
HAL Id: hal-03848105
https://hal.science/hal-03848105v2

Preprint submitted on 30 Apr 2023 (v2), last revised 7 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isometric representation of integral operators with
positive-semidefinite kernels

Bertrand Gauthier

To cite this version:
Bertrand Gauthier. Isometric representation of integral operators with positive-semidefinite kernels.
2023. �hal-03848105v2�

https://hal.science/hal-03848105v2
https://hal.archives-ouvertes.fr


Isometric representation of integral operators
with positive-semidefinite kernels

Bertrand GAUTHIER∗

Abstract

We describe a natural coisometry from the Hilbert space of all Hilbert-
Schmidt operators on a separable reproducing kernel Hilbert space (RKHS)
, and onto the RKHS  associated with the squared-modulus of the repro-
ducing kernel of. We discuss the properties of this coisometry, and show that
trace-class integral operators defined by general measures and the reproducing
kernel of  always belong to its initial space. The images of such operators
are the Riesz representations of integral functionals on , drawing a direct con-
nection between the approximation of trace-class integral operators with PSD
kernels and the approximation of integral functionals on RKHSs associated
with squared-modulus kernels.

Keywords: reproducing kernel Hilbert spaces, integral operators, low-rank approx-
imation, kernel embedding of measures, kernel quadrature.
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1 Introduction
Integral operators with positive-semidefinite (PSD) kernels play a central role in the
theory of reproducing kernel Hilbert spaces (RKHSs) and their applications; see
for instance [4, 5, 19, 26, 20]. As an important instance, this class of operators
encompasses the PSD matrices.

Among other interpretations and under suitable conditions, an integral operator
defined by a PSD kernel 𝐾 and a measure 𝜇 can be regarded as a Hilbert-Schmidt
(HS) operator 𝐿𝜇 on the RKHS  associated with 𝐾; see e.g. [21, 22]. Let  be
the RKHS for which the squared-modulus kernel |𝐾|

2 is reproducing. In this note,
we show that when the integral of the diagonal of 𝐾 with respect to the variation of
𝜇 is finite, the HS operator 𝐿𝜇 on  can be isometrically represented as the Riesz
representation 𝑔𝜇 ∈  of the integral functional on  defined by the measure 𝜇, the
conjugate of 𝜇. The operator 𝐿𝜇 is in this case trace-class, and 𝑔𝜇 is the kernel em-
bedding, or potential, of the measure 𝜇 in the RKHS . Consequently, in the Hilbert
space HS() of all HS operators on , the characterisation of an approximate mea-
sure 𝜈 (defining together with 𝐾 an integral operator 𝐿𝜈 on ) for the approximation
of an initial operator 𝐿𝜇 reduces to a quadrature problem for the approximation of
integral functionals on the RKHS  associated with |𝐾|

2. More precisely, denoting
by 𝐵 the closed unit ball of , we have

‖𝐿𝜇 − 𝐿𝜈‖HS() = ‖𝑔𝜇 − 𝑔𝜈‖ = sup𝑔∈𝐵
|

|

∫ 𝑔(𝑡)d𝜇(𝑡) − ∫ 𝑔(𝑡)d𝜈(𝑡)|
|

,

so that the norm ‖𝐿𝜇 − 𝐿𝜈‖HS() corresponds to a generalised integral probability
metric (see for instance [16, 24, 2, 15, 27]) for the approximation of integral func-
tionals on .

We give an overall description of the framework surrounding such an isometric
representation, and illustrate that it follows from the definition of a natural coisome-
try Γ from HS() onto ; in particular, Γ maps self-adjoint operators to real-valued
functions, and PSD operators to nonnegative functions (Section 2). Under general
measurability conditions on 𝐾 and assuming that the diagonal of 𝐾 is integrable
with respect to |𝜇|, we show that the integral operator 𝐿𝜇 always belongs to the ini-
tial space of Γ, and that Γ[𝐿𝜇] = 𝑔𝜇. We next describe the equivalence between
the quadrature approximation of trace-class integral operators with PSD kernels and
kernel quadrature in RKHSs with squared-modulus kernels (Section 3).
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For an approximate measure 𝜈, we denote by 𝑃𝜈 the orthogonal projection from
 onto 𝜈, the closure in  of the range of 𝐿

|𝜈|. We then discuss the extent to which
the kernel-quadrature setting of Section 3 can be used as a surrogate for the character-
isation of projection-based approximations of𝐿𝜇 of the form 𝑃𝜈𝐿𝜇, 𝐿𝜇𝑃𝜈 or 𝑃𝜈𝐿𝜇𝑃𝜈.Further, when the initial measure 𝜇 is nonnegative, the integral operator defined by
the kernel 𝐾 and the measure 𝜇 can more generally be regarded as a HS operator
from, and to, 𝐿2(𝜇) or  (four possibilities). Noticing that these integral operators
are composites of the natural embedding 𝜄𝜇 of  in 𝐿2(𝜇), we study the properties
of the low-rank approximations induced in this framework by partial embeddings of
the form 𝜄𝜇𝑃𝜈. We in parallel illustrate the interest of the kernel-quadrature setting
in terms of differentiability and numerical complexity, and describe the connections
between of the considered framework and the low-rank approximation of PSD ma-
trices through column sampling (Section 4).

2 Framework and notations
By default, all the Hilbert spaces considered in this note are complex; they are oth-
erwise explicitly referred to as real Hilbert spaces; we use a similar convention for
vector spaces. Inner products of complex Hilbert spaces are assumed to be linear
with respect to their right argument. For 𝑧 ∈ ℂ, we denote by 𝑧, |𝑧| and ℜ(𝑧) the
conjugate, modulus and real part of 𝑧, respectively, and i ∈ ℂ is the imaginary unit.
By analogy, for a complex-valued function 𝑓 on a general set 𝑆, we denote by 𝑓 and
|𝑓 | the functions defined as 𝑓 (𝑠) = 𝑓 (𝑠) and |𝑓 |(𝑠) = |𝑓 (𝑠)|, 𝑠 ∈ 𝑆; we also use
the notation |𝑓 |2 to refer to the function 𝑠 ↦ |𝑓 (𝑠)|2.

For two Hilbert spaces 𝐻 and 𝐹 , we denote by 𝐴∗ the adjoint of a bounded linear
operator 𝐴 ∶ 𝐻 → 𝐹 . The map 𝐴 is an isometry if 𝐴∗𝐴 = id𝐻 , the identity operator
on 𝐻 , and 𝐴 is coisometry if 𝐴∗ is an isometry (i.e. if 𝐴𝐴∗ = id𝐹 ). A coisometry
𝐴 is a surjective partial isometry (i.e. 𝐴𝐴∗𝐴 = 𝐴), and 𝐴∗𝐴 is then the orthogonal
projection from 𝐻 onto the initial space (𝐴) of 𝐴, with (𝐴) the orthogonal com-
plement in 𝐻 of the nullspace of 𝐴. We denote by null(𝐴) the nullspace of 𝐴, and
by range(𝐴) its range. Also, for a subset 𝐶 of 𝐻 , we denote by 𝐶⟂𝐻 the orthogonal
complement of 𝐶 in 𝐻 , and by 𝐶

𝐻 the closure of 𝐶 in 𝐻 .

2.1 Hilbert-Schmidt operators and RKHSs
Hereafter, we introduce the overall framework leading to the definition of a natural
coisometry Γ from the Hilbert space HS() of all HS operators on an underlying
RKHS , and onto the RKHS  associated with the squared-modulus of the repro-
ducing kernel of; the terminology natural is used to emphasise that the considered
construction does not depend on the choice of any specific basis.

Underlying RKHS. Let  be a separable RKHS of complex-valued functions on
a general set X , with reproducing kernel 𝐾 ∶ X × X → ℂ; see for instance
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[1, 17]. For 𝑡 ∈ X , let 𝑘𝑡 ∈  be defined as 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡), with 𝑥 ∈ X . For all
ℎ ∈ , we have ⟨𝑘𝑡 |ℎ⟩ = ℎ(𝑡), where ⟨⋅ | ⋅⟩ stands for the inner product of 
(this equality is often referred to as the reproducing property); we denote by ‖⋅‖the norm of , and we use similar notations for the inner products and norms of all
the Hilbert spaces encountered in this note.

Hilbert-Schmidt space. Let HS() be the Hilbert space of all HS operators on ;
see e.g. [7, 11, 3]. For 𝑇 ∈ HS(), we denote by 𝑇 [ℎ] ∈  the image of ℎ ∈ 
through 𝑇 , and by 𝑇 [ℎ](𝑥) the value of the function 𝑇 [ℎ] at 𝑥 ∈ X ; we use a similar
convention for all function-valued operators. For 𝑎 and 𝑏 ∈ , let 𝑇𝑎,𝑏 ∈ HS() be
the rank-one operator given by

𝑇𝑎,𝑏[ℎ] = 𝑎⟨𝑏 |ℎ⟩ , ℎ ∈ ;

we also set 𝑆𝑏 = 𝑇𝑏,𝑏.
Remark 2.1. An operator 𝑇 ∈ HS() admits a singular value decomposition of the
form 𝑇 =

∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖
, 𝕀 ⊆ ℕ, where {𝜎𝑖}𝑖∈𝕀 ∈ 𝓁2(𝕀) is the set of all strictly positive

singular values of 𝑇 , and where {𝑢𝑖}𝑖∈𝕀 and {𝑣𝑖}𝑖∈𝕀 are two orthonormal systems
(ONSs) in ; the series converges in HS(). ⊲

Remark 2.2. Let ′ be the continuous dual of . For ℎ ∈ , let 𝜉ℎ ∈ ′ be the
bounded linear functional such that 𝜉ℎ(𝑓 ) = ⟨ℎ | 𝑓 ⟩ , 𝑓 ∈ . Endowed with the
inner product ⟨𝜉𝑓 | 𝜉ℎ⟩′ = ⟨ℎ | 𝑓 ⟩ , the vector space ′ is a Hilbert space, and the
Riesz map ℎ ↦ 𝜉ℎ is a bijective conjugate-linear isometry form  to ′ (we may
notice that 𝜉𝛼ℎ = 𝛼𝜉ℎ, 𝛼 ∈ ℂ). The linear map densely defined as 𝑇𝑎,𝑏 ↦ 𝑎⊗ 𝜉𝑏 (see
Remark 2.1) is then a bijective isometry from the Hilbert space HS() to the tensor
Hilbert space  ⊗′. ⊲

Conjugate RKHS. Let  be the RKHS of complex-valued functions on X asso-
ciated with the conjugate kernel 𝐾 , with 𝐾(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), 𝑥 and 𝑡 ∈ X . For all
ℎ ∈ , we have ℎ ∈  (i.e. the function ℎ ∶ 𝑥 ↦ ℎ(𝑥) is a vector of ), and the
map ℎ ↦ ℎ is a bijective conjugate-linear isometry from  to . We may notice
that 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡) = 𝑘𝑡(𝑥), and that

⟨𝑘𝑥 | 𝑘𝑡⟩ = 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) = ⟨𝑘𝑡 | 𝑘𝑥⟩ .

We denote by Ψ the bijective linear isometry from HS() to the tensor Hilbert
space  ⊗, densely defined as Ψ(𝑇𝑎,𝑏) = 𝑎 ⊗ 𝑏, 𝑎 and 𝑏 ∈ .
Remark 2.3. Following Remark 2.2, the linear map 𝜉ℎ ↦ ℎ is a bijective isometry
form ′ to . Further, the linear map densely defined as 𝑎 ⊗ 𝜉𝑏 ↦ 𝑎 ⊗ 𝑏 is a
bijective isometry form  ⊗′ to  ⊗; the composition of this isometry with
the bijective isometry from HS() to  ⊗ ′ discussed in Remark 2.2 yields the
isometry Ψ ∶ HS() →  ⊗; see the diagram (5). ⊲
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Squared-kernel RKHS. The kernels 𝐾 and 𝐾 being PSD, by the Schur-product
theorem, so is the squared-modulus kernel |𝐾|

2 = 𝐾𝐾 , with
|𝐾|

2(𝑥, 𝑡) = 𝐾(𝑥, 𝑡)𝐾(𝑥, 𝑡) = |𝐾(𝑥, 𝑡)|2 = |𝑘𝑡|
2(𝑥), 𝑥 and 𝑡 ∈ X .

Let be the RKHS of complex-valued functions on X for which |𝐾|

2 is reproducing
( is the product of the two RKHSs  and ; see e.g. [1, 17]).

Following [17, Chapter 5], we denote by 𝐶Δ ∶  ⊗  →  the coisometry
densely defined as 𝐶Δ(𝑎 ⊗ 𝑏) = 𝑎𝑏, 𝑎 and 𝑏 ∈ , where 𝑎𝑏 ∈  is the complex-
valued function on X given by

(

𝑎𝑏
)

(𝑥) = 𝑎(𝑥)𝑏(𝑥) = ⟨𝑘𝑥 ⊗ 𝑘𝑥 | 𝑎 ⊗ 𝑏⟩⊗ , 𝑥 ∈ X .
For Υ ∈  ⊗′, we more generally have

𝐶Δ[Υ](𝑥) = ⟨|𝑘𝑥|
2
|𝐶Δ[Υ]⟩ = ⟨𝑘𝑥 ⊗ 𝑘𝑥 |Υ⟩⊗ . (1)

The initial space of 𝐶Δ is (𝐶Δ) = spanℂ{𝑘𝑥 ⊗ 𝑘𝑥|𝑥 ∈ X }
⊗

, the closure in
 ⊗ of the linear space spanned by the simple tensors 𝑘𝑥 ⊗ 𝑘𝑥, 𝑥 ∈ X .
Remark 2.4. From (1), for all 𝑥 ∈ X , we have 𝐶∗

Δ[|𝑘𝑥|
2] = 𝑘𝑥 ⊗ 𝑘𝑥. The linear

space spanℂ{|𝑘𝑥|
2
|𝑥 ∈ X } being dense in  (see for instance [17, Chapter 2]), we

have 𝐶Δ𝐶
∗
Δ = id, and 𝐶∗

Δ is thus an isometry. ⊲

Natural coisometry from HS() onto . We are now in the position to introduce
the coisometry Γ = 𝐶ΔΨ ∶ HS() → ; since this map plays a central role in our
study, we gather some of its properties in the following Lemma 2.1.
Lemma 2.1. The linear map Γ = 𝐶ΔΨ is a coisometry from HS() onto , and its
initial space verifies

(Γ) = spanℂ{𝑆𝑘𝑥
|𝑥 ∈ X }

HS()
. (2)

Further, for all 𝑇 ∈ HS(), we have

Γ[𝑇 ](𝑥) = ⟨𝑆𝑘𝑥
| 𝑇 ⟩HS() = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ = 𝑇 [𝑘𝑥](𝑥), 𝑥 ∈ X . (3)

Proof. The linear isometry Ψ being bijective, we have ΨΨ∗ = id⊗ , and thus
ΓΓ∗ = 𝐶ΔΨΨ

∗𝐶∗
Δ = 𝐶Δ𝐶

∗
Δ = id .

By definition of 𝐶Δ and Ψ, we have Γ[𝑇𝑎,𝑏] = 𝐶Δ[𝑎 ⊗ 𝑏] = 𝑎𝑏, 𝑎 and 𝑏 ∈ .
Noticing that Γ∗[|𝑘𝑥|

2] = Ψ∗[𝑘𝑥 ⊗ 𝑘𝑥] = 𝑆𝑘𝑥
, 𝑥 ∈ X , (2) follows by density of

spanℂ{|𝑘𝑥|
2
|𝑥 ∈ X } in  (see Remark 2.4). From the reproducing property in ,
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we have Γ[𝑇 ](𝑥) = ⟨|𝑘𝑥|
2
|Γ[𝑇 ]⟩, 𝑇 ∈ HS(); as Γ∗[|𝑘𝑥|

2] = 𝑆𝑘𝑥
, we obtain

Γ[𝑇 ](𝑥) = ⟨𝑆𝑘𝑥
| 𝑇 ⟩HS(). We next notice that

⟨𝑇𝑎,𝑏 | 𝑇 ⟩HS() = ⟨𝑎 | 𝑇 [𝑏]⟩ , 𝑎 and 𝑏 ∈ ; (4)
indeed, as 𝑇𝑎,0 = 0, equality (4) trivially holds for 𝑏 = 0, and for 𝑏 ≠ 0, we have
⟨𝑇𝑎,𝑏 | 𝑇 ⟩HS() = ⟨𝑇𝑎,𝑏[𝑏] | 𝑇 [𝑏]⟩∕‖𝑏‖

2
 , with 𝑇𝑎,𝑏[𝑏] = 𝑎‖𝑏‖2 . Taking 𝑎 = 𝑏 = 𝑘𝑥,

(4) reads ⟨𝑆𝑘𝑥
| 𝑇 ⟩HS() = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ = 𝑇 [𝑘𝑥](𝑥), concluding the proof.

The following diagram summarises the construction of Γ (the ≅ symbol refers
to the two the natural bijective isometries discussed in Remarks 2.2 and 2.3).

HS() Γ //

Ψ
%%



 ⊗′
≅
//

��
≅

 ⊗
𝐶Δ

<<

(5)

Through Γ, the HS operators on  belonging to (Γ) are isometrically represented
as functions in the RKHS  associated with the squared-modulus kernel |𝐾|

2.

2.2 Self-adjoint operators and real-valuedness

For 𝑇 ∈ HS(), we have 𝑇 ∗ ∈ HS(), and so, from (3), Γ[𝑇 ∗] = Γ[𝑇 ]. Conse-
quently, if 𝑇 is self-adjoint, then the function Γ[𝑇 ] is real-valued. This observation
is intrinsically related to the structures of HS() and , as illustrated below.
Remark 2.5. Form the surjectivity of Γ, for all 𝑔 ∈ , there exists 𝑇 ∈ HS() such
that Γ[𝑇 ] = 𝑔, and the function 𝑔 = Γ[𝑇 ∗] is thus also a vector of . ⊲

Squared-kernel real RKHS. The squared kernel |𝐾|

2 being real-valued, it is the
reproducing kernel of a real RKHS ℝ of real-valued functions on X . The real
RKHS ℝ can be regarded as a closed real-linear subspace of , and the complex
RKHS  is a complexification of ℝ (see e.g. [17, Chapter 5]; ℝ is referred to
as a standard subspace of ). More precisely, for all 𝑔 ∈ , there exist 𝑔𝕣 and
𝑔𝕚 ∈ ℝ ⊂  such that 𝑔 = 𝑔𝕣 + i𝑔𝕚, with 𝑔𝕣 = 1

2
(𝑔 + 𝑔) and 𝑔𝕚 =

1
2
i(𝑔 − 𝑔), and

the decomposition  = ℝ + iℝ holds. The functions 𝑔𝕣 and 𝑔𝕚 are the real and
imaginary parts of 𝑔, and we have ‖𝑔‖2 = ‖𝑔𝕣‖

2
 + ‖𝑔𝕚‖

2
.

Self-adjoint HS operators. We denote by HS∗() ⊂ HS() the closed real-linear
subspace of all self-adjoint HS operators on . For every 𝑇 ∈ HS(), there exist 𝑇𝕣
and 𝑇𝕚 ∈ HS∗() such that 𝑇 = 𝑇𝕣 + i𝑇𝕚, with 𝑇𝕣 =

1
2
(𝑇 ∗ + 𝑇 ) and 𝑇𝕚 =

1
2
i(𝑇 ∗ − 𝑇 ).

Endowed with the inner product of HS(), the real vector space HS∗() is a real
Hilbert space, and the decomposition HS() = HS∗() + iHS∗() holds. By lin-
earity of Γ, we may notice that if Γ[𝑇 ] = 𝑔, then Γ[𝑇𝕣 ] = 𝑔𝕣 and Γ[𝑇𝕚] = 𝑔𝕚.
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Remark 2.6. For all 𝑇 ∈ HS(), we have ‖𝑇 ‖HS() ⩾ ‖Γ[𝑇 ]‖, with equality if
and only if 𝑇 ∈ (Γ); as ‖𝑇 ‖HS() = ‖𝑇 ∗

‖HS() and ‖𝑔‖ = ‖𝑔‖, it follows that if
𝑇 ∈ (Γ), then 𝑇 ∗ ∈ (Γ), and also 𝑇𝕣 and 𝑇𝕚 ∈ (Γ). ⊲

Remark 2.7. The diagram (5) is also well-defined when all the involved Hilbert
spaces are real (the kernel 𝐾 in this case verifies 𝐾 = 𝐾 , that is, 𝐾 is symmetric).
We then have (Γ) = spanℝ{𝑆𝑘𝑥

|𝑥 ∈ X }
HS(), and (Γ) thus solely consists of self-

adjoint operators. In the real case, as Γ[𝑇 ∗] = Γ[𝑇 ], 𝑇 ∈ HS(), we also obtain
that if 𝑇 ∗ = −𝑇 , then Γ[𝑇 ] = 0; by comparison, in the complex case, if 𝑇 ∗ = −𝑇 ,
then the function Γ[𝑇 ] is pure-imaginary. ⊲

2.3 Positive-semidefinite operators and nonnegativity
From (3), if 𝑇 ∈ HS() is PSD, then Γ[𝑇 ](𝑥) = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ ⩾ 0 for all 𝑥 ∈ X ,
so that the function Γ[𝑇 ] is nonnegative. This observation again directly relates to
the structures of HS() and .

Positive-semidefinite HS operators. We denote by HS+
∗ () ⊂ HS∗() the closed

real convex cone of all PSD HS operators on . For all 𝑇 ∈ HS∗(), there exist 𝑇 +

and 𝑇 − ∈ HS+
∗ () such that 𝑇 = 𝑇 + − 𝑇 −, so that the cone HS+

∗ () is generating
in HS∗().

Nonnegative functions in . We denote by +
ℝ ⊂ ℝ the closed real convex cone

of all nonnegative functions in ℝ. For all 𝑇 ∈ HS+
∗ (), we have Γ[𝑇 ] ∈ +

ℝ, and
since Γ is surjective, the cone +

ℝ is generating (that is, for all 𝑔 ∈ ℝ, there exist 𝑔+
and 𝑔− ∈ +

ℝ such that 𝑔 = 𝑔+ − 𝑔−).
Remark 2.8. Let 𝑇 =

∑

𝑗∈𝕀 𝜆𝑗𝑆𝜑𝑗
be a spectral expansion of 𝑇 ∈ HS+

∗ (), with
{𝜆𝑗}𝑗∈𝕀, 𝕀 ⊆ ℕ, the set of all strictly-positive eigenvalues of 𝑇 (repeated with multi-
plicity), and where {𝜑𝑗}𝑗∈𝕀 ⊂  is a set of associated eigenvectors, orthonormal in
. We then have Γ[𝑇 ] =

∑

𝑗∈𝕀 𝜆𝑗Γ[𝑆𝜑𝑗
] =

∑

𝑗∈𝕀 𝜆𝑗|𝜑𝑗|
2, so that if 𝑇 ∈ HS() is

PSD, then Γ[𝑇 ] = 0 if and only if 𝑇 = 0. ⊲

3 Trace-class integral operators with PSD kernels
From Lemma 2.1, if 𝑇 ∈ HS() is of the form 𝑇 =

∑𝑛
𝑗=1 𝜔𝑗𝑆𝑘𝑠𝑗

, with 𝑛 ∈ ℕ,
𝑠𝑗 ∈ X and 𝜔𝑗 ∈ ℂ, then 𝑇 ∈ (Γ). For ℎ ∈ , we in this case have

𝑇 [ℎ](𝑥) =
𝑛
∑

𝑗=1
𝜔𝑗𝑘𝑠𝑗

(𝑥)⟨𝑘𝑠𝑗
|ℎ⟩ =

𝑛
∑

𝑗=1
𝜔𝑗𝐾(𝑥, 𝑠𝑗)ℎ(𝑠𝑗), 𝑥 ∈ X ,

so that 𝑇 can be regarded as an integral operator on  defined by the kernel 𝐾 and
the finitely-supported measure ∑𝑛

𝑗=1 𝜔𝑗𝛿𝑠𝑗 , with 𝛿𝑥 the Dirac measure at 𝑥 ∈ X .
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We in addition have Γ[𝑇 ] =
∑𝑛

𝑗=1 𝜔𝑗|𝑘𝑠𝑗
|

2, so that ⟨Γ[𝑇 ] | 𝑔⟩ =
∑𝑛

𝑗=1 𝜔𝑗𝑔(𝑠𝑗),
𝑔 ∈ , and Γ[𝑇 ] is thus the Riesz representation of the integral functional on 
defined by the measure ∑𝑛

𝑗=1 𝜔𝑗𝛿𝑠𝑗 . Under adequate measurability conditions, these
observations more generally hold for all trace-class integral operators on  defined
by the reproducing kernel 𝐾 of  and general measures on X .

3.1 Integral operators and kernel embeddings of measures
Let  be a 𝜎-algebra of subsets of X . We consider the Borel 𝜎-algebra of ℂ, and
make the following assumptions on 𝐾 and the measurable space (X ,):
(A.1) for all 𝑡 ∈ X , the function 𝑘𝑡 ∈  is measurable on (X ,);
(A.2) the diagonal of 𝐾 is measurable on (X ,).
Remark 3.1. The RKHSs  and  being separable, (A.1) ensures that all the func-
tions in  and  are measurable; see for instance [25, Lemma 4.24]. The three maps
𝑡 ↦ 𝑘𝑡, 𝑡 ↦ |𝑘𝑡|

2 and 𝑡 ↦ 𝑆𝑘𝑡
, 𝑡 ∈ X , are then weakly-measurable, and since the

Hilbert spaces ,  and HS() are separable, by the Pettis measurability theorem,
these three maps are also strongly-measurable (see e.g. [8, 28]). ⊲

We denote by +, , and ℂ the set of all nonnegative, signed and complex
measures1 on (X ,), and we set 𝔽 =  ∪ℂ (we have + ⊂ ). Noticing
that 𝐾(𝑡, 𝑡) ⩾ 0, 𝑡 ∈ X , from (A.2), we define

𝜏𝜇 = ∫X

𝐾(𝑡, 𝑡)d|𝜇|(𝑡) ∈ ℝ⩾0 ∪ {+∞}, 𝜇 ∈ 𝔽 .

We next introduce the sets +(𝐾),  (𝐾) and ℂ(𝐾) of all measures 𝜇 in +, ,
and ℂ such that 𝜏𝜇 is finite, respectively; the inclusion +(𝐾) ⊂  (𝐾) holds, and
we set 𝔽 (𝐾) =  (𝐾) ∪ ℂ(𝐾). We may notice that ℂ(𝐾) is a vector space, and
that +(𝐾) is a real convex cone. We recall that

𝐾(𝑡, 𝑡) = ‖𝑘𝑡‖
2
 = ‖𝑆𝑘𝑡

‖HS() = ‖|𝑘𝑡|
2
‖, 𝑡 ∈ X .

Integral operators on with kernel𝐾 . By assumption, for 𝜇 ∈ 𝔽 (𝐾), the integral
∫

X
‖𝑆𝑘𝑡

‖HS()d|𝜇|(𝑡) = 𝜏𝜇 is finite, and the map 𝑡 ↦ 𝑆𝑘𝑡
is thus Bochner-integrable

with respect to 𝜇 (Bochner integrability criterion; see e.g. [8, 28]). We then set
𝐿𝜇 = ∫X

𝑆𝑘𝑡
d𝜇(𝑡) ∈ HS().

From (4), for ℎ ∈  and 𝑥 ∈ X , we have
𝐿𝜇[ℎ](𝑥) = ⟨𝑇𝑘𝑥,ℎ

|𝐿𝜇⟩HS() = ∫X

⟨𝑇𝑘𝑥,ℎ
|𝑆𝑘𝑡

⟩HS()d𝜇(𝑡) = ∫X

𝐾(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡),

and 𝐿𝜇 ∈ HS() can thus be regarded as an integral operator on  defined by the
kernel 𝐾 and the measure 𝜇 (see also Remark 3.2).

1We only consider finite complex measures, while signed measures may not necessarily be finite.
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Lemma 3.1. For all 𝜇 ∈ 𝔽 (𝐾), we have

⟨𝐿𝜇[ℎ] | 𝑓 ⟩ = ∫X

ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡), ℎ and 𝑓 ∈ . (6)

Proof. From the Cauchy-Schwarz (CS) inequality in , we have
|

|

|

|

∫X

ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡)
|

|

|

|

⩽ ∫X

|

|

⟨𝑘𝑡 |ℎ⟩||||⟨𝑘𝑡 | 𝑓 ⟩||d|𝜇|(𝑡) ⩽ ‖𝑓‖‖ℎ‖𝜏𝜇,

so that the linear functional Θℎ,𝜇 ∶ 𝑓 ↦ ∫
X

ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡), 𝑓 ∈ , is bounded.
Taking 𝑓 = 𝑘𝑥, 𝑥 ∈ X , we obtain

Θℎ,𝜇(𝑘𝑥) = ∫X

ℎ(𝑡)𝐾(𝑡, 𝑥)d𝜇(𝑡) = 𝐿𝜇[ℎ](𝑥) = ⟨𝐿𝜇[ℎ] | 𝑘𝑥⟩ ,

so that 𝐿𝜇[ℎ] is the Riesz representation of Θℎ,𝜇.
Remark 3.2. For 𝜇 ∈ 𝔽 (𝐾), the operator 𝐿𝜇 ∈ HS() is the Riesz representation
of the bounded linear functional 𝑍𝜇 ∶ HS() → ℂ given by

𝑍𝜇(𝑇 ) = ∫X

⟨𝑆𝑘𝑡
| 𝑇 ⟩HS()d𝜇(𝑡), 𝑇 ∈ HS(),

that is 𝑍𝜇(𝑇 ) = ⟨𝐿𝜇 | 𝑇 ⟩HS(). Using the CS inequality in HS(), we in particular
have |𝑍𝜇(𝑇 )| ⩽ ∫

X
|⟨𝑆𝑘𝑡

| 𝑇 ⟩HS()|d|𝜇|(𝑡) ⩽ ‖𝑇 ‖HS()𝜏𝜇.
We may also notice that the map 𝑡 ↦ 𝑘𝑡 is Bochner-integrable with respect to

the measure 𝔪ℎ,𝜇 on (X ,) defined as 𝔪ℎ,𝜇(𝐴) = ∫𝐴 ℎ(𝑡)d𝜇(𝑡), 𝐴 ∈ ; we then
have 𝐿𝜇[ℎ] = ∫

X
𝑘𝑡ℎ(𝑡)d𝜇(𝑡), with ∫

X
‖𝑘𝑡‖|ℎ(𝑡)|d|𝜇|(𝑡) ⩽ ‖ℎ‖𝜏𝜇. ⊲

Lemma 3.2. For all 𝜇 ∈ 𝔽 (𝐾), the operator 𝐿𝜇 is trace-class.

Proof. Let {ℎ𝑖}𝑖∈𝕀 be an orthonormal basis (ONB) of , with 𝕀 ⊆ ℕ. For all 𝑡 ∈ X ,
we have 𝑘𝑡 =

∑

𝑖∈𝕀 ℎ𝑖ℎ𝑖(𝑡), so that {ℎ𝑖(𝑡)}𝑖∈𝕀 ∈ 𝓁2(𝕀) and ∑

𝑖∈𝕀 |ℎ𝑖(𝑡)|
2 = 𝐾(𝑡, 𝑡); see

e.g. [17, Chapter 2]. Let {𝑓𝑖}𝑖∈𝕀 be another ONB of ; from (6), and by monotone
convergence and the CS inequality in 𝓁2(𝕀), we have

∑

𝑖∈𝕀

|

|

⟨𝑓𝑖 |𝐿𝜇[ℎ𝑖]⟩|| ⩽
∑

𝑖∈𝕀
∫X

|𝑓𝑖(𝑡)||ℎ𝑖(𝑡)|d|𝜇|(𝑡)

= ∫X

∑

𝑖∈𝕀
|𝑓𝑖(𝑡)||ℎ𝑖(𝑡)|d|𝜇|(𝑡) ⩽ ∫X

√

𝐾(𝑡, 𝑡)
√

𝐾(𝑡, 𝑡)d|𝜇|(𝑡) = 𝜏𝜇,

so that trace(|𝐿𝜇|) ⩽ 𝜏𝜇, with |𝐿𝜇| = (𝐿∗
𝜇𝐿𝜇)

1∕2 the modulus of 𝐿𝜇.
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Kernel embedding of measures in . As ∫
X

‖|𝑘𝑡|
2
‖d|𝜇|(𝑡) = 𝜏𝜇, for 𝜇 ∈ 𝔽 (𝐾),

the map 𝑡 ↦ |𝑘𝑡|
2 is Bochner-integrable with respect to 𝜇. We then set

𝑔𝜇 = ∫X

|𝑘𝑡|
2d𝜇(𝑡) ∈ .

For all 𝑔 ∈ , we have ⟨𝑔𝜇 | 𝑔⟩ = ∫
X

𝑔(𝑡)d𝜇(𝑡), and 𝑔𝜇 is thus the Riesz represen-
tation of the linear functional 𝐼𝜇 ∶  → ℂ such that 𝐼𝜇(𝑔) = ∫

X
𝑔(𝑡)d𝜇(𝑡); we may

notice that |𝐼𝜇(𝑔)| ⩽ ‖𝑔‖𝜏𝜇. The vector 𝑔𝜇 is referred to as the kernel embedding,
or potential, of the measure 𝜇 in the RHKS ; see for instance [24, 6, 15].
Theorem 3.1. For all 𝜇 ∈ 𝔽 (𝐾), we have 𝐿𝜇 ∈ (Γ) and Γ[𝐿𝜇] = 𝑔𝜇.

Proof. From Lemma 2.1 and by definition of𝐿𝜇 and 𝑔𝜇, for all 𝑇 ∈ HS(), we have

⟨Γ∗[𝑔𝜇] | 𝑇 ⟩HS() = ⟨𝑔𝜇 |Γ[𝑇 ]⟩ = ∫X

⟨𝑆𝑘𝑡
| 𝑇 ⟩HS()d𝜇(𝑡) = ⟨𝐿𝜇 | 𝑇 ⟩HS(),

so that Γ∗[𝑔𝜇] = 𝐿𝜇.
Remark 3.3. Following Section 2.2, for a signed measure 𝜇 ∈  (𝐾), the function
𝑔𝜇 is real-valued, and the operator 𝐿𝜇 = Γ∗[𝑔𝜇] is self-adjoint; as expected. Also,
following Section 2.3, for a nonnegative measure 𝜇 ∈ +(𝐾), the function 𝑔𝜇 is
nonnegative, and the operator 𝐿𝜇 is PSD. We may notice that 𝐿𝛿𝑥

= 𝑆𝑘𝑥
, 𝑥 ∈ X . ⊲

3.2 Approximation and kernel quadrature
Let 𝐵 = {𝑔 ∈ |‖𝑔‖ ⩽ 1} be the closed unit ball of . For 𝜇 and 𝜈 ∈ 𝔽 (𝐾),
from the definition of 𝑔𝜇 and 𝑔𝜈 ∈  and by the CS inequality, we have

𝔐(𝜇, 𝜈) = sup
𝑔∈𝐵

|

|

⟨𝑔𝜇 − 𝑔𝜈 | 𝑔⟩|| = sup
𝑔∈𝐵

|

|

|

|

∫X

𝑔(𝑡)d𝜇(𝑡) − ∫X

𝑔(𝑡)d𝜈(𝑡)
|

|

|

|

= ‖𝑔𝜇 − 𝑔𝜈‖.

When the measures 𝜇 and 𝜈 are probability measures, the term 𝔐(𝜇, 𝜈) is referred
to as an integral probability metric, or maximum mean discrepancy; see for instance
[16, 24, 23, 15, 27].
Remark 3.4. For all 𝑔 ∈ , we have 𝑔 ∈  and ‖𝑔‖ = ‖𝑔‖ (see Section 2.2), so
that 𝔐(𝜇, 𝜈) = sup𝑔∈𝐵

|

|

∫
X

𝑔(𝑡)d𝜇(𝑡) − ∫
X

𝑔(𝑡)d𝜈(𝑡)|
|

, 𝜇 and 𝜈 ∈ 𝔽 (𝐾). ⊲

The following Corollary 3.1 illustrates the connection between the quadrature ap-
proximation of trace-class integral operators with PSD kernels (quadrature method;
see e.g. [13]) and the approximation of integral functionals on RKHSs with squared-
modulus kernels (kernel quadrature; see e.g. [2]).
Corollary 3.1. For all 𝜇 and 𝜈 ∈ 𝔽 (𝐾), we have ‖𝐿𝜇 − 𝐿𝜈‖HS() = 𝔐(𝜇, 𝜈).
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Proof. Form Theorem 3.1 and by linearity of Γ∗, we have Γ∗[𝑔𝜇 − 𝑔𝜈] = 𝐿𝜇 − 𝐿𝜈.Since Γ∗ is an isometry, it follows that ‖𝑔𝜇 − 𝑔𝜈‖ = ‖𝐿𝜇 − 𝐿𝜈‖HS().
For a fixed initial measure 𝜇 ∈ 𝔽 (𝐾), the map 𝐷𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0, with

𝐷𝜇(𝜈) = ‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝑔𝜇 − 𝑔𝜈‖

2
, 𝜈 ∈ 𝔽 (𝐾), (7)

is convex on any convex set C ⊆ 𝔽 (𝐾); the map 𝜈 ↦ 𝑔𝜈 is indeed linear on C (that
is, for 𝜉 = 𝜈 + 𝛼𝜂 ∈ C , with 𝜈, 𝜂 ∈ C and 𝛼 ∈ ℂ, we have 𝑔𝜉 = 𝑔𝜈 + 𝛼𝑔𝜂), and the
map 𝑔 ↦ ‖𝑔𝜇−𝑔‖2 is convex on . Also, for 𝜈 and 𝜂 ∈ C , the directional derivative
of 𝐷𝜇 at 𝜈 in the direction 𝜂 − 𝜈 is

lim
𝜌→0+

1
𝜌
[

𝐷𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

−𝐷𝜇(𝜈)
]

= 2ℜ
(

⟨𝑔𝜈 − 𝑔𝜇 | 𝑔𝜂 − 𝑔𝜈⟩
)

.

From Theorem 3.1, we may in particular notice that

⟨𝑔𝜈 | 𝑔𝜇⟩ = ⟨𝐿𝜈 |𝐿𝜇⟩HS() = ∬X

|𝐾(𝑥, 𝑡)|2d𝜇(𝑡)d𝜈(𝑥)

= ∫X

𝑔𝜇(𝑥)d𝜈(𝑥) = ∫X

𝑔𝜈(𝑡)d𝜇(𝑡);
(8)

and since |𝐾(𝑥, 𝑡)|2 = |⟨𝑘𝑥 | 𝑘𝑡⟩|
2 ⩽ ‖𝑘𝑥‖

2
‖𝑘𝑡‖

2
 = 𝐾(𝑥, 𝑥)𝐾(𝑡, 𝑡), 𝑥 and 𝑡 ∈ X

(from the CS inequality in ), we have |⟨𝑔𝜈 | 𝑔𝜇⟩| ⩽ 𝜏𝜈𝜏𝜇.
Remark 3.5. For 𝜇 ∈  (𝐾) and 𝜈 ∈ ℂ(𝐾), and denoting by 𝜈𝕣 and 𝜈𝕚 ∈  (𝐾)
the real and imaginary parts of 𝜈, we have 𝑔𝜇 − 𝑔𝜈𝕣 ∈ ℝ and 𝑔𝜈𝕚 ∈ ℝ. Following
Section 2.2, we obtain ‖𝑔𝜇 − 𝑔𝜈‖

2
 = ‖𝑔𝜇 − 𝑔𝜈𝕣‖

2
 + ‖𝑔𝜈𝕚‖

2
, so that 𝐷𝜇(𝜈𝕣 ) ⩽ 𝐷𝜇(𝜈).Consequently, when 𝐿𝜇 is self-adjoint, the search of an approximate measure 𝜈 for

the approximation of 𝐿𝜇 by 𝐿𝜈 may be restricted to  (𝐾). ⊲

3.3 Nonnegative measures and 𝐿2-embeddings of RKHSs
Hereafter and in anticipation of the forthcoming Section 4, we further discuss the
properties verified by the integral operators considered in Theorem 3.1.

For 𝜇 ∈ +(𝐾), let 𝐿2(𝜇) be the Hilbert space of all square-integrable functions
with respect to 𝜇. From the CS inequality in , we have

∫X

|ℎ(𝑡)|2d𝜇(𝑡) = ∫X

|

|

⟨𝑘𝑡 |ℎ⟩||
2d𝜇(𝑡) ⩽ ‖ℎ‖2𝜏𝜇, ℎ ∈ , (9)

so that the linear embedding 𝜄𝜇 ∶  → 𝐿2(𝜇), with 𝜄𝜇[ℎ] the equivalence class of all
measurable functions 𝜇-almost everywhere equal to ℎ, is bounded (see e.g. [26]).
Lemma 3.3. For all 𝜇 ∈ +(𝐾), the embedding 𝜄𝜇 is HS and 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇; we in
addition have null(𝐿𝜇) = {ℎ ∈ |𝜄𝜇[ℎ] = 0}.
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Proof. Let {ℎ𝑖}𝑖∈𝕀 be an ONB of , with 𝕀 ⊆ ℕ. As 𝐾(𝑡, 𝑡) =
∑

𝑖∈𝕀
|

|

ℎ𝑖(𝑡)||
2, 𝑡 ∈ X

(see e.g. [17]), from (6) and by monotone convergence, we have
∑

𝑖∈𝕀
‖𝜄𝜇[ℎ𝑖]‖

2
𝐿2(𝜇)

=
∑

𝑖∈𝕀
⟨𝐿𝜇[ℎ𝑖] |ℎ𝑖⟩ = ∫X

∑

𝑖∈𝕀
|ℎ𝑖(𝑡)|

2d𝜇(𝑡) = 𝜏𝜇,

so that 𝜄𝜇 is HS. From (6), we also obtain
⟨𝐿𝜇[ℎ] | 𝑓 ⟩ = ⟨𝜄𝜇[ℎ] | 𝜄𝜇[𝑓 ]⟩𝐿2(𝜇) = ⟨𝜄∗𝜇𝜄𝜇[ℎ] | 𝑓⟩ , ℎ and 𝑓 ∈ ,

and so 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇. Finally, noticing that ⟨𝐿𝜇[ℎ] |ℎ⟩ = ‖𝜄𝜇[ℎ]‖
2
𝐿2(𝜇)

and that 𝐿𝜇 is
PSD, we have 𝐿𝜇[ℎ] = 0 if and only if 𝜄𝜇[ℎ] = 0.

For 𝜈 ∈ 𝔽 (𝐾), we by definition have |𝜈| ∈ +(𝐾) and 𝜈 ∈ 𝔽 (𝐾); from (6), we
can in addition notice that

⟨𝐿𝜈[ℎ] | 𝑓 ⟩ = ∫X

ℎ(𝑡)𝑓 (𝑡)d𝜈(𝑡) = ⟨ℎ |𝐿𝜈[𝑓 ]⟩ , ℎ and 𝑓 ∈ ,

so that 𝐿∗
𝜈 = 𝐿𝜈. The following relation (Lemma 3.4) holds between the range of

𝐿𝜈 and the range of 𝐿
|𝜈|.

Lemma 3.4. For all 𝜈 ∈ 𝔽 (𝐾), we have range(𝐿𝜈)

⊆ range(𝐿

|𝜈|)


.

Proof. Using (6) and the CS inequality in 𝐿2(|𝜈|), we obtain
|

|

⟨𝐿𝜈[ℎ] | 𝑓 ⟩|| =
|

|

|

|

∫X

ℎ(𝑡)𝑓 (𝑡)d𝜈(𝑡)
|

|

|

|

⩽ ∫X

|

|

ℎ(𝑡)||𝑓 (𝑡)|d|𝜈|(𝑡)

⩽ ‖𝜄
|𝜈|[ℎ]‖𝐿2(|𝜈|)‖𝜄|𝜈|[𝑓 ]‖𝐿2(|𝜈|), ℎ and 𝑓 ∈ .

Lemma 3.3 then entails null(𝐿
|𝜈|) ⊆ null(𝐿𝜈), and so null(𝐿𝜈)

⟂ ⊆ null(𝐿
|𝜈|)

⟂ .
Since for all 𝑇 ∈ HS(), we have null(𝑇 ∗) = range(𝑇 )⟂ , we conclude by noticing
that 𝐿∗

𝜈 = 𝐿𝜈 and 𝐿∗
|𝜈| = 𝐿

|𝜈|.
The following Lemma 3.5 illustrates that when 𝜈 is finitely-supported, then the

range of 𝐿
|𝜈| is fully characterised by the support2 of 𝜈.

Lemma 3.5. For 𝜈 =
∑𝑛

𝑖=1 𝜐𝑖𝛿𝑠𝑖 , with 𝜐𝑖 ∈ ℂ, 𝜐𝑖 ≠ 0, and 𝑠𝑖 ∈ X , we have
range(𝐿

|𝜈|) = spanℂ{𝑘𝑠1
,⋯ , 𝑘𝑠𝑛}.

Proof. Noticing that |𝜈| =
∑𝑛

𝑖=1 |𝜐𝑖|𝛿𝑠𝑖 ∈ +(𝐾), from Lemma 3.3, we obtain
null(𝐿

|𝜈|) = {ℎ ∈ |𝜄
|𝜈|[ℎ] = 0} =

⋂𝑛
𝑖=1{ℎ ∈ |⟨𝑘𝑠𝑖

|ℎ⟩ = 0}. Since 𝐿
|𝜈| is

self-adjoint, the result follows.
2Assuming that X is a topological space and that the RKHS  consists of continuous functions,

a similar characterisation could be obtained for Radon measures, for instance. In this note, we merely
focus on the finitely-supported case as it does not require any further assumption and is one of the
most relevant in terms of practical applications.
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4 Projections and subspaces defined by measures
Hereafter, we discuss the extent to which the kernel-quadrature setting described
in Section 3.2 can be used as a surrogate for the characterisation of closed linear
subspaces of  for the approximation of trace-class integral operators with PSD
kernels through projections.

4.1 Further notations and general properties
For a closed linear subspace 𝑆 of , we denote by 𝑃𝑆 the orthogonal projection
from  onto 𝑆 . Endowed with the Hilbert structure of , the vector space 𝑆 is
a RKHS, and its reproducing kernel 𝐾𝑆 verifies 𝐾𝑆(𝑥, 𝑡) = 𝑃𝑆[𝑘𝑡](𝑥), 𝑥 and 𝑡 ∈ X .
Remark 4.1. The linear map 𝑇 ↦ 𝑃𝑆𝑇 is the orthogonal projection from HS()
onto(𝑆) = {𝑇 ∈ HS()| range(𝑇 ) ⊆ 𝑆}, the closed linear subspace ofHS()
of all operators with range included in 𝑆 .

Further, the linear map 𝑇 ↦ 𝑇𝑃𝑆 is the orthogonal projection from HS()
onto (𝑆) = {𝑇 ∈ HS()| range(𝑇 ∗) ⊆ 𝑆}. The two orthogonal projections
𝑇 ↦ 𝑃𝑆𝑇 and 𝑇 ↦ 𝑇𝑃𝑆 commute, and their composition 𝑇 ↦ 𝑃𝑆𝑇𝑃𝑆 is the
orthogonal projection from HS() onto (𝑆) ∩ (𝑆). For all 𝑇 ∈ HS(), we
thus have

‖𝑇 − 𝑃𝑆𝑇 ‖
2
HS() = ‖𝑇 ‖2HS() − ‖𝑃𝑆𝑇 ‖

2
HS(), and (10)

‖𝑇 − 𝑃𝑆𝑇𝑃𝑆‖
2
HS() = ‖𝑇 ‖2HS() − ‖𝑃𝑆𝑇𝑃𝑆‖

2
HS(), (11)

with ‖𝑃𝑆𝑇𝑃𝑆‖HS() ⩽ ‖𝑃𝑆𝑇 ‖HS() ⩽ ‖𝑇 ‖HS(); in particular, if 𝑇 is self-adjoint,
then so is 𝑃𝑆𝑇𝑃𝑆 . Since (𝑃𝑆𝑇 )

∗ = 𝑇 ∗𝑃𝑆 , the orthogonal projections onto (𝑆)and (𝑆) are intrinsically related; for this reason, in what follows, we mainly focus
on approximations of the form 𝑃𝑆𝑇 and 𝑃𝑆𝑇𝑃𝑆 . ⊲

Lemma 4.1. Let 𝑆 and 𝑅 be two closed linear subspaces of , with 𝑅 ⊆ 𝑆 .
For all 𝑇 ∈ HS(), we have

‖𝑃𝑅𝑇 ‖HS() ⩽ ‖𝑃𝑆𝑇 ‖HS() and ‖𝑃𝑅𝑇𝑃𝑅‖HS() ⩽ ‖𝑃𝑆𝑇𝑃𝑆‖HS().

Proof. We denote by 𝑒 the orthogonal complement of 𝑅 in 𝑆 . We then have
𝑃𝑆 = 𝑃𝑅 + 𝑃𝑒 and ⟨𝑃𝑅𝑇 |𝑃𝑒𝑇 ⟩HS() = ⟨𝑇𝑃𝑅 | 𝑇𝑃𝑒⟩HS() = 0, 𝑇 ∈ HS(). It
follows that ‖𝑃𝑆𝑇 ‖

2
HS() = ‖𝑃𝑅𝑇 ‖

2
 + ‖𝑃𝑒𝑇 ‖

2
HS(), and that

‖𝑃𝑆𝑇𝑃𝑆‖
2
HS() = ‖𝑃𝑅𝑇𝑃𝑅‖

2
HS() + ‖𝑃𝑒𝑇𝑃𝑒‖

2
HS()

+ ‖𝑃𝑅𝑇𝑃𝑒‖
2
HS() + ‖𝑃𝑒𝑇𝑃𝑅‖

2
HS(),

completing the proof.
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Remark 4.2. For a fixed initial operator 𝑇 ∈ HS() and a given rank, the subspaces
leading to minimal values of ‖𝑇 − 𝑃𝑆𝑇 ‖HS() or ‖𝑇 − 𝑃𝑆𝑇𝑃𝑆‖HS() correspond to
spectral truncations of 𝑇 ; see e.g. [12, Theorem 4.4.7]. In practical applications, a
direct implementation of such optimal approximations is therefore limited to opera-
tors for which a singular value decomposition can be computed beforehand. ⊲

Orthogonal projections being bounded linear maps, for 𝜇 ∈ 𝔽 (𝐾), we have
𝑃𝑆𝐿𝜇 = ∫

X
𝑃𝑆𝑆𝑘𝑡

d𝜇(𝑡) (see e.g. [28]), that is

𝑃𝑆𝐿𝜇[ℎ](𝑥) = ∫X

𝐾𝑆(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡), ℎ ∈  and 𝑥 ∈ X ,

and 𝑃𝑆𝐿𝜇 ∈ HS() may thus be regarded as an integral operator on  defined by
the kernel 𝐾𝑆 and the measure 𝜇. Since 𝐾𝑆(𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡), 𝑡 ∈ X , we may notice
that 𝔽 (𝐾) ⊆ 𝔽 (𝐾𝑆).
Lemma 4.2. Let𝑈 and𝑉 be two closed linear subspaces of. For all𝜇 ∈ 𝔽 (𝐾),
we have

‖𝑃𝑉𝐿𝜇𝑃𝑈‖
2
HS() = ∬X

𝐾𝑈 (𝑡, 𝑥)𝐾𝑉 (𝑥, 𝑡)d𝜇(𝑡)d𝜇(𝑥).

Proof. We consider an ONB {ℎ𝑗}𝑗∈𝕀 of , 𝕀 ⊆ ℕ. From (6), we have

‖𝑃𝑉𝐿𝜇𝑃𝑈‖
2
HS() =

∑

𝑗∈𝕀
⟨𝐿𝜇𝑃𝑈 [ℎ𝑖] |𝑃𝑉𝐿𝜇𝑃𝑈 [ℎ𝑗]⟩

=
∑

𝑗∈𝕀
∬X

𝑃𝑈 [ℎ𝑗](𝑡)𝑃𝑈 [ℎ𝑗](𝑥)𝐾𝑉 (𝑥, 𝑡)d𝜇(𝑡)d𝜇(𝑥).
(12)

As ∑

𝑗∈𝕀 𝑃𝑈 [ℎ𝑗](𝑡)𝑃𝑈 [ℎ𝑗](𝑥) = 𝐾𝑈 (𝑡, 𝑥), 𝑥 and 𝑡 ∈ X (see e.g. [17]), and since
𝐾𝑈 (𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡) and 𝐾𝑉 (𝑡, 𝑡) ⩽ 𝐾(𝑡, 𝑡), from the CS inequality in 𝓁2(𝕀) and in ,
we obtain

∬X

∑

𝑗∈𝕀

|

|

𝑃𝑈 [ℎ𝑗](𝑡)||||𝑃𝑈 [ℎ𝑗](𝑥)||||𝐾𝑉 (𝑥, 𝑡)||d|𝜇|(𝑡)d|𝜇|(𝑥) ⩽ 𝜏2𝜇,

and the result follows form (12) and Fubini’s theorem.
Remark 4.3. For 𝜇 ∈ 𝔽 (𝐾) and 𝑥 ∈ X , we have

Γ[𝑃𝑆𝐿𝜇](𝑥) =
⟨

𝑘𝑥
|

|

𝑃𝑆𝐿𝜇[𝑘𝑥]
⟩

 = ∫X

𝐾𝑆(𝑥, 𝑡)𝐾(𝑡, 𝑥)d𝜇(𝑡), and

Γ[𝑃𝑆𝐿𝜇𝑃𝑆](𝑥) =
⟨

𝑘𝑥
|

|

𝑃𝑆𝐿𝜇𝑃𝑆[𝑘𝑥]
⟩

 = ∫X

|

|

𝐾𝑆(𝑥, 𝑡)|
2d𝜇(𝑡);

however, for general linear subspaces 𝑆 ⊆ , the operators 𝑃𝑆𝐿𝜇 and 𝑃𝑆𝐿𝜇𝑃𝑆 do
not necessarily belong to (Γ). ⊲
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4.2 Approximate measures and projections

Motivated by Lemmas 3.4 and 4.1, for 𝜈 ∈ 𝔽 (𝐾), we introduce 𝜈 = range(𝐿
|𝜈|)

 ,
and we denote by 𝑃𝜈 the orthogonal projection from  onto 𝜈. We refer to 𝜈 as
the subspace of  defined by 𝜈.
Lemma 4.3. For all 𝜈 ∈ 𝔽 (𝐾), we have 𝐿𝜈 = 𝑃𝜈𝐿𝜈 = 𝐿𝜈𝑃𝜈 = 𝑃𝜈𝐿𝜈𝑃𝜈.

Proof. From Lemma 3.4, we have 𝐿𝜈 = 𝑃𝜈𝐿𝜈. Noticing that 𝐿𝜈 = 𝑃𝜈𝐿𝜈, we also
have 𝐿𝜈 = 𝐿∗

𝜈 = (𝑃𝜈𝐿𝜈)
∗ = 𝐿𝜈𝑃𝜈 , and thus 𝐿𝜈 = 𝑃𝜈𝐿𝜈𝑃𝜈 .

The following Lemma 4.4 illustrates the relation between the approximations
𝐿𝜈, 𝑃𝜈𝐿𝜇 and 𝑃𝜈𝐿𝜇𝑃𝜈 of 𝐿𝜇 characterised by an approximate measure 𝜈.
Lemma 4.4. For all 𝜇 and 𝜈 ∈ 𝔽 (𝐾), we have

‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖

2
HS() + ‖𝑃𝜈𝐿𝜇 − 𝐿𝜈‖

2
HS(), and (13)

‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖

2
HS() + ‖𝑃𝜈𝐿𝜇𝑃𝜈 − 𝐿𝜈‖

2
HS(). (14)

Proof. Using the notations of Remark 4.1, Lemma 4.3 reads 𝐿𝜈 ∈ (𝜈) ∩(𝜈).Noticing that 𝐿𝜇 − 𝑃𝜈𝐿𝜇 is orthogonal to (𝜈) and that 𝑃𝜈𝐿𝜇 − 𝐿𝜈 ∈ (𝜈), we
obtain (13). In the same way, 𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈 is orthogonal to (𝜈) ∩ (𝜈), and
we have 𝑃𝜈𝐿𝜇𝑃𝜈 − 𝐿𝜈 ∈ (𝜈) ∩(𝜈), leading to (14).

For 𝜇 ∈ 𝔽 (𝐾), we introduce the two maps 𝐶P
𝜇 and 𝐶PP

𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0, with
𝐶P

𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖
2
HS() and 𝐶PP

𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖
2
HS(), 𝜈 ∈ 𝔽 (𝐾).

Theorem 4.1. For 𝜇 ∈ 𝔽 (𝐾), the map 𝐶P
𝜇 is convex on the real convex cone +(𝐾),

and for all 𝜈 and 𝜂 ∈ +(𝐾), we have

lim
𝜌→0+

1
𝜌
[

𝐶P
𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

− 𝐶P
𝜇 (𝜈)

]

∈ {−∞, 0}. (15)

This statement stays true if we replace 𝐶P
𝜇 by 𝐶PP

𝜇 .

Proof. For 𝜈, 𝜂 ∈ +(𝐾) and 𝜌 ∈ (0, 1), we set 𝜉 = 𝜈 + 𝜌(𝜂 − 𝜈) ∈ +(𝐾). The
three operators 𝐿𝜈, 𝐿𝜂 and 𝐿𝜉 being PSD, independently of the value of 𝜌 ∈ (0, 1),
we have null(𝐿𝜉) = null(𝐿𝜈) ∩ null(𝐿𝜂), and so 𝜉 = 𝜈 +𝜂

 . The two maps
𝜌 ↦ 𝐶P

𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
) and 𝜌 ↦ 𝐶PP

𝜇

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

are therefore constant on the open interval (0, 1). From Lemma 4.1 and (10), noticing
that 𝜈 ⊆ 𝜉 and 𝜂 ⊆ 𝜉 , we obtain 𝐶P

𝜇 (𝜉) ⩽ 𝐶P
𝜇 (𝜈) and 𝐶P

𝜇 (𝜉) ⩽ 𝐶P
𝜇 (𝜂); from

(11), we also get 𝐶PP
𝜇 (𝜉) ⩽ 𝐶PP

𝜇 (𝜈) and 𝐶PP
𝜇 (𝜉) ⩽ 𝐶PP

𝜇 (𝜂), concluding the proof.
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In view of Theorem 4.1, the maps 𝐶P
𝜇 and 𝐶PP

𝜇 are convex and piecewise-constant
on the convex cone +(𝐾). In contrast to the map 𝐷𝜇 defined in (7), the directional
derivatives of 𝐶P

𝜇 and 𝐶PP
𝜇 are noninformative, in the sense that they do not provide

any information on the local steepness of the landscape of these maps; see Figure 1
for an illustration. From Remark 4.1 and Lemma 4.4, we have

𝐶P
𝜇 (𝜈) ⩽ 𝐶PP

𝜇 (𝜈) ⩽ 𝐷𝜇(𝜈), 𝜈 ∈ 𝔽 (𝐾). (16)
Also, from a numerical standpoint and in view of Lemma 4.2, for 𝜈 ∈ 𝔽 (𝐾), the
evaluation of 𝐶P

𝜇 (𝜈) or 𝐶PP
𝜇 (𝜈) requires a suitable characterisation of the reproducing

kernel 𝐾𝜈 of 𝜈; in practice, 𝐾𝜈 is a priori unknown and needs to be computed from
𝐾 and 𝜈. In comparison and in view of (8), the map 𝐷 merely involves the kernel
𝐾 . See Remark 4.7 for more details.

𝜈 ↦ 𝐷𝜇(𝜈)

𝜇
𝜐1

𝜐2

𝜈 ↦ 𝐶PP
𝜇 (𝜈)

𝜇
𝜐1

𝜐2

Figure 1: Graphical representation of the maps𝐷𝜇 and𝐶PP
𝜇 as functions of the weight

parameters characterising an approximate measure 𝜈 ∈ +(𝐾). The measures 𝜇 and
𝜈 are supported by the same set of points {𝑥1, 𝑥2} ⊆ X , and described by their
weight parameters (𝜔1, 𝜔2) and (𝜐1, 𝜐2) ∈ ℝ2

⩾0, respectively; the red star represents
the weight parameters of 𝜇 = 𝜔1𝛿𝑥1 + 𝜔2𝛿𝑥2 . The presented graphs correspond to
the case 𝜔1 = 𝜔2 = 1, with 𝐾 such that 𝐾(𝑥1, 𝑥1) = 1.225, 𝐾(𝑥2, 𝑥2) = 0.894 and
𝐾(𝑥1, 𝑥2) = 0.316. In the graph of 𝐶PP

𝜇 , the point on the vertical axis indicates the
value of the map at 𝜈 = 0, and the bold lines indicate the constant values taken by
the map along the horizontal axes.

Remark 4.4. For 𝜇 ∈ 𝔽 (𝐾) and 𝑠 ∈ X , introducing 𝑐𝛿𝑠 = 𝑔𝜇(𝑠)∕|𝐾(𝑠, 𝑠)|2 if
𝐾(𝑠, 𝑠) > 0, and 𝑐𝛿𝑠 = 0 otherwise, a direct computation yields 𝑃𝛿𝑠

𝐿𝜇𝑃𝛿𝑠
= 𝑐𝛿𝑠𝑆𝑘𝑠

.
We thus have 𝑃𝛿𝑠

𝐿𝜇𝑃𝛿𝑠
∈ (Γ) and 𝐶PP

𝜇 (𝛿𝑠) = 𝐷𝜇(𝑐𝛿𝑠𝛿𝑠). Consequently, in Figure 1,
the graph of 𝐶PP

𝜇 is tangent to the graph of 𝐷𝜇 along the horizontal axes. ⊲

4.3 Partial 𝐿2-embeddings

Following Section 3.3, for 𝜇 ∈ +(𝐾), the embedding 𝜄𝜇 ∶  → 𝐿2(𝜇) is HS. For
𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ X , we have

⟨𝑘𝑥 | 𝜄
∗
𝜇[𝑓 ]⟩ = ⟨𝜄𝜇[𝑘𝑥] | 𝑓⟩𝐿2(𝜇) = ∫X

𝐾(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡).
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Consequently, in addition to 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), the three operators
𝜄∗𝜇 ∶ 𝐿2(𝜇) → , 𝜄𝜇𝜄

∗
𝜇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), and 𝜄𝜇𝜄

∗
𝜇𝜄𝜇 ∶  → 𝐿2(𝜇), (17)

can also be regarded as integral operators defined by the kernel 𝐾 and the nonnega-
tive measure 𝜇. These four interpretations are inherent to 𝐾 , which characterises ,
and 𝜇, which characterises 𝐿2(𝜇); see for instance [4, 22, 19, 26, 20] for illustrations.
In each case, the corresponding operator is HS, and we denote by HS(𝜇,), HS(𝜇)
and HS(, 𝜇) the Hilbert spaces of all HS operators from 𝐿2(𝜇) to , on 𝐿2(𝜇), and
from  to 𝐿2(𝜇), respectively.

For a closed linear subspace 𝑆 ⊆ , the embedding 𝜄𝜇 can be approximated
by the partial embedding 𝜄𝜇𝑃𝑆 ; for 𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ X , we in particular have

⟨𝑘𝑥 |𝑃𝑆 𝜄
∗
𝜇[𝑓 ]⟩ = ⟨𝜄𝜇𝑃𝑆[𝑘𝑥] | 𝑓 ⟩𝐿2(𝜇) = ∫X

𝐾𝑆(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡).

For 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), we obtain the approximation 𝑃𝑆 𝜄
∗
𝜇𝜄𝜇𝑃𝑆 discussed in Sec-

tion 4.2, and for the three operators defined in (17), we obtain the approximations
𝑃𝑆 𝜄

∗
𝜇 ∈ HS(𝜇,), 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇 ∈ HS(𝜇), and 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆 ∈ HS(, 𝜇).

In what follows and for simplicity, we mainly focus on the approximations related to
HS(𝜇,) and HS(𝜇); the case of HS(, 𝜇) is more briefly discussed in Remark 4.5.
Lemma 4.5. Let 𝑆 be a closed linear subspace of . For 𝜇 ∈ +(𝐾), we have

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ∫X

𝐾(𝑡, 𝑡) −𝐾𝑆(𝑡, 𝑡)d𝜇(𝑡), and (18)

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ∬X

|

|

𝐾(𝑥, 𝑡) −𝐾𝑆(𝑥, 𝑡)||
2d𝜇(𝑡)d𝜇(𝑥). (19)

Proof. Let0𝑆 be the orthogonal complement of𝑆 in; endowed with the Hilbert
structure of , 0𝑆 is a RKHS, and 𝐾0𝑆 = 𝐾 − 𝐾𝑆 . For an ONB {ℎ𝑗}𝑗∈𝕀 of ,
𝕀 ⊆ ℕ, we have

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ‖𝜄𝜇𝑃0𝑆‖

2
HS(,𝜇) =

∑

𝑗∈𝕀
∫X

|

|

𝑃0𝑆[ℎ𝑗](𝑡)||
2d𝜇(𝑡);

since ∑

𝑗∈𝕀
|

|

𝑃0𝑆[ℎ𝑗](𝑡)||
2 = 𝐾0𝑆(𝑡, 𝑡), 𝑡 ∈ X , equality (18) follows by monotone

convergence. We also have
‖𝜄𝜇𝜄

∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ‖𝜄𝜇𝑃0𝑆 𝜄

∗
𝜇‖

2
HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖

2
HS(),

so that (19) follows from Lemma 4.2.
The following inequality (Lemma 4.6) holds between the approximations inHS(𝜇)

and HS() defined by a subspace 𝑆 . We recall that ‖𝜄𝜇𝜄∗𝜇‖HS(𝜇) = ‖𝜄∗𝜇𝜄𝜇‖HS(), and
that ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS() ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇𝑃𝑆‖HS(); see Remark 4.1.

17



INTEGRAL OPERATORS WITH PSD KERNELS

Lemma 4.6. Let 𝑆 be a closed linear subspace of . For all 𝜇 ∈ +(𝐾), we have

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS().

Proof. We have ‖𝜄𝜇𝜄∗𝜇− 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇‖HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖HS(), with 𝑃0𝑆 = id −𝑃𝑆 . The

operators 𝑃0𝑆𝐿𝜇𝑃0𝑆 and 𝑃0𝑆𝐿𝜇𝑃𝑆 being orthogonal in HS(), we get
‖𝑃0𝑆𝐿𝜇(𝑃0𝑆 + 𝑃𝑆)‖

2
HS() = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖

2
HS() + ‖𝑃0𝑆𝐿𝜇𝑃𝑆‖

2
HS(),

so that ‖𝜄𝜇𝜄∗𝜇 − 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇‖HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝑆 𝜄

∗
𝜇𝜄𝜇‖HS().

Lemma 4.7. Let 𝑆 and 𝑅 be two closed linear subspaces of , with 𝑅 ⊆ 𝑆 .
For all 𝜇 ∈ +(𝐾), we have

‖𝜄∗𝜇−𝑃𝑆 𝜄
∗
𝜇‖HS(𝜇,) ⩽ ‖𝜄∗𝜇−𝑃𝑅𝜄

∗
𝜇‖HS(𝜇,) and ‖𝜄𝜇𝜄

∗
𝜇−𝜄𝜇𝑃𝑆 𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄𝜇𝜄

∗
𝜇−𝜄𝜇𝑃𝑅𝜄

∗
𝜇‖HS(𝜇).

Proof. We denote by 𝑒 the orthogonal complement of 𝑅 in 𝑆 . Noticing that
⟨𝜄∗𝜇 − 𝑃𝑅𝜄

∗
𝜇 |𝑃𝑒𝜄

∗
𝜇⟩HS(𝜇,) = ‖𝑃𝑒𝜄

∗
𝜇‖

2
HS(𝜇,), we obtain

‖𝜄∗𝜇 − 𝑃𝑆 𝜄
∗
𝜇‖

2
HS(𝜇,) = ‖𝜄∗𝜇 − 𝑃𝑅𝜄

∗
𝜇‖

2
HS(𝜇,) − ‖𝑃𝑒𝜄

∗
𝜇‖

2
HS(𝜇,).

Denoting by 0𝑆 and 0𝑅 the orthogonal complements of 𝑆 and 𝑅 in , respec-
tively, we have 0𝑆 ⊆ 0𝑅, and Lemma 4.1 gives

‖𝜄𝜇𝑃0𝑆 𝜄
∗
𝜇‖HS(𝜇) = ‖𝑃0𝑆𝐿𝜇𝑃0𝑆‖HS() ⩽ ‖𝑃0𝑅𝐿𝜇𝑃0𝑅‖HS() = ‖𝜄𝜇𝑃0𝑅𝜄

∗
𝜇‖HS(𝜇),

which completes the proof.
Following Section 4.2 and considering subspaces of  defined by measures, we

introduce the maps 𝐶 tr
𝜇 and 𝐶F

𝜇 ∶ 𝔽 (𝐾) → ℝ⩾0, with
𝐶 tr

𝜇 (𝜈) = ‖𝜄∗𝜇 − 𝑃𝜈𝜄
∗
𝜇‖

2
HS(𝜇,) and 𝐶F

𝜇 (𝜈) = ‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇), 𝜈 ∈ 𝔽 (𝐾).

The notations 𝐶 tr
𝜇 and 𝐶F

𝜇 are motivated by the relation existing between these maps
and the trace and Frobenius norms for matrices; see Section 4.4.
Corollary 4.1. The statement of Theorem 4.1 also holds for the maps 𝐶 tr

𝜇 and 𝐶F
𝜇 ,

that is, these two maps are convex on the convex cone +(𝐾), and their directional
derivatives take values in the set {−∞, 0}.

Proof. Following the proof of Theorem 4.1, for two measures 𝜈 and 𝜂 ∈ +(𝐾) and
for 𝜌 ∈ (0, 1), we set 𝜉 = 𝜈 + 𝜌(𝜂− 𝜈) ∈ +(𝐾). We then have 𝜉 = 𝜈 +𝜂

 , and
the result follows from Lemma 4.7.
Remark 4.5. We consider four closed linear subspaces 𝑅,𝑆 ,𝑈 and 𝑉 of ,
and let {ℎ𝑗}𝑗∈𝕀 be an ONB of . For 𝜇 ∈ +(𝐾), we have
⟨𝜄𝜇𝑃𝑅𝜄

∗
𝜇𝜄𝜇𝑃𝑆 | 𝜄𝜇𝑃𝑈 𝜄

∗
𝜇𝜄𝜇𝑃𝑉 ⟩HS(,𝜇)

=
∑

𝑗∈𝕀
∭X

𝑃𝑉 [ℎ𝑗](𝑡)𝑃𝑆[ℎ𝑗](𝑠)𝐾𝑅(𝑠, 𝑥)𝐾𝑈 (𝑥, 𝑡)d𝜇(𝑠)d𝜇(𝑡)d𝜇(𝑥),
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with, form the CS inequality in 𝓁2(𝕀) and in ,

∭X

∑

𝑗∈𝕀

|

|

𝑃𝑉 [ℎ𝑗](𝑡)||||𝑃𝑆[ℎ𝑗](𝑠)||||𝐾𝑅(𝑠, 𝑥)||||𝐾𝑈 (𝑥, 𝑡)||d|𝜇|(𝑠)d|𝜇|(𝑡)d|𝜇|(𝑥) ⩽ 𝜏3𝜇.

The approximation error ‖𝜄𝜇𝜄∗𝜇𝜄𝜇 − 𝜄𝜇𝑃𝑆 𝜄
∗
𝜇𝜄𝜇𝑃𝑆‖

2
HS(,𝜇) may hence be expressed as a

triple integral involving the kernels 𝐾 and 𝐾𝑆 . ⊲

Through the partial embedding 𝜄𝜇𝑃𝜈, a measure 𝜈 ∈ 𝔽 (𝐾) defines approxima-
tions of the integral operators (with kernel𝐾 and measure𝜇) induced by 𝜄𝜇 in the four
Hilbert spaces HS(), HS(𝜇,), HS(𝜇) and HS(, 𝜇); since these approximations
are all composite of 𝜄𝜇𝑃𝜈, following Section 4.2, the map 𝐷𝜇 may more generally
be used as a surrogate for the characterisation of low-rank approximations of these
operators. From Lemma 4.6, we have 𝐶F

𝜇 (𝜈) ⩽ 𝐶P
𝜇 (𝜈), 𝜈 ∈ 𝔽 (𝐾), adding to the

sequence of inequalities (16). In addition to the informative nature of the directional
derivatives of 𝐷𝜇, the exploration of the kernel-quadrature approximation landscape
does not require the characterisation of orthogonal projections onto subspaces of ;
this feature is of interest from numerical-complexity standpoint, as illustrated in the
following Remarks 4.6 and 4.7.
Remark 4.6. In the framework of Lemma 3.5, for a discrete measure 𝜈 supported
by a set of 𝑛 ∈ ℕ points  = {𝑠1,⋯ , 𝑠𝑛} ⊆ X , the reproducing kernel 𝐾𝜈 of 𝜈can be written as

𝐾𝜈(𝑥, 𝑡) =
𝑛
∑

𝑖,𝑗=1
𝐾(𝑥, 𝑠𝑖)𝜘𝑖,𝑗𝐾(𝑠𝑗 , 𝑡), 𝑥 and 𝑡 ∈ X ,

where 𝜘𝑖,𝑗 is the 𝑖, 𝑗 entry of the pseudoinverse of the 𝑛×𝑛 kernel matrix with 𝑖, 𝑗 entry
𝐾(𝑠𝑖, 𝑠𝑗); see (20) in Section 4.4 for an illustration. The numerical complexity of the
evaluation of 𝐾𝜈 at 𝑀 ∈ ℕ distinct locations in X × X is thus (𝑛3 + 𝑛2𝑀). The
term (𝑛3) is related to the pseudoinversion of the kernel matrix defined by 𝐾 and
 , while the term (𝑛2𝑀) corresponds to the evaluation, from this pseudoinverse
and the kernel 𝐾 , of 𝐾𝜈 at 𝑀 different locations. ⊲

Remark 4.7. Assuming that 𝜇 and 𝜈 are supported by 𝑁 and 𝑛 points, respectively,
from (8), the computational complexity of the evaluation of 𝐷𝜇(𝜈) up to the constant
‖𝑔𝜇‖

2
 is (𝑛2 + 𝑛𝑁). In comparison, following Remark 4.6 and assuming that the

kernel 𝐾𝜈 is evaluated from 𝐾 and 𝜈, the complexity is (𝑛3 + 𝑛2𝑁) for 𝐶 tr
𝜇 (𝜈), and

(𝑛3 + 𝑛2𝑁2) for 𝐶P
𝜇 (𝜈), 𝐶PP

𝜇 (𝜈) and 𝐶F
𝜇 (𝜈).If we for instance in addition assume that X is a discrete set of size 𝑁 (and so,

that 𝑛 ⩽ 𝑁 ; see Section 4.4 for an illustration), then the numerical cost of multiple
evaluations of 𝐷𝜇 may be reduced by beforehand computing and storing the values
{𝑔𝜇(𝑥)}𝑥∈X of the target potential 𝑔𝜇 ∈ ; this operation has complexity (𝑁2), but
can nevertheless be easily parallelised. From (8), the evaluation of ⟨𝑔𝜈 | 𝑔𝜇⟩ then
reduces to the integration of 𝑔𝜇 with respect to 𝜈, with complexity (𝑛). ⊲
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4.4 Column sampling for PSD-matrix approximation
Let 𝐊 be a 𝑁 ×𝑁 PSD matrix, with 𝑁 ∈ ℕ; we denote by [𝑁] the set of all integers
between 1 and 𝑁 . For a subset 𝐼 ⊆ [𝑁] the Nyström approximation3 of 𝐊 induced
by the columns of 𝐊 with index in 𝐼 is the 𝑁 ×𝑁 PSD matrix

�̂�(𝐼) = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )
†𝐊𝐼,∙, (20)

where𝐊∙,𝐼 is the𝑁×𝑛matrix defined by the columns of𝐊with index in 𝐼 , and where
(𝐊𝐼,𝐼 )

† is the pseudoinverse of the principal submatrix of 𝐊 defined by 𝐼 (and 𝐊𝐼,∙consists of rows of 𝐊; it is the conjugate-transpose of 𝐊∙,𝐼 ); see e.g. [9, 18, 14, 10].
For 𝑖 and 𝑗 ∈ [𝑁], the 𝑖, 𝑗 entry of 𝐊 may be regarded as the value 𝐾(𝑖, 𝑗) of

a PSD kernel 𝐾 defined on the discrete set X = [𝑁]. The 𝑗-th column of 𝐊 then
corresponds to the function 𝑘𝑗 ∈ , with 𝑗 ∈ X , and the subset 𝐼 defines the
linear subspace 𝐼 = spanℂ{𝑘𝑗|𝑗 ∈ 𝐼} ⊆ ; in particular, the 𝑖, 𝑗 entry of �̂�(𝐼) is
𝐾𝐼 (𝑖, 𝑗), with 𝐾𝐼 the reproducing kernel of 𝐼 .

Introducing 𝜇 =
∑𝑁

𝑖=1 𝛿𝑖, the Hilbert space 𝐿2(𝜇) can be identified with the
Euclidean space ℂ𝑁 ; following Section 4.3, we can then notice that

• the trace norm ‖𝐊 − �̂�(𝐼)‖tr corresponds to (18), and
• the squared Frobenius norm ‖𝐊 − �̂�(𝐼)‖2F corresponds to (19).

The column-sampling problem for the Nyström approximation of a PSD matrix 𝐊
(that is, the search of a subset 𝐼 ⊆ [𝑁] leading to an efficient approximation �̂�(𝐼) of
𝐊) is thus a special instance of the general framework discussed in Section 4.3. In
particular, the support of an approximate measure 𝜈 on X = [𝑁] defines a subset
of columns of 𝐊, and the kernel-quadrature setting may be used as surrogate for the
characterisation of such measures.

5 Concluding discussion
We described the overall framework surrounding the isometric representation of
trace-class integral operators with PSD kernel 𝐾 as potentials in the RKHS  associ-
ated with the kernel |𝐾|

2, and illustrated the parallel between the quadrature approx-
imation of such operators and kernel quadrature rules in . Through subspaces de-
fined by measures and partial 𝐿2-embeddings, we discussed the extent to which the
kernel-quadrature setting can be used as a surrogate to characterise projection-based
approximations of general integral operators with PSD kernels. We also illustrated
the connections between the considered framework and the low-rank approximation
of PSD matrices through column sampling.

3In the machine-learning literature, Nyström approximation refers to the low-rank approxima-
tion of PSD matrices through column sampling; although related, this terminology should not to be
confused with the quadrature method for the numerical approximation of integral equations.
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In contrast to the projection-based error maps 𝐶P
𝜇 , 𝐶PP

𝜇 , 𝐶 tr
𝜇 and 𝐶F

𝜇 considered
in Section 4, the quadrature-based error map 𝐷𝜇 defined in (7) is convex and ad-
mits informative directional derivatives on any convex set of approximate measures;
to this extent, the map 𝐷𝜇 may be regarded as a differentiable relaxation of the
piecewise-constant projection-based error maps of Section 4. Further, from a numer-
ical standpoint and as opposed to the projection setting, the exploration of the kernel-
quadrature approximation landscape does not require the characterisation of orthog-
onal projections onto subspaces of , and instead only involves the evaluation of
integrals related to |𝐾|

2. All together, these properties make the kernel-quadrature
setting an interesting framework for the design of numerically-efficient problem-
dependent sampling strategies for the low-rank approximation of trace-class integral
operators with PSD kernels.
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