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La réalisation de traitements acoustiques dans une cavité en basses fréquences reste toujours un challenge. Les
solutions classiques utilisent des matériaux poreux ou des résonateurs accordés. La plupart de ces systèmes
dépendent de paramètres tels que la fréquence, l’impédance ou des paramètres liés aux matériaux absorbants.
L’étude des modes acoustiques de la cavité conduit alors à la résolution de problèmes aux valeurs propres
paramétriques. Dans le cas de systèmes non-conservatifs, dits non-hermitiens, certains jeux de paramètres peuvent
conduire à la présence de points exceptionnels (EP). Ces derniers correspondent à des dégénérescences spectrales
pour lesquelles des modes vont fusionner, que ce soient leurs pulsations et leurs déformées modales. Les modes
propres ne permettent alors plus à eux seuls de décrire le comportement du système. L’objectif de cette étude est
d’illustrer le rapport entre les points exceptionnel et le temps de décroissance optimal pour des modes ciblés d’une
cavité. Ces effets sont illustrés numériquement et analytiquement dans le cas unidimensionnel. À l’EP, on constate
une très forte atténuation quand l’excitation correspond exactement aux modes fusionnés. En revanche, l’excitation
du vecteur propre généralisé peut limiter cet effet.

1 Introduction
The design of acoustic treatments for sound attenuation

in acoustics waveguides such as ventilation systems,
exhaust devices, and aircraft engines is still a challenge
for transportation and building industries. Recent studies
showed how to maximize the axial wavenumber attenuation
with locally reacting liners [17, 1] porous [13] and
metaporous liners [20] by tuning the parameters of the
system on an exceptional point (EP).

An EP is a special property of non-Hermitian systems
where the operator/matrix becomes defective, meaning that
two (possibly more) eigenvalues coalesce as well as their
associated eigenvectors. In this context, EP correspond to
double roots in the dispersion equation.

EP attracted a lot of attention in the last decade in
various domain of physics, especially quantum mechanics
and photonics [8] (see references therein), but the concept
of mode merging design is nothing new. Actually, one one
the most used method for the design of acoustics liner,
the Cremer’s impedance, developed by Cremer [3] and
then improved by Tester [17, 18], and which refers to the
optimal impedance that will maximize the attenuation of an
individual mode in a uniform waveguide corresponds to an
EP. However, where the Cremer’s impedance only refers to
locally reacting boundary condition, the EP based design
generalizes this concept to non-locally reacting materials
[20, 13].

At stated previously, such EP occurs generically in non-
Hermitian system, that is, a system with gain or loss, where
the modes are not orthogonal anymore. This properties is
increased near an EP. Therefore the modes themselves are
not sufficient enough to give a complete description of the
system, but their interactions have to be taken into account
too [19, 1, 6].

Concerning finite size systems, the eigenvalues represent
the eigenfrequencies and their imaginary part is the
exponential decay rate. Some preliminary studies were
performed on two degrees-of-freedom (2DOF) coupled
oscillators [16, 14, 4] show that EP yields to the best time
decay for both oscillators. It appears that EP defines a
limit between strong and weak coupling [14], explaining
its importance in the energy transfer (beat) between the
host and the acoustic treatment. The concept of defective

eigenvalue also appears in some tuning strategies for tuned
mass damper (TMD) [7] which leads to a different damping
ratio from the well known defined by Den Hartog. However
this strategy doesn’t provide the best decay rate [2].

The present study aims to generalize this concept to
a continuous system and to adapt some generic methods
to locate EP [10, 5] to find real parameters. In addition,
the influence of the incomplete modal basis and the
generalized eigenvector, especially in transient regime, is
also investigated.

First, the section 2 defines the problem and presents the
dispersion equation in order to find the EP. The section 3
introduces the time domain finite element model to solve the
wave propagation. Finally, the section 4 show the results on
the reverberation time.

2 Problem statement

2.1 Physical model
We consider a one-dimensional cavity of length L and

section S filled with air of density ρ0 and sound speed
c0. This cavity is coupled with a single degree-of-freedom
(SDOF) resonator modeled by a damped spring-mass system
of mass mr, stiffness kr and damping cr.

A B mr

kr

cr

x

x = 0 x = L

Figure 1 – Sketch of the one-dimensional acoustic cavity
coupled with a damped spring-mass system.

The wave propagation inside the cavity is governed by
the wave equation

∇2Φ −
1
c2

0

∂2Φ

∂t2 = 0, (1)

where Φ is the velocity potential, from which we can recover
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both the particle velocity

v = ∇Φ, (2)

and the sound pressure

p = −ρ0
∂Φ

∂t
. (3)

The equation of motion of the SDOF resonator reads

mrü + cru̇ + kur = F, (4)

where u is displacement from equilibrium and F the external
force acting on the resonator.

We consider here only time harmonic perturbation (e−iωt

convention). With the rigid wall condition at x = 0, the
velocity potential in the cavity is given by

Φ(x, t) = ϕ cos(kx)e−iωt, (5)

where ϕ is the amplitude and k and ω are the wavenumber
and angular frequency respectively. Both quantities are
related by ω = kc0. The harmonic motion of the resonator is

u(t) = u0e−iωt. (6)

The coupling conditions v(x = L) · n = u̇ and F = pS
yield the system of equations[

k sin(kL) −iω
−iρ0Sω cos(kL) −mrω

2 − icrω + kr

][
ϕ
u0

]
=

[
0
0

]
, (7)

which is a nonlinear eigenvalue problem. The angular
eigenfrequencies of the system are the roots of the
determinant, that is, if we write everything as a function of ω

f (ω) =
ω

c0

(
−mrω

2 − icrω + kr

)
sin

(
ωL
c0

)
+

ρ0Sω2 cos
(
ωL
c0

)
. (8)

This equation can be solved with contour integral solver like
[12, 9] based on the argument principle.

Since at the EP, an angular eigenfrequency ω0 must be
a double root of f , it means that ω0 is a root of both f and
∂ω f . To enforce this condition we can either use one complex
valued or two real valued parameters.

2.2 Numerical continuation
Finding EP and imposing real parameter is not trivial.

We use here a two steps method. First, f (ω, cr; kr) = 0 and
∂ω f (ω, cr; kr) = 0 can be combined into one scalar equation
involving the unknown parameter cr assuming kr is known.
As before, this equation can be solved with contour integral
solver.

For an arbitrary value of kr, this yields to complex value
of cr. Since there is a continuum of EP if we can add a
parameter (here kr) and used a continuation method based on
ODE solving to find the value of kEP that leads to real valued
cEP. To do so, it is convenient to introduce the EP system

F(ω, cr; kr) =
[

f (ω, cr; kr)
∂ω f (ω, cr; kr)

]
. (9)

We start from the the initial solution obtained at the first step
and track the solution path until cEP is real.

3 Time domain numerical modeling

3.1 Numerical solution of the wave equation
The wave equation is a second-order linear partial

differential equation (PDE) which depends on x and t. In
order to solve it numerically we discretize the solutions
domains in both space and time using the finite element
method (FEM) and Newmark-beta method respectively.

The weak formulation associated with the wave equation
Eq. (1) gives∫ L

0

1
c2

0

Ψ(x)
∂2Φ(x, t)
∂t2 dx +

∫ L

0

∂Ψ

∂x
(x)
∂Φ(x, t)
∂x

dx

= Ψ(L)
∂Φ(L, t)
∂x

, (10)

where Ψ stands for the test function. Once the weak
formulation is discretized with the Lagrange finite element,
we get the matrix form

MΦ̈ +KΦ =
[

0
∂Φn(t)
∂x

]
. (11)

Here, the vector Φ contains the instantaneous finite element
nodal values of the velocity potential

Φ =
[
Φ1(t) Φ2(t) · · · Φn(t)

]T
, (12)

and M and K are the standard mass and stiffness matrices
respectively. Combining equations (4) and (11) with the
coupling conditions we get the augmented second-order (in
time) system of linear equations

MΦ̈ +KΦ =
0u̇

,
mrü + cru̇ + kru = −ρ0S Φ̇n,

(13)

which can be written in matrix form[
M 0
0 mr

][
Φ̈

ü

]
+

[
0 C1

C2 cr

][
Φ̇

u̇

]
+

[
K 0
0 kr

][
Φ

u

]
= 0, (14)

with coupling coefficient matrix

C1 =

[
0
−1

]
(15)

and
C2 =

[
0 ρ0S

]
. (16)

After applying the initial condition, this second order
differential equation is solved numerically using the
Newmark-beta method [11] applied with average constant
acceleration method (γ = 1/2 and β = 1/4) which is
unconditionally stable.

3.2 Sound energy
We will use the energy to help quantifying the attenuation

or our system. Thus we need to compute it in both the cavity
and the resonator.
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The mechanical energy Er of the resonator is given by

Er =
1
2

kru2 +
1
2

mru̇2. (17)

The sound energy density w in the cavity, obtained from
the continuity equation, Euler equation and equation of state,
is given by

w =
1
2

p2

ρ0c2
0

+
1
2
ρ0v2, (18)

which once integrated over the cavity volume gives the sound
energy W

W =
∫

V

1
2

p2

ρ0c2
0

dV +
∫

V

1
2
ρ0v2 dV. (19)

Once again working with the velocity potential Φ allows us
to simplify the calculus and we get

W =
1
2
ρ0S

∫ L

0

1
c2

0

∂Φ

∂t
∂Φ

∂t
dx +

1
2
ρ0S

∫ L

0

∂Φ

∂x
∂Φ

∂x
dx, (20)

which can be expressed with the mass and stiffness matrices

W =
1
2
ρ0S Φ̇TMΦ̇ +

1
2
ρ0SΦTKΦ. (21)

It is noteworthy that Φ̇ is also computed at each time step by
the integration scheme. We note E = Er+W, the total energy.

The numerical model has been validated by comparing
the variation of the total energy dE

dt and the power loss −cru̇2.
These 2 are identical up to the discretization error.

4 Results

4.1 Modal attenuation
We fix L = S = ρ0 = 1 and mr = 1 so the mass of air

in the cavity is equal to the mass of the resonator. By fixing
the speed of sound c0 = 1, we found an EP for the first two
modes (sorted by Reω) for kr = 10.313 and cr = 3.0620 with
an angular frequency of ω = 3.0797 − i0.6570. In order to
understand how the EP is linked to an optimal damping, we
plot in Figure 2 the complex angular frequencies of the two
modes concerned by this EP as a function of the damping cr
with kr = kEP.

Here the imaginary part of ω refers to the exponential
decay rate of the mode, that is λ = − Imω. We can
distinguish two regimes :

• when cr ≪ cEP both modes share close decay constant,
which is increased by increasing the damping ;
• when cr ≫ cEP increasing the damping increase the

decay constant of one mode but decrease the one of
the other mode.

The least attenuated mode will dominate the transient state,
thus choosing cr ≃ cEP is an efficient design method as it
leads to a great attenuation for the least attenuated mode.

Figure 3 presents the decay rate of the least attenuated
mode for different values of kr and cr. As expected, the set
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Figure 2 – Evolution of the two first angular frequencies of
the coupled system as a function of cr with kr = kEP.

of parameters that ensure the least attenuated mode to be the
more attenuated is close to the EP. This modal decay rate
is supposed to be valid at long time. The next section will
investigate the transient behavior of the system.
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Figure 3 – Least attenuated decay rate of the two first angular
frequencies of the coupled system as a function of cr and kr.

4.2 Energy
As stated previously, because of the loss of orthogonality

the modes themselves are not sufficient enough to give a
complete description of the system, but their interactions
have to be taken into account too. In order to illustrate this,
we will study the total energy of the system during the
transient state for different initial conditions. Because our
EP concerns only the first two modes, their eigenvectors will
be chosen as initial conditions in the vicinity of the EP,

vn(x) =

Φ(x) = ϕn cos
(
ωn x
c0

)
,

u = −i ϕn
c0

sin
(
ωnL
c0

)
,

(22)

where the amplitude ϕn is chosen such that each mode has a
initial energy of 1.

First, the initial conditions are chosen as the sum of the
eigenvectors to excite only the true eigenvector. In Figure 4a
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cr/cEP = 0.8, ω1 = 2.7306 − i0.4626 and ω2 = 3.5219 −
i0.5800. In Figure 4c cr/cEP = 1 and ω0 = 3.0797− 0.6570i.
As we are at the EP, there is only one mode, therefore the
energy decreases as e−2λEPt (red dotted line) as predicted by
Eq. (20). In Figure 4e cr/cEP = 1.2, ω1 = 3.1241 − i0.3511
and ω2 = 2.9118 − i1.2392. The second mode is way more
attenuated than the first one and vanished quickly, hence the
first mode dominated the system response at long term.
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(a) cr/cEP = 0.8
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(d) cr/cEP = 1
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(e) cr/cEP = 1.2
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Figure 4 – (color online) Evolution of the SDOF mechanical
energy (blue solid line), cavity energy (orange dashed line)
and total energy (green dash-dotted line) with respect to the
distance to cEP. In (c) the red dotted line corresponds to
e−2λEPt The energy is normalized and plot in log scale. In (a,
c, e) the sum of the first two mode shapes are imposed as
initial condition. In (b, d, f) the difference is imposed. In all
cases mr = 1, kr = kEP.

It is interesting to compare those results to the notion of
weak and strong coupling in the case of coupled oscillators.
The first refers to the exchange of energy between the two
oscillators (beat) happening when the coupling dominates
the loss, while the latter corresponds to the case where both
oscillators saw their energy decrease through time. It was
discussed that the transition between those two states was
explained by the presence of an EP [14, 4].

Then, the initial condition are chosen as the difference of
the eigenvectors to excite also the generalized eigenvector.
In this case the energy exhibits a significantly different

behavior especially at early time. This is due to an additional
time growing contribution that may be explained by the the
beat of two modes with almost the same frequency. Indeed,
at the EP, not only the two eigenvectors will coalesce, but
a generalized eigenvector will be generated. Unlike an
eigenvector, a generalized eigenvector alone is not a solution
of Eq. (7). If we note v0(x) the eigenvector from Eq. (22) and
v1(x) its associated generalized eigenvector then v0(x)e−iω0t

and (v1(x) − itv0(x))e−iω0t are solutions of the problem when
it is tuned on the EP. The latter, which involves the te−iω0t,
may explained the results obtained in Figure 4 as its related
to the difference of the two merging modes in the vicinity of
the EP.

5 Conclusion
In this study, it has been shown that tuning the system on

an EP is an efficient design method for low frequency noise
control. This approach is very general and ensure a great
decay rate for the targeted modes. Especially, due to the
high loss of orthogonality of these modes in the EP vicinity,
the best reverberation time is obtained when the excitation
is close to the eigenvector. We also demonstrate that is was
possible to obtain EP with real parameters, allowing us
to perform study in the transient regime and making this
solution manufacturable. Further investigations need to be
done to inspect the impact of the generalized eigenvector
on the system as well as to compare this method with other
design strategies like those based on perfect absorption [15].
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