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Isometric representation of integral operators
with positive-semidefinite kernels

Bertrand GAUTHIER∗

Abstract

We describe a natural coisometry from the Hilbert space of all Hilbert-
Schmidt operators on a separable reproducing kernel Hilbert space (RKHS)
, and onto the RKHS associated with the squared-modulus of the reproduc-
ing kernel of . We discuss the properties of this coisometry, and in particular
show that trace-class integral operators defined by general measures and the re-
producing kernel of  always belong to its initial space. The images of such
integral operators are the potentials of the underlying measures with respect to
the squared-modulus kernel, drawing a direct connection between the approx-
imation of integral operators with PSD kernels and the kernel embedding of
measures in RKHSs associated with squared-modulus kernels.

Keywords: reproducing kernel Hilbert spaces, integral operators, low-rank approx-
imation, maximum mean discrepancy.

1 Introduction
Integral operators with positive-semidefinite (PSD) kernels play a central role in the
theory of reproducing kernel Hilbert spaces (RKHSs) and their applications; see for
instance [3, 17, 18, 15, 21, 16, 14]. As an important instance, this class of operators
encompasses the PSD matrices.

Among other interpretations and under suitable conditions, an integral operator
defined by a PSD kernel 𝐾 and a measure 𝜇 can be regarded as a Hilbert-Schmidt
(HS) operator 𝐿𝜇 on the RKHS  associated with 𝐾; see e.g. [17, 18]. In this note,
we show that when the integral of the diagonal of 𝐾 with respect to the variation of
𝜇 is finite, the HS operator 𝐿𝜇 on  can be isometrically represented as a potential
𝑔𝜇 in the RKHS  associated with the squared-modulus kernel |𝐾|

2. The operator
𝐿𝜇 is in this case trace-class, and 𝑔𝜇 is the Riesz-Fréchet representer of the linear
functional on  corresponding to the integration with respect to the measure 𝜇, the
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INTEGRAL OPERATORS WITH PSD KERNELS

conjugate of 𝜇. The design of an approximate measure 𝜈, defining together with
the kernel 𝐾 an integral operator 𝐿𝜈 for the approximation of an initial operator 𝐿𝜇,
thus reduces to the approximation in  of a target potential 𝑔𝜇 by an approximate
potential 𝑔𝜈. In particular, the error criterion

𝜈 ↦ 𝐷(𝜈) = ‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝑔𝜇 − 𝑔𝜈‖

2


can then be interpreted as a generalised maximum-mean-discrepancy (MMD; see
e.g. [19, 12, 22]) for the embedding of measures in the RKHS , drawing a direct
connection between the approximation of integral operators and the design of rep-
resentative samples in kernel-based statistical learning (see [6, 10] for illustrations).

We give an overall description of the framework surrounding such an isometric
representation, and illustrate that it follows from the definition of a natural coisome-
try Γ from the Hilbert space HS() of all HS operators on  and onto the squared-
kernel RKHS ; in particular, Γ maps self-adjoint operators to real-valued functions,
and PSD operators to nonnegative functions (Section 2). Under some measurability
conditions on 𝐾 and assuming integrability of the diagonal of 𝐾 with respect to |𝜇|,
the integral operator 𝐿𝜇 always belongs to the initial space of Γ, and Γ[𝐿𝜇] = 𝑔𝜇;
both 𝐿𝜇 and 𝑔𝜇 can in this case be represented as Bochner integrals (Section 3).
When the initial operator𝐿𝜇 is self-adjoint, i.e. when 𝜇 is signed, we also discuss the
extent to which the criterion 𝐷 can be used as a surrogate for the characterisation of
subspaces of  for the approximation of 𝐿𝜇 through projection. In particular, when
𝜇 is nonnegative, the RKHS  is compactly embedded in 𝐿2(𝜇), and the integral op-
erator defined by 𝐾 and 𝜇 can be regarded as a HS operator from, and to,  or 𝐿2(𝜇)
(i.e. four possibilities); we discuss the implications of the considered approximation
framework in this setting, and illustrate its connection with the column-sampling
problem for low-rank PSD-matrix approximation (see e.g. [5, 11, 7]; Section 4).

2 Framework and notations
By default, all the Hilbert spaces considered in this note are complex; they are oth-
erwise explicitly referred to as real Hilbert spaces; we use a similar convention for
vector spaces and linear maps. Inner-products of complex Hilbert spaces are as-
sumed to be linear with respect to their right argument. We denote by 𝑧 the con-
jugate of a complex number 𝑧 ∈ ℂ, by |𝑧| its modulus, and by Re(𝑧) its real part;
the imaginary unit is denoted by i ∈ ℂ. For a complex-valued function 𝑓 on a
general set 𝑆, we denote by 𝑓 and |𝑓 | the functions defined as 𝑓 (𝑠) = 𝑓 (𝑠) and
|𝑓 |(𝑠) = |𝑓 (𝑠)|, with 𝑠 ∈ 𝑆, respectively; we also use the notation |𝑓 |2 to refer to
the function 𝑠 ↦ |𝑓 (𝑠)|2. The adjoint of an operator 𝐴 is denoted by 𝐴∗.

A linear map 𝐴 ∶ 𝐻 → 𝐹 , with 𝐻 and 𝐹 two Hilbert spaces, is referred to as
an isometry if 𝐴∗𝐴 = id𝐻 , the identity operator on 𝐻 . The map 𝐴 is a coisometry
if 𝐴∗ is an isometry, i.e. if 𝐴𝐴∗ = id𝐹 . A coisometry 𝐴 ∶ 𝐻 → 𝐹 is in particular a
surjective partial isometry from 𝐻 onto 𝐹 (i.e. 𝐴𝐴∗𝐴 = 𝐴), and 𝐴∗𝐴 is in this case
the orthogonal projection from 𝐻 onto the initial space (𝐴) of 𝐴, where (𝐴) is
the orthogonal in 𝐻 of the null-space of 𝐴.
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B. GAUTHIER

2.1 Hilbert-Schimidt operators and RKHSs
Hereafter, we give a detailed description of the overall framework leading to the
definition a natural coisometry Γ from the Hilbert space HS() of all HS operators
on an underlying RKHS , and onto the RKHS  associated with the squared-
modulus of the reproducing kernel of ; the considered construction is summarised
in the diagram (4). In all this note, the terminology natural is used to emphasises
that a given definition does not depend on the choice of any specific basis.

Underlying RKHS. Let  be a separable RKHS of complex-valued functions on a
general set X , with reproducing kernel 𝐾 ∶ X ×X → ℂ; see for instance [1, 14].
For all 𝑡 ∈ X , let 𝑘𝑡 ∈  be defined as 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡), with 𝑥 ∈ X . For all
ℎ ∈ , we have ⟨𝑘𝑡 |ℎ⟩ = ℎ(𝑡), where ⟨⋅ | ⋅⟩ stands for the inner product of ;
we denote by ‖⋅‖ the corresponding norm on , and we use similar notations for
the inner products and norms of all the Hilbert spaces encountered in this note.

Hilbert-Schmidt space. Let HS() be the Hilbert space of all HS operators on
; see e.g. [8, 2]. For 𝑇 ∈ HS(), we denote by 𝑇 [ℎ] ∈  the image of ℎ ∈ 
through 𝑇 , and by 𝑇 [ℎ](𝑥) the value of the function 𝑇 [ℎ] at 𝑥 ∈ X ; we use a similar
convention for all function-valued operators. For 𝑎 and 𝑏 ∈ , let 𝑇𝑎,𝑏 ∈ HS() be
the operator given by

𝑇𝑎,𝑏[ℎ] = 𝑎⟨𝑏 |ℎ⟩ , for all ℎ ∈ ;
we also set 𝑆𝑏 = 𝑇𝑏,𝑏. For all 𝑇 ∈ HS(), we have ⟨

𝑇𝑎,𝑏
|

|

𝑇
⟩

HS() =
⟨

𝑎 |
|

𝑇 [𝑏]
⟩

 ,
and in particular, for all 𝑥 ∈ X , 𝑇 [ℎ](𝑥) = ⟨

𝑇𝑘𝑥,ℎ
|

|

𝑇
⟩

HS().
Remark 2.1. Any operator 𝑇 ∈ HS() admits a singular value decomposition
𝑇 =

∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖
, where {𝑢𝑖}𝑖∈𝕀 and {𝑣𝑖}𝑖∈𝕀, with 𝕀 ⊆ ℕ, are two orthonormal systems

(ONSs) in , and where {𝜎𝑖}𝑖∈𝕀 ∈ 𝓁2(𝕀), with 𝜎𝑖 > 0 for all 𝑖 ∈ 𝕀, is the set of all
strictly positive singular values of 𝑇 ; the series converges in HS(). ⊲

Remark 2.2. Let ′ be the continuous dual of . For ℎ ∈ , let 𝜁ℎ ∈ ′ be the
bounded linear functional such that 𝜁ℎ(𝑓 ) = ⟨ℎ | 𝑓⟩ , for all 𝑓 ∈ . Endowed with
the inner product ⟨𝜁𝑓 | 𝜁ℎ⟩′ = ⟨ℎ | 𝑓⟩ , ′ is a Hilbert space, and the Riesz map
ℎ ↦ 𝜁ℎ is a natural bijective conjugate-linear isometry form  to ′. The linear
map densely defined as 𝑇𝑎,𝑏 ↦ 𝑎 ⊗ 𝜁𝑏 (see Remark 2.1) then defines a bijective
natural linear isometry from HS() to the tensor Hilbert space  ⊗′. ⊲

Conjugate RKHS. Let  be the RKHS of complex-valued functions on X asso-
ciated to the conjugate kernel 𝐾 , with 𝐾(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), for all 𝑥 and 𝑡 ∈ X . For
all ℎ ∈ , we have ℎ ∈  (i.e. the function ℎ ∶ 𝑥 ↦ ℎ(𝑥) is a vector of ), and the
map ℎ ↦ ℎ is a natural bijective conjugate-linear isometry from  to . We may
in particular notice that 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡) = 𝑘𝑡(𝑥), and that

⟨

𝑘𝑥
|

|

𝑘𝑡

⟩

 = 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) =
⟨

𝑘𝑡
|

|

𝑘𝑥

⟩

 .
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We denote by Ψ the natural bijective linear isometry from HS() to the Hilbert
tensor product  ⊗, densely defined as Ψ(𝑇𝑎,𝑏

)

= 𝑎 ⊗ 𝑏, for all 𝑎 and 𝑏 ∈ .
Remark 2.3. Following Remark 2.2, the map 𝜁ℎ ↦ ℎ is a natural bijective linear
isometry form ′ to . Further, the linear map densely defined as 𝑎⊗𝜁𝑏 ↦ 𝑎⊗𝑏 is
a natural bijective isometry form ⊗′ to ⊗; the composition of this isometry
with the natural bijective isometry from HS() to the tensor Hilbert space  ⊗′

yields the isometry Ψ ∶ HS() →  ⊗; see also the diagram (4). ⊲

Squared-kernel RKHS. The kernels 𝐾 and 𝐾 being PSD, by the Schur-product
theorem, so is the kernel |𝐾|

2 = 𝐾𝐾 , with for all 𝑥 and 𝑡 ∈ X ,
|𝐾|

2(𝑥, 𝑡) = 𝐾(𝑥, 𝑡)𝐾(𝑥, 𝑡) = |

|

𝐾(𝑥, 𝑡)|
|

2 = |𝑘𝑡|
2(𝑥).

Let be the RKHS of complex-valued functions on X for which |𝐾|

2 is reproducing
(i.e.  is the product of the two RKHSs  and , see e.g. [1]).

Following [14, Chapter 5], we denote by 𝐶Δ ∶  ⊗  →  the coisometry
densely defined as 𝐶Δ(𝑎 ⊗ 𝑏) = 𝑎𝑏, for all 𝑎 and 𝑏 ∈ , where 𝑎𝑏 ∈  is the
complex-valued function on X such that (𝑎𝑏)(𝑥) = 𝑎(𝑥)𝑏(𝑥). For all Υ ∈  ⊗′

and all 𝑥 ∈ X , we have
𝐶Δ[Υ](𝑥) =

⟨

𝑘𝑥 ⊗ 𝑘𝑥
|

|

Υ
⟩

⊗ =
⟨

|𝑘𝑥|
2
|

|

𝐶Δ[Υ]
⟩

. (1)
The initial space (𝐶Δ) of 𝐶Δ is the closure in  ⊗ of the linear space spanned
by the tensors 𝑘𝑥 ⊗ 𝑘𝑥, for all 𝑥 ∈ X , i.e. (𝐶Δ) = spanℂ

{

𝑘𝑥 ⊗ 𝑘𝑥
|

|

𝑥 ∈ X
}

⊗
;

see Remark 2.4 for further details.
Remark 2.4. From (1), we have 𝐶∗

Δ

[

|𝑘𝑥|
2] = 𝑘𝑥 ⊗ 𝑘𝑥, for all 𝑥 ∈ X ; the linear

subspace spanℂ
{

|𝑘𝑥|
2
|

|

𝑥 ∈ X
} being dense in , we have 𝐶Δ𝐶

∗
Δ = id, so that 𝐶∗

Δis an isometry. ⊲

Natural coisometry from HS() onto . As ΨΨ∗ = id⊗ , the map
Γ = 𝐶ΔΨ ∶ HS() → 

is a coisometry. From (1), for all 𝑇 ∈ HS() and all 𝑥 ∈ X , we have
Γ[𝑇 ](𝑥) =

⟨

|𝑘𝑥|
2
|

|

Γ[𝑇 ]
⟩

 =
⟨

𝑆𝑘𝑥
|

|

𝑇
⟩

HS() =
⟨

𝑘𝑥
|

|

𝑇 [𝑘𝑥]
⟩

 = 𝑇 [𝑘𝑥](𝑥), (2)

and in particular Γ[𝑇𝑎,𝑏] = 𝑎𝑏, for all 𝑎 and 𝑏 ∈ . The initial space of Γ is

(Γ) = spanℂ
{

𝑆𝑘𝑥
|

|

𝑥 ∈ X
}
HS()

⊆ HS(), (3)
and Γ∗[

|𝑘𝑥|
2] = 𝑆𝑘𝑥

; operators in (Γ) are isometrically represented in .
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The following diagram summarises the construction of Γ (the ≅ symbol refers
to the two the natural isometries discussed in Remarks 2.2 and 2.3).

HS() Γ //

Ψ
%%



 ⊗′
≅
//

��
≅

 ⊗
𝐶Δ

<<

(4)

2.2 Self-adjoint operators

In view of (2), for all 𝑇 ∈ HS(), we have Γ[𝑇 ∗] = Γ[𝑇 ]; so, if 𝑇 is self-adjoint,
then the function Γ[𝑇 ] is real-valued. This property is intrinsically related to the
structure of HS() and , as illustrated below. Form the surjectivity of Γ, we may
notice that for all 𝑔 ∈ , the function 𝑔 is also a vector of .

Squared-kernel real RKHS. The squared kernel |𝐾|

2 being real-valued, it is the
reproducing kernel of a real RKHS ℝ of real-valued functions on X . The real
RKHS ℝ can be regarded as a closed real-linear subspace of ; the complex RKHS
 is then a complexification of ℝ (see e.g. [14, Chapter 5]) and ℝ is a standard
subspace of  (see e.g. [13]). More precisely, for any 𝑔 ∈ , there always exist two
functions 𝑔𝕣 and 𝑔𝕚 ∈ ℝ ⊂  such that 𝑔 = 𝑔𝕣 + i𝑔𝕚, with

𝑔𝕣 =
1
2

(

𝑔 + 𝑔
) and 𝑔𝕚 =

1
2
i
(

𝑔 − 𝑔
)

, (5)
i.e. 𝑔𝕣 and 𝑔𝕚 are the real and imaginary parts of 𝑔. We have  = ℝ + iℝ, and for
𝑓 = 𝑓𝕣 + i𝑓𝕚 ∈ , with 𝑓𝕣 and 𝑓𝕚 ∈ ℝ,

⟨𝑓 | 𝑔⟩ = ⟨𝑓𝕣 | 𝑔𝕣 ⟩ℝ + i⟨𝑓𝕣 | 𝑔𝕚⟩ℝ − i⟨𝑓𝕚 | 𝑔𝕣 ⟩ℝ + ⟨𝑓𝕚 | 𝑔𝕚⟩ℝ .

As ⟨𝑓𝕣 | 𝑔𝕣 ⟩ℝ = ⟨𝑓𝕣 | 𝑔𝕣 ⟩, with a slight abuse of notation, we may use the same
notation ⟨⋅ | ⋅⟩ to refer to the inner-products of ℝ and .

Self-adjoint HS operators. We denote by HS∗() ⊂ HS() the closed real-linear
subspace of all self-adjoint HS operators on . Endowed with the inner-product of
HS(), the real vector space HS∗() is a real Hilbert space. For every 𝑇 ∈ HS(),
there exist 𝑇𝕣 and 𝑇𝕚 ∈ HS∗() such that 𝑇 = 𝑇𝕣 + i𝑇𝕚, with

𝑇𝕣 =
1
2

(

𝑇 ∗ + 𝑇
) and 𝑇𝕚 =

1
2
i
(

𝑇 ∗ − 𝑇
)

, (6)
and the decomposition HS() = HS∗() + iHS∗() holds.
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INTEGRAL OPERATORS WITH PSD KERNELS

Natural real-linear coisometry. With the above notations and from (5) and (6), if
Γ[𝑇 ] = 𝑔, then by linearity, we have Γ[𝑇𝕣 ] = 𝑔𝕣 and Γ[𝑇𝕚] = 𝑔𝕚. In particular, the
restriction of Γ to HS∗() defines a natural real-linear coisometry Γ̃ from the real
Hilbert space HS∗() onto the real RKHS ℝ. The initial space of Γ̃ is


(

Γ̃
)

= (Γ) ∩ HS∗() = spanℝ
{

𝑆𝑘𝑥
|

|

𝑥 ∈ X
}
HS()

,

and (Γ) = 
(

Γ̃
)

+ i
(

Γ̃
).

Remark 2.5. The diagram (4) is also well-defined when , HS() and  are real
Hilbert spaces; the coisometry Γ is then real-linear. From (2), we in this case have
Γ[𝑇 ∗] = Γ[𝑇 ] for all 𝑇 ∈ HS(), so that Γ[𝑇 ] = 0 when 𝑇 ∗ = −𝑇 ; in the real case,
the operators in (Γ) are thus all self-adjoint. ⊲

2.3 Positive-semidefinite operators
If 𝑇 ∈ HS∗() is PSD, then Γ[𝑇 ](𝑥) =

⟨

𝑘𝑥
|

|

𝑇 [𝑘𝑥]
⟩

 ⩾ 0, for all 𝑥 ∈ X , and the
function Γ[𝑇 ] ∈ ℝ is nonnegative; again, this property is intrinsically related to the
structure of HS() and .

Positive-semidefinite HS operators. We denote by HS+
∗ () ⊂ HS∗() the closed

convex cone of all (self-adjoint) PSD operators on . For all 𝑇 ∈ HS∗(), there
exist 𝑇 + and 𝑇 − ∈ HS+

∗ () such that 𝑇 = 𝑇 + − 𝑇 −, i.e. the cone HS+
∗ () is

generating in HS∗().

Nonnegative functions in . We denote by +
ℝ ⊂ ℝ the closed convex cone of all

nonnegative functions in ℝ. For all 𝑇 ∈ HS+
∗ (), we have Γ[𝑇 ] ∈ +

ℝ, and since
Γ is surjective, the cone +

ℝ is generating (i.e. for all 𝑔 ∈ ℝ, there exist 𝑔+ and
𝑔− ∈ +

ℝ such that 𝑔 = 𝑔+ − 𝑔−).
Remark 2.6. Let 𝑇 =

∑

𝑗∈𝕀 𝜆𝑗𝑆𝜑𝑗
be a spectral expansion of 𝑇 ∈ HS+

∗ (), where
{𝜆𝑗}𝑗∈𝕀, with 𝕀 ⊆ ℕ, is the set of all strictly-positive eigenvalues of 𝑇 , repeated with
multiplicity, and where {𝜑𝑗}𝑗∈𝕀 ⊂  is a set of associated eigenvectors, orthonormal
in . We then have

Γ[𝑇 ] =
∑

𝑗∈𝕀
𝜆𝑗Γ[𝑆𝜑𝑗

] =
∑

𝑗∈𝕀
𝜆𝑗||𝜑𝑗

|

|

2,

so that Γ[𝑇 ] = 0 if and only if 𝑇 = 0. ⊲

3 Trace-class integral operators with PSD kernels
From (3), if 𝑇 ∈ HS() is of the form 𝑇 =

∑𝑛
𝑗=1 𝜔𝑗𝑆𝑘𝑠𝑗

, with 𝑛 ∈ ℕ, {𝑠𝑗}𝑛𝑗=1 ∈ X 𝑛

and {𝜔𝑗}
𝑛
𝑗=1 ∈ ℂ𝑛, then 𝑇 ∈ (Γ) and Γ[𝑇 ] =

∑𝑛
𝑗=1 𝜔𝑗

|

|

𝑘𝑠𝑗
|

|

2. For all ℎ ∈  and all

6
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𝑥 ∈ X , we in this case have

𝑇 [ℎ](𝑥) =
𝑛
∑

𝑗=1
𝜔𝑗

⟨

𝑘𝑠𝑗
|

|

ℎ
⟩

𝑘𝑠𝑗
(𝑥) =

𝑛
∑

𝑗=1
𝜔𝑗𝐾(𝑥, 𝑠𝑗)ℎ(𝑠𝑗),

and 𝑇 can thus be regarded as an integral operator defined by the kernel 𝐾 and the
finitely-supported measure ∑𝑛

𝑗=1 𝜔𝑗𝛿𝑠𝑗 , with 𝛿𝑥 the Dirac measure at 𝑥 ∈ X . Un-
der some general measurability conditions, a larger collection of integral operators
belonging to (Γ) can be characterised.

We consider a 𝜎-algebra of subsets of X . We make the following assumptions
on the kernel 𝐾 and the measurable space (X ,):
(A.1) for all 𝑡 ∈ X , the function 𝑘𝑡 ∈  is measurable on (X ,);
(A.2) the diagonal of 𝐾 is measurable on (X ,).

We denote by +, , and ℂ the set of all nonnegative, signed and complex
measures∗ on (X ,), respectively. For 𝜇 ∈  ∪ℂ (with + ⊂ ), we set

𝜏𝜇 = ∫X

𝐾(𝑡, 𝑡)d|𝜇|(𝑡) ∈ ℝ⩾0 ∪ {+∞},

with |𝜇| the variation of 𝜇; we denote by 𝜇 the conjugate measure of 𝜇. We next
define the sets +(𝐾),  (𝐾) and ℂ(𝐾) of all measures 𝜇 in +, , and ℂ such
that 𝜏𝜇 is finite, respectively. We may notice that ℂ(𝐾) is a vector space, and that
+(𝐾) is a real pointed convex cone; the inclusion +(𝐾) ⊂  (𝐾) holds.

For 𝜇 ∈  (𝐾) ∪ ℂ(𝐾), we denote by 𝐿𝜇 ∈ HS() the integral operator on 
defined by the kernel 𝐾 and the measure 𝜇, that is

𝐿𝜇[ℎ](𝑥) = ∫X

𝐾(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡), for all ℎ ∈  and all 𝑥 ∈ X ;
see the proof of Theorem 3.1 and Remarks 3.1 and 3.2 for more details on 𝐿𝜇.
Theorem 3.1. For all 𝜇 ∈  (𝐾)∪ℂ(𝐾), we have 𝐿𝜇 ∈ (Γ) and Γ[𝐿𝜇] = 𝑔𝜇 ∈ ,
with

𝑔𝜇(𝑥) = ∫X

|

|

𝐾(𝑥, 𝑡)|
|

2d𝜇(𝑡), for all 𝑥 ∈ X .

Proof. From (A.1), for all 𝑡 ∈ X , the function |𝑘𝑡|
2 ∈ ℝ is measurable on (X ,),

so that the RKHS  and the real RKHS ℝ both consist of measurable functions on
(X ,); see e.g. [20, Lemma 4.24]. In particular, for all 𝑇 ∈ HS(), the function
Γ[𝑇 ] is measurable.

For all 𝜇 ∈  (𝐾) ∪ ℂ(𝐾), the operator 𝐿𝜇 ∈ HS() is the Riesz-Fréchet
representer of the bounded linear functional 𝑍𝜇 ∶ HS() → ℂ such that

𝑍𝜇(𝑇 ) = ∫X

⟨

𝑆𝑘𝑡
|

|

𝑇
⟩

HS()d𝜇(𝑡) = ∫X

Γ[𝑇 ](𝑡)d𝜇(𝑡), for all 𝑇 ∈ HS().
∗We only consider finite complex measures, while nonnegative and signed measures might not

necessarily be finite.

7
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Indeed, as ‖
‖

𝑆𝑘𝑡
‖

‖HS() = ‖𝑘𝑡‖
2
 = 𝐾(𝑡, 𝑡) for all 𝑡 ∈ X , we have

|

|

𝑍𝜇(𝑇 )|| ⩽ ∫X

|

|

|

⟨

𝑆𝑘𝑡
|

|

𝑇
⟩

HS()
|

|

|

d|𝜇|(𝑡) ⩽ ‖𝑇 ‖HS()𝜏𝜇,

and 𝑍𝜇(𝑇𝑘𝑥,ℎ
) =

⟨

𝐿𝜇
|

|

𝑇𝑘𝑥,ℎ

⟩

HS() = 𝐿𝜇[ℎ](𝑥), for all ℎ ∈  and all 𝑥 ∈ X . In
a similar way, the function 𝑔𝜇 ∈  is the Riesz-Fréchet representer of the bounded
linear functional 𝐼𝜇 ∶  → ℂ such that

𝐼𝜇(𝑔) = ∫X

𝑔(𝑡)d𝜇(𝑡), for all 𝑔 ∈ ;

we indeed have |

|

𝐼𝜇(𝑔)|| ⩽ ‖𝑔‖𝜏𝜇, and 𝐼𝜇
(

|𝑘𝑥|
2) =

⟨

𝑔𝜇 || |𝑘𝑥|
2⟩

 = 𝑔𝜇(𝑥).For all 𝑥 ∈ X , we have
Γ[𝐿𝜇](𝑥) =

⟨

𝑆𝑘𝑥
|

|

𝐿𝜇

⟩

HS() = 𝑍𝜇

(

𝑆𝑘𝑥

)

= 𝑔𝜇(𝑥),

so that Γ[𝐿𝜇] = 𝑔𝜇. We then notice that

‖𝐿𝜇‖
2
HS() = 𝑍𝜇(𝐿𝜇) = ∬X

|

|

𝐾(𝑥, 𝑡)|
|

2d𝜇(𝑡)d𝜇(𝑥) = 𝐼𝜇(𝑔𝜇) = ‖𝑔𝜇‖
2
,

and thus 𝐿𝜇 ∈ (Γ).
Remark 3.1. For all 𝜇 ∈  (𝐾)∪ℂ(𝐾), the operator 𝐿𝜇 ∈ HS() and the function
𝑔𝜇 ∈  can be represented as Bochner integrals, that is

𝐿𝜇 = ∫X

𝑆𝑘𝑡
d𝜇(𝑡), and 𝑔𝜇 = ∫X

|𝑘𝑡|
2d𝜇(𝑡);

the strong measurability of the maps 𝑡 ↦ 𝑆𝑘𝑡
and 𝑡 ↦ |𝑘𝑡|

2 follows from the weak
measurability condition (A.1) and the separability of HS() and  (Pettis measura-
bility theorem), and we in addition have

∫X

‖

‖

𝑆𝑘𝑡
‖

‖HS()d|𝜇|(𝑡) = ∫X

‖

‖

|𝑘𝑡|
2
‖

‖d|𝜇|(𝑡) = 𝜏𝜇.

For all ℎ ∈ , we may also notice that the vector𝐿𝜇[ℎ] ∈  is the Riesz-Fréchet
representer of the bounded linear functional Θℎ,𝜇 ∶  → ℂ, with

Θℎ,𝜇(𝑓 ) = ∫X

ℎ(𝑡)𝑓 (𝑡)d𝜇(𝑡) =
⟨

𝐿𝜇[ℎ] || 𝑓
⟩

 , for all 𝑓 ∈ ; (7)

we indeed have |
|

Θℎ,𝜇(𝑓 )|| ⩽ ‖𝑓‖‖ℎ‖𝜏𝜇, and Θℎ,𝜇(𝑘𝑥) = 𝑇𝜇[ℎ](𝑥), for all 𝑥 ∈ X .
The vector 𝐿𝜇[ℎ] can also be represented as a Bochner integral, that is

𝐿𝜇[ℎ] = ∫X

𝑘𝑡ℎ(𝑡)d𝜇(𝑡);

the strong measurability of the map 𝑡 ↦ 𝑘𝑡 follows form (A.1) and the separability
of , and the inequality ∫

X
‖

‖

𝑘𝑡
‖

‖
|

|

ℎ(𝑡)|
|

d|𝜇|(𝑡) ⩽ ‖ℎ‖𝜏𝜇 holds. ⊲

8
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From Theorem 3.1 and following Sections 2.2 and 2.3, we can readily notice that
if 𝜇 ∈  (𝐾), then 𝑔𝜇 ∈ ℝ, and Γ∗[𝑔𝜇] = 𝐿𝜇 ∈ HS∗(); also, if 𝜇 ∈ +(𝐾), then
𝑔𝜇 ∈ +

ℝ, and Γ∗[𝑔𝜇] = 𝐿𝜇 ∈ HS+
∗ (). As 𝛿𝑡 ∈ +(𝐾) and 𝐿𝛿𝑡

= 𝑆𝑘𝑡
for all 𝑡 ∈ X ,

we may also notice that spanℂ{𝐿𝜈|𝜈 ∈ +(𝐾)} is dense in (Γ).
Lemma 3.1. For all 𝜇 ∈  (𝐾) ∪ ℂ(𝐾), the operator 𝐿𝜇 is trace-class.

Proof. For all 𝜇 ∈ +(𝐾), the operator 𝐿𝜇 is PSD. Let {ℎ𝑖}𝑖∈𝕀 be any orthonormal
basis (ONB) of , with 𝕀 ⊆ ℕ; from (7) and by monotone convergence, we have

∑

𝑖∈𝕀

⟨

ℎ𝑖
|

|

𝐿𝜇[ℎ𝑖]
⟩

 =
∑

𝑖∈𝕀
∫X

|

|

⟨𝑘𝑡 |ℎ𝑖⟩
|

|

2d𝜇(𝑡) = ∫X

‖

‖

𝑘𝑡
‖

‖

2
d𝜇(𝑡) = 𝜏𝜇, (8)

so that 𝐿𝜇 is trace-class, with trace 𝜏𝜇.
For all 𝜇 ∈  (𝐾), there exist 𝜇+ and 𝜇− ∈ + such that 𝜇 = 𝜇+ − 𝜇− and

|𝜇| = 𝜇+ + 𝜇−; we thus have 𝜇+ and 𝜇− ∈ +(𝐾). For all 𝜇 ∈ ℂ(𝐾), we have
|𝜇| = |𝜇|, so that 𝜇 ∈ ℂ(𝐾); we then have 𝜇 = 𝜇𝕣 + i𝜇𝕚, with 𝜇𝕣 =

1
2
(𝜇 + 𝜇) and

𝜇𝕚 =
1
2
i(𝜇 − 𝜇) ∈ ℂ(𝐾) ∩ ⊆  (𝐾). For all 𝜇 ∈  (𝐾) ∪ ℂ(𝐾), the operator 𝐿𝜇can therefore be written as a finite sum of trace-class operators.

Remark 3.2. For 𝜇 ∈ +(𝐾), let 𝐿2(𝜇) be the Hilbert space of all square-integrable
functions with respect to 𝜇. For all ℎ ∈ , we have ∫

X
|

|

ℎ(𝑡)|
|

2d𝜇(𝑡) ⩽ ‖ℎ‖2𝜏𝜇,
so that the linear embedding 𝜄𝜇 ∶  → 𝐿2(𝜇), with 𝜄𝜇[ℎ] the equivalence class of
all measurable functions 𝜇-almost everywhere equal to ℎ ∈ , is bounded (see for
instance [21]). Let {ℎ𝑖}𝑖∈𝕀 be any ONB of , with 𝕀 ⊆ ℕ; from (7) and (8), we have

∑

𝑖∈𝕀

‖

‖

𝜄𝜇[ℎ𝑖]‖‖
2
𝐿2(𝜇) =

∑

𝑖∈𝕀

⟨

ℎ𝑖
|

|

𝐿𝜇[ℎ𝑖]
⟩

 = 𝜏𝜇,

and 𝜄𝜇 is thus HS. From (7), we can in addition notice that
⟨

𝜄𝜇[ℎ] || 𝜄𝜇[𝑓 ]
⟩

𝐿2(𝜇) = Θℎ,𝜇(𝑓 ) =
⟨

𝐿𝜇[ℎ] || 𝑓
⟩

 , for all ℎ and 𝑓 ∈ ,
so that 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 for all 𝜇 ∈ +(𝐾); see Section 4.2 for a further discussion. ⊲

For 𝜇 ∈  (𝐾) ∪ℂ(𝐾), we refer to 𝑔𝜇 = ∫
X

|𝑘𝑡|
2d𝜇(𝑡) as the potential of 𝜇 with

respect to |𝐾|

2; for all 𝑔 ∈ , we have (see the proof of Theorem 3.1)
⟨𝑔𝜇 | 𝑔⟩ = ∫X

⟨

|𝑘𝑡|
2
|

|

𝑔
⟩

d𝜇(𝑡) = ∫X

𝑔(𝑡)d𝜇(𝑡).

The squared norm ‖𝑔𝜇‖
2
 is sometimes referred to as the energy of 𝜇 with respect to

the kernel |𝐾|

2; see for instance [4]. For 𝜇 and 𝜈 ∈  (𝐾) ∪ ℂ(𝐾), we have

⟨𝐿𝜈 |𝐿𝜇⟩HS() = ⟨𝑔𝜈 | 𝑔𝜇⟩ = ∬X

|

|

𝐾(𝑥, 𝑡)|
|

2d𝜇(𝑡)d𝜈(𝑡)

= ∫X

𝑔𝜇(𝑡)d𝜈(𝑡) = ∫X

𝑔𝜈(𝑡)d𝜇(𝑡),
(9)

9



INTEGRAL OPERATORS WITH PSD KERNELS

and the criterion 𝐷(𝜈) = ‖𝐿𝜇 − 𝐿𝜈‖
2
HS() thus corresponds to a MMD (see e.g.

[19, 12]) for the kernel embedding of measures in the RKHS . In particular, the
map 𝐷 is convex on any convex set C ⊆  (𝐾) ∪ ℂ(𝐾), and for all 𝜈 and 𝜂 ∈ C ,
the directional derivative of 𝐷 at 𝜈 in the direction 𝜂 − 𝜈 is

lim
𝜌→0+

1
𝜌

[

𝐷
(

𝜈 + 𝜌(𝜂 − 𝜈)
)

−𝐷(𝜈)
]

= 2Re
(

⟨𝐿𝜈 − 𝐿𝜇 |𝐿𝜂 − 𝐿𝜈⟩HS()

)

.

From a numerical standpoint and as the double integral in (9) solely involves the
kernel |𝐾|

2, we may also notice that related quantities can in practice be efficiently
evaluated or approximated; see [6, 10] for illustrations (see also Remark 4.3).

4 Subspaces defined by measures
The parallel between integral-operator approximation and the approximation of po-
tentials suggests that strategies inspired from the kernel-embedding-of-measures lit-
erature may be applied to design measures for the approximation of integral opera-
tors with PSD kernels.

When 𝐿𝜇 is self-adjoint, i.e. for 𝜇 ∈  (𝐾), the MMD setting described in Sec-
tion 3 may more generally be used as a surrogate for the characterisation of closed
linear subspaces of  for the approximation of 𝐿𝜇 through projection; this frame-
work in particular encompasses the approximation of PSD matrices via column sam-
pling, as discussed hereafter.

4.1 Self-adjoint operators and projections
Let 𝑆 be a closed linear subspace of . We denote by 𝐾𝑆 the reproducing kernel
of 𝑆 , and by 𝑃𝑆

the orthogonal projection from  onto 𝑆 ; we then in particular
have 𝑃𝑆

[𝑘𝑡](𝑥) = 𝐾𝑆(𝑥, 𝑡), for all 𝑥 and 𝑡 ∈ X .
For 𝜇 ∈  (𝐾), the operator 𝑃𝑆

𝐿𝜇𝑃𝑆
is the orthogonal projection of 𝐿𝜇 onto

the closed real-linear subspace 𝑆 of all operators in HS∗() with range included
in 𝑆 . We have 𝑃𝑆

𝐿𝜇𝑃𝑆
[ℎ](𝑥) = ∫

X
𝐾𝑆(𝑥, 𝑡)𝑃𝑆

[ℎ](𝑡)d𝜇(𝑡), for all ℎ ∈  and
all 𝑥 ∈ X , and the approximation error verifies

‖𝐿𝜇 − 𝑃𝑆
𝐿𝜇𝑃𝑆

‖

2
HS() = ‖𝐿𝜇‖

2
HS() − ‖𝑃𝑆

𝐿𝜇𝑃𝑆
‖

2
HS(), (10)

with ‖𝑃𝑆
𝐿𝜇𝑃𝑆

‖

2
HS() = ∬

X
|

|

𝐾𝑆(𝑥, 𝑡)||
2d𝜇(𝑥)d𝜇(𝑡).

Remark 4.1. For a given rank, the subspaces leading to minimal values of (10)
correspond to spectral truncations of 𝐿𝜇 (see e.g. [9, Theorem 4.4.7]). In practice,
a direct implementation of such optimal approximations is thus limited to operators
for which eigenvectors can be computed beforehand. ⊲

The operator 𝐿𝜇 begin self-adjoint, for a complex measure 𝜈 ∈ ℂ(𝐾), with real
part 𝜈𝕣 , we have 𝐷(𝜈𝕣 ) ⩽ 𝐷(𝜈); hence, for 𝜇 ∈  (𝐾), the search of a measure 𝜈 for

10
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the approximation of 𝐿𝜇 by 𝐿𝜈 may be restricted to  (𝐾). For 𝜈 ∈  (𝐾), we denote
by 𝜈 ⊆  the closure in  of the range of 𝐿𝜈; for instance, if 𝜈 =

∑𝑛
𝑖=1 𝜐𝑖𝛿𝑠𝑖 , with

𝜐𝑖 ∈ ℝ, 𝜐𝑖 ≠ 0, and 𝑠𝑖 ∈ X , then 𝜈 = spanℂ{𝑘𝑠1
,⋯ , 𝑘𝑠𝑛}. In addition to 𝐿𝜈, the

measure 𝜈 also defines the approximation 𝑃𝜈
𝐿𝜇𝑃𝜈

of 𝐿𝜇.
Lemma 4.1. For 𝜇 and 𝜈 ∈  (𝐾), we have

‖𝐿𝜇 − 𝐿𝜈‖
2
HS() = ‖𝐿𝜇 − 𝑃𝜈

𝐿𝜇𝑃𝜈
‖

2
HS() + ‖𝑃𝜈

𝐿𝜇𝑃𝜈
− 𝐿𝜈‖

2
HS(). (11)

Proof. Both 𝐿𝜈 and 𝑃𝜈
𝐿𝜇𝑃𝜈

have range in 𝜈. As 𝑃𝜈
𝐿𝜇𝑃𝜈

is the orthogonal
projection of 𝐿𝜇 onto 𝜈, the closed real-linear subspace of all operators in HS∗()
with range in 𝜈, we have ⟨𝐿𝜇 − 𝑃𝜈

𝐿𝜇𝑃𝜈
|𝑃𝜈

𝐿𝜇𝑃𝜈
− 𝐿𝜈⟩HS() = 0.

The decomposition (11) may be interpreted as follows.
• The term 𝐶pr(𝜈) = ‖𝐿𝜇−𝑃𝜈

𝐿𝜇𝑃𝜈
‖

‖

2
HS() measures the similarity between 𝐿𝜇

and the approximation 𝑃𝜈
𝐿𝜇𝑃𝜈

. This term corresponds to the component
of 𝐷(𝜈) which only depends on the range of 𝐿𝜈; it is by definition constant for
all measures 𝜂 ∈  (𝐾) such that 𝜂 = 𝜈. For instance, when 𝜈 is finitely
supported, 𝐶pr(𝜈) only depends on the support on 𝜈.

• As 𝐿𝜈 = 𝑃𝜈
𝐿𝜈𝑃𝜈

, the restrictions to 𝜈 of 𝑃𝜈
𝐿𝜇𝑃𝜈

and 𝐿𝜈 correspond
to the integral operators on 𝜈 defined by the kernel 𝐾𝜈 and the measures 𝜇
and 𝜈, respectively. Following Section 3 and noticing that  (𝐾) ⊆  (𝐾𝜈),
the term ‖𝑃𝜈

𝐿𝜇𝑃𝜈
− 𝐿𝜈‖

2
HS() is thus a MMD for the kernel embedding

of measures in the RKHS associated to |𝐾𝜈|
2; by contrast with 𝐶pr , this term

allows 𝐷 to discriminate among measures defining operators with same range.
The following Lemma 4.2 illustrates that the criterion 𝐶pr can be regarded as a

convex piecewise-constant map on the real convex cone +(𝐾).
Lemma 4.2. For 𝜇 ∈  (𝐾), the map 𝐶pr is convex on the real convex cone +(𝐾),
and for all 𝜈 and 𝜂 ∈ +(𝐾), we have

lim
𝜌→0+

1
𝜌
[

𝐶pr

(

𝜈 + 𝜌(𝜂 − 𝜈)
)

− 𝐶pr(𝜈)
]

∈ {−∞, 0}. (12)

Denoting by 𝜂∖𝜈 the orthogonal of 𝜈 in 𝜈 +𝜂


, a sufficient condition for the
directional derivative (12) to be null is the orthogonality between 𝜂∖𝜈 and 𝜇;
when 𝜇 is nonnegative, this sufficient condition is also necessary.

Proof. Let 𝑆 and 𝑅 be two closed linear subspaces of , with 𝑆 ⊆ 𝑅; we
denote by 𝑒 the orthogonal of 𝑆 in 𝑅. Noticing that 𝑃𝑅

= 𝑃𝑆
+ 𝑃𝑒

and that
𝑃𝑆

𝑃𝑒
= 𝑃𝑒

𝑃𝑆
= 0, we have

‖𝑃𝑅
𝐿𝜇𝑃𝑅

‖

2
HS() = ‖𝑃𝑆

𝐿𝜇𝑃𝑆
‖

2
HS() + ‖𝑃𝑒

𝐿𝜇𝑃𝑒
‖

2
HS() + 2‖𝑃𝑆

𝐿𝜇𝑃𝑒
‖

2
HS()

11
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so that ‖𝑃𝑆
𝐿𝜇𝑃𝑆

‖

2
HS() ⩽ ‖𝑃𝑅

𝐿𝜇𝑃𝑅
‖

2
HS(). If 𝑒 is orthogonal to 𝜇, we have

𝐿𝜇𝑃𝑒
= 𝑃𝑒

𝐿𝜇 = 0, and the previous inequality is an equality; in particular, if 𝐿𝜇
is PSD, then 𝑃𝑒

𝐿𝜇𝑃𝑒
= 0 if and only if 𝐿𝜇𝑃𝑒

= 𝑃𝑒
𝐿𝜇 = 0.

For 𝜈 and 𝜂 ∈ +(𝐾), and for 𝜌 ∈ (0, 1), we set 𝜉 = 𝜈 + 𝜌(𝜂 − 𝜈) ∈ +(𝐾).
The three operators 𝐿𝜈, 𝐿𝜂 and 𝐿𝜉 being PSD, independently of 𝜌 ∈ (0, 1), we
have 𝜉 = 𝜈 +𝜂

 , so that the map 𝜌 ↦ 𝐶pr

(

𝜈 + 𝜌(𝜂 − 𝜈)
) is constant on the

open interval (0, 1). From (10) and as 𝜈 ⊆ 𝜉 , we have 𝐶pr(𝜉) ⩽ 𝐶pr(𝜈), with
equality when 𝜂∖𝜈 is orthogonal to 𝜇. In the same way, we have 𝐶pr(𝜉) ⩽ 𝐶pr(𝜂),concluding the proof.

Lemma 4.1 illustrates the extent to which the criterion 𝐷 may be used as a sur-
rogate for the characterisation of subspaces 𝜈 ⊆ , defined by measures 𝜈, for
the approximation of 𝐿𝜇 by 𝑃𝜈

𝐿𝜇𝑃𝜈
. In view of Lemma 4.2 and in contrast to

the MMD criterion 𝐷, we can notice that the directional derivatives of 𝐶pr on any
convex set of measures C ⊆  (𝐾) are noninformative, in the sense that they do
not provide any information on the local steepness of the landscape of 𝐶pr . Also,
from a numerical standpoint and in view of (10), for all 𝜈 ∈  (𝐾), the computa-
tions underlying the evaluation of 𝐶pr(𝜈) involve the reproducing kernel 𝐾𝜈 of 𝜈(or equivalently, the orthogonal projection 𝑃𝜈

); in practice, this kernel is a priori
unknown and needs to be computed from 𝐾 and 𝜈; see Section 4.3 for an illustration.
In comparison, the criterion 𝐷 solely involves the kernel 𝐾 .
Remark 4.2. Let 𝑆 be a closed linear subspace of  and let 𝜇 ∈  (𝐾); we set
𝑔𝑆𝜇 = Γ[𝑃𝑆

𝐿𝜇𝑃𝑆
] ∈ . From (7), for all 𝑥 ∈ X , we have

𝑔𝑆𝜇 (𝑥) =
⟨

𝑃𝑆
[𝑘𝑥] ||𝐿𝜇𝑃𝑆

[𝑘𝑥]
⟩

 = ∫X

|

|

𝐾𝑆(𝑥, 𝑡)|
2d𝜇(𝑡),

and ‖𝑃𝑆
𝐿𝜇𝑃𝑆

‖

2
HS() = ⟨𝑔𝜇 | 𝑔

𝑆
𝜇 ⟩ ⩾ ‖𝑔𝑆𝜇 ‖

2
. The operator 𝑃𝑆

𝐿𝜇𝑃𝑆
does gener-

ally not belong to (Γ); this occurs only in specific situations, e.g. for 𝜇 ⊆ 𝑆 , or
for 𝑆 = 𝛿𝑥

, with 𝑥 ∈ X . ⊲

4.2 Nonnegative measures and approximate embeddings

Following Remark 3.2, for 𝜇 ∈ +(𝐾), the embedding 𝜄𝜇 ∶  → 𝐿2(𝜇) is HS. For
all 𝑓 ∈ 𝐿2(𝜇) and all 𝑥 ∈ X , we have

⟨

𝑘𝑥
|

|

𝜄∗𝜇[𝑓 ]
⟩

 =
⟨

𝜄𝜇[𝑘𝑥] || 𝑓
⟩

𝐿2(𝜇) = ∫X

𝐾(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡);

so, in addition to 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), the operators
𝜄∗𝜇 ∶ 𝐿2(𝜇) → , 𝜄𝜇𝜄

∗
𝜇 ∶ 𝐿2(𝜇) → 𝐿2(𝜇), and 𝜄𝜇𝜄

∗
𝜇𝜄𝜇 ∶  → 𝐿2(𝜇), (13)

all correspond to different interpretations of an integral operator defined by 𝐾 and
𝜇 ∈ +(𝐾). These four interpretations are natural in the sense that they are inherent

12
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to the considered kernel and measure; see for instance [3, 18, 15, 21, 16]. In each
case, the operator is HS.

For a closed linear subspace 𝑆 ⊆ , the embedding 𝜄𝜇 can be approximated
by 𝜄𝜇𝑃𝑆

; for all 𝑓 ∈ 𝐿2(𝜇) and all 𝑥 ∈ X , we may notice that
⟨

𝑘𝑥
|

|

𝑃𝑆
𝜄∗𝜇[𝑓 ]

⟩

 =
⟨

𝜄𝜇𝑃𝑆
[𝑘𝑥] || 𝑓

⟩

𝐿2(𝜇) = ∫X

𝐾𝑆(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡).

For 𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), we obtain the approximation discussed in Section 4.1; and
in the three cases considered in (13), we obtain the approximations

𝑃𝑆
𝜄∗𝜇 ∈ HS(𝜇,), 𝜄𝜇𝑃𝑆

𝜄∗𝜇 ∈ HS(𝜇), and 𝜄𝜇𝑃𝑆
𝜄∗𝜇𝜄𝜇𝑃𝑆

∈ HS(, 𝜇),

with HS(𝜇,), HS(𝜇) and HS(, 𝜇) the Hilbert spaces of all HS operators from
𝐿2(𝜇) to , on 𝐿2(𝜇), and from  to 𝐿2(𝜇), respectively. We for instance have

‖𝜄∗𝜇 − 𝑃𝑆
𝜄∗𝜇‖

2
HS(𝜇,) = ∫X

𝐾(𝑡, 𝑡) −𝐾𝑆(𝑡, 𝑡)d𝜇(𝑡), (14)

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝑆

𝜄∗𝜇‖
2
HS(𝜇) = ∬X

|

|

𝐾(𝑥, 𝑡) −𝐾𝑆(𝑥, 𝑡)||
2d𝜇(𝑥)d𝜇(𝑡), and (15)

⟨𝜄𝜇𝜄
∗
𝜇𝜄𝜇 | 𝜄𝜇𝑃𝑆

𝜄∗𝜇𝜄𝜇𝑃𝑆
⟩HS(,𝜇) = ∭X

𝐾(𝑡, 𝑥)𝐾𝑆(𝑥, 𝑠)𝐾𝑆(𝑠, 𝑡)d𝜇(𝑡)d𝜇(𝑠)d𝜇(𝑥).

The following inequality holds between the approximations in HS() and HS(𝜇).
Lemma 4.3. We consider a measure 𝜇 ∈ +(𝐾) and a closed linear subspace 𝑆
of ; we have ‖𝜄𝜇𝜄

∗
𝜇 − 𝜄𝜇𝑃𝑆

𝜄∗𝜇‖
2
HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝜈

𝜄∗𝜇𝜄𝜇𝑃𝜈
‖

2
HS().

Proof. We denote by 0𝑆 the orthogonal of 𝑆 in , and let 𝐾0𝑆 = 𝐾 −𝐾𝑆 be the
reproducing kernel of 0𝑆 . Using an ONB of 0𝑆 and Fubini’s theorem, we have

‖𝑃𝑆
𝜄∗𝜇𝜄𝜇𝑃0𝑆

‖

2
HS() = ∬X

𝐾0𝑆(𝑥, 𝑡)𝐾𝑆(𝑥, 𝑡)d𝜇(𝑥)d𝜇(𝑡) ⩾ 0,

and the result follows from (10) and (15).
As observed in Lemma 4.2 for the criterion 𝐶pr , the three maps

𝜈 ↦ ‖𝜄∗𝜇 − 𝑃𝜈
𝜄∗𝜇‖

2
HS(𝜇,), 𝜈 ↦ ‖𝜄𝜇𝜄

∗
𝜇 − 𝜄𝜇𝑃𝜈

𝜄∗𝜇‖
2
HS(𝜇) and

𝜈 ↦ ‖𝜄𝜇𝜄
∗
𝜇𝜄𝜇 − 𝜄𝜇𝑃𝜈

𝜄∗𝜇𝜄𝜇𝑃𝜈
‖

2
HS(,𝜇),

(16)

are convex and piecewise-constant on +(𝐾). Through the closed linear subspace
𝜈 ⊆ , a measure 𝜈 ∈  (𝐾) hence defines an approximation in the four HS
spaces HS(), HS(𝜇,), HS(𝜇) and HS(, 𝜇). As these four approximations are
all induced by the approximate embedding 𝜄𝜇𝑃𝜈

, following Section 4.1, the MMD
criterion 𝐷 may more generally be used as a surrogate for the characterisation of
low-rank approximations of any of the four operators induced by the embedding 𝜄𝜇.

13
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4.3 Column sampling for PSD-matrix approximation
Let 𝐊 be a 𝑁 × 𝑁 PSD matrix, with 𝑁 ∈ ℕ; the Nyström approximation∗ of 𝐊
defined by a subset 𝐼 ⊆ ⟦1, 𝑁⟧, of size 𝑛 ⩽ 𝑁 , is the 𝑁 ×𝑁 PSD matrix

𝐊̂(𝐼) = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )
†𝐊𝐼,∙, (17)

where 𝐊∙,𝐼 is the 𝑁 × 𝑛 matrix defined by the columns of 𝐊 with index in 𝐼 , and
where (𝐊𝐼,𝐼 )

† is the pseudoinverse of the principal submatrix of 𝐊 defined by 𝐼 (and
𝐊𝐼,∙ consists of rows of 𝐊; it is the conjugate-transpose of 𝐊∙,𝐼 ); see e.g. [5, 11, 7].

For 𝑖 and 𝑗 ∈ ⟦1, 𝑁⟧, the 𝑖, 𝑗 entry of 𝐊 may be regarded as the value 𝐾(𝑖, 𝑗)
of a PSD kernel 𝐾 defined on the discrete set X = ⟦1, 𝑁⟧. The 𝑗-th column of 𝐊
then corresponds to the function 𝑘𝑗 ∈ , with 𝑗 ∈ X , and the subset 𝐼 defines the
linear subspace 𝐼 = spanℂ{𝑘𝑗|𝑗 ∈ 𝐼} ⊆ ; in particular, the 𝑖, 𝑗 entry of 𝐊̂(𝐼) is
𝐾𝐼 (𝑖, 𝑗), with 𝐾𝐼 the reproducing kernel of 𝐼 .

Introducing 𝜇 =
∑𝑁

𝑖=1 𝛿𝑖, the Hilbert space 𝐿2(𝜇) can be identified with the
Euclidean space ℂ𝑁 ; following Section 4.2, we can then notice that

• the trace norm ‖𝐊 − 𝐊̂(𝐼)‖tr corresponds to (14), and
• the squared Frobenius norm ‖𝐊 − 𝐊̂(𝐼)‖2F corresponds to (15).

The column-sampling problem for the Nyström approximation of a PSD matrix 𝐊
is thus a special instance of the framework discussed in the previous Section 4.2. In
particular, the support of an approximate measure 𝜈 on X = ⟦1, 𝑁⟧ characterises a
subset of columns of 𝐊, and the MMD setting of Section 3 may be used as surrogate
for the design such measures; see [6, 10] for some illustrations.
Remark 4.3. For discrete measures 𝜇 and 𝜈 supported by 𝑁 and 𝑛 points, respec-
tively, and from (9), the computational complexity of the evaluation of 𝐷(𝜈) up to
the constant ‖𝐿𝜇‖

2
HS() is (𝑛2 + 𝑛𝑁). In comparison, for 𝑆 = 𝜈 and assum-

ing that the kernel 𝐾𝜈 is evaluated from 𝐾 and 𝜈 following (17), the computational
complexity is (𝑛3 + 𝑛2𝑁) for (14), and (𝑛3 + 𝑛2𝑁2) for 𝐶pr(𝜈) and (15). ⊲

5 Conclusion
We described the overall framework surrounding the isometric representation of
trace-class integral operators with PSD kernel 𝐾 as potentials in the RKHS  as-
sociated with the squared-modulus kernel |𝐾|

2, and illustrated the parallel between
the design of approximate measures for the approximation of such operators and the
characterisation of low-MMD configurations for the kernel embedding of measures
in . We also discussed the extent to which the considered MMD setting can be used

∗In the machine-learning literature, Nyström approximation refers to the low-rank approximation
of PSD matrices through column sampling; although related, this terminalogy should not be confused
with the quadrature method for the numerical approximation of integral equations.
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as a surrogate for the characterisation of projection-based approximations induced
by subspaces defined by measures.

In contrast to the projection-based criteria 𝐶pr and (16), the criterion 𝐷 is convex
and admits informative directional derivatives on any admissible convex set of mea-
sures; to this extent, the MMD criterion 𝐷 may hence be regarded as a differentiable
relaxation of the piecewise-constant criteria discussed in Section 4. Further, and as
opposed to the criteria 𝐶pr and (16), the numerical exploration of the MMD land-
scape does not require the characterisation of orthogonal projections onto subspaces
of the underlying RKHS  (i.e. the characterisation of the kernels of subspaces of
), so that considering the MMD criterion 𝐷 is of noticeable interest in terms of
computational complexity (see for instance Remark 4.3).
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