𝐼)‖tr corresponds to (18), and
• the squared Frobenius norm ‖𝐊 − 𝐊̂(𝐼)‖2F corresponds to (19).

The column-sampling problem for the Nyström approximation of a PSD matrix 𝐊,
that is, the search of a subset 𝐼 ⊆ [𝑁] leading to an accurate approximation 𝐊̂(𝐼) of
𝐊, is thus a special instance of the general framework discussed in Section 5.1. In
particular, the support of an approximate measure 𝜈 on X = [𝑁] defines a subset
of columns of 𝐊, and the approximation of potentials in the RKHS  may be used
as surrogate for the characterisation of such measures. In the discrete setting, 
corresponds to the RKHS defined by the 𝑁 ×𝑁 PSD matrix 𝐒 with 𝑖, 𝑗 entry |𝐊𝑖,𝑗|

2

(that is, 𝐒 is the element-wise product between 𝐊 and 𝐊, the conjugate of 𝐊).

6 Concluding discussion
We described the overall framework surrounding the isometric representation of in-
tegral operators with PSD kernels as potentials, and illustrated the equivalence be-
tween the quadrature approximation of such integral operators and the approxima-
tion of integral functionals on RKHSs with squared-modulus kernels. Through sub-
spaces defined by measures and partial 𝐿2-embeddings, we also discussed the extent
to which the approximation of potentials in RKHSs with squared-modulus kernels
can be used as a differentiable surrogate for the characterisation of projection-based
approximation of integral operators with PSD kernels.

2In the machine-learning literature, Nyström approximation refers to the low-rank approxima-
tion of PSD matrices through column sampling; although related, this terminology should not to be
confused with the quadrature method for the approximation of integral equations.
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The link between integral-operator approximation and potential approximation
may be leveraged to design sampling strategies for low-rank approximation (where
approximations are characterised by sparse finitely-supported measures). The direct
minimisation of 𝐷𝜇 under sparsity-inducing constraints is for instance considered
in [10], while the possibility to locally optimised the support of approximate mea-
sures using particle-flow techniques is studied in [13]. Sequential approaches, where
support points are added one-at-a-time on the basis of information provided by the
directional derivatives of 𝐷𝜇, are investigated in [12]. The present work aims at
supporting this type of approaches by strengthening their theoretical underpinning.

A Technical results
Lemma A.1. Let𝑈 and𝑉 be two closed linear subspaces of. For all𝜇 ∈ 𝔽 (𝐾),
we have

‖𝑃𝑉𝐿𝜇𝑃𝑈‖
2
HS() = ∬X

𝐾𝑈 (𝑡, 𝑥)𝐾𝑉 (𝑥, 𝑡)d𝜇(𝑡)d𝜇(𝑥).

Proof. We consider an ONB {ℎ𝑗}𝑗∈𝕀 of , 𝕀 ⊆ ℕ. From (6), we have
‖𝑃𝑉𝐿𝜇𝑃𝑈‖

2
HS() =

∑

𝑗∈𝕀
⟨𝐿𝜇𝑃𝑈 [ℎ𝑖] |𝑃𝑉𝐿𝜇𝑃𝑈 [ℎ𝑗]⟩

=
∑

𝑗∈𝕀
∬X

𝑃𝑈 [ℎ𝑗](𝑡)𝑃𝑈 [ℎ𝑗](𝑥)𝐾𝑉 (𝑥, 𝑡)d𝜇(𝑡)d𝜇(𝑥).
(22)

As ∑

𝑗∈𝕀 𝑃𝑈 [ℎ𝑗](𝑡)𝑃𝑈 [ℎ𝑗](𝑥) = 𝐾𝑈 (𝑡, 𝑥), 𝑥 and 𝑡 ∈ X (see e.g. [17]), and since
𝐾𝑈 (𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡) and 𝐾𝑉 (𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡), from the CS inequality in 𝓁2(𝕀) and in ,
we obtain

∬X

∑

𝑗∈𝕀

|

|

𝑃𝑈 [ℎ𝑗](𝑡)||||𝑃𝑈 [ℎ𝑗](𝑥)||||𝐾𝑉 (𝑥, 𝑡)||d|𝜇|(𝑡)d|𝜇|(𝑥) ⩽ 𝜏2𝜇;

the result then follows form (22) and Fubini’s theorem.
Lemma A.2. Let 𝑆 and 𝑅 be two closed linear subspaces of ; we assume that
𝑅 ⊆ 𝑆 . For all 𝜇 ∈ +(𝐾), we have ‖𝜄∗𝜇 − 𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇,) ⩽ ‖𝜄∗𝜇 − 𝑃𝑅𝜄

∗
𝜇‖HS(𝜇,) and

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄𝜇𝜄

∗
𝜇 − 𝜄𝜇𝑃𝑅𝜄

∗
𝜇‖HS(𝜇).

Proof. We denote by 𝑒 the orthogonal complement of 𝑅 in 𝑆 . Noticing that
𝑃𝑆 = 𝑃𝑅 + 𝑃𝑒 and that ⟨𝜄∗𝜇 − 𝑃𝑅𝜄

∗
𝜇 |𝑃𝑒𝜄

∗
𝜇⟩HS(𝜇,) = ‖𝑃𝑒𝜄

∗
𝜇‖

2
HS(𝜇,), we obtain

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ‖𝜄∗𝜇 − 𝑃𝑅𝜄

∗
𝜇‖

2
HS(𝜇,) − ‖𝑃𝑒𝜄

∗
𝜇‖

2
HS(𝜇,).

Denoting by 0𝑆 and 0𝑅 the orthogonal complements of 𝑆 and 𝑅 in , respec-
tively, we have 0𝑆 ⊆ 0𝑅; Lemma 4.1 then gives

‖𝜄𝜇𝑃0𝑆 𝜄
∗
𝜇‖HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖HS() ⩽ ‖𝑃0𝑅𝐿𝜇𝑃0𝑅‖HS() = ‖𝜄𝜇𝑃0𝑅𝜄

∗
𝜇‖HS(𝜇),

completing the proof.
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