
HAL Id: hal-03847907
https://hal.science/hal-03847907v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Simple computational strategies for more effective
physics-informed neural networks modeling of turbulent

natural convection
Didier Lucor, Atul Agrawal, Anne Sergent

To cite this version:
Didier Lucor, Atul Agrawal, Anne Sergent. Simple computational strategies for more effective physics-
informed neural networks modeling of turbulent natural convection. Journal of Computational Physics,
2022, 456, pp.111022. �10.1016/j.jcp.2022.111022�. �hal-03847907�

https://hal.science/hal-03847907v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Simple computational strategies for more effective
physics-informed neural networks modeling of

turbulent natural convection

Didier Lucora,∗, Atul Agrawalb,a, Anne Sergenta,c

aUniversité Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique,
F91405 Orsay, France

bDepartment of Mechanical Engineering, Technical University of Munich, Boltzmannstraße
15, 85748 Garching b. München, Germany

cSorbonne Université, Faculté des Sciences et Ingénierie, UFR Ingénierie, F-75005 Paris,
France

Abstract

The high expressivity and agility of physics-informed neural networks (PINNs)

make them promising candidates for full fluid flow PDE modeling. An important

questions is whether this new paradigm, exempt from the traditional notion of

discretization of the underlying operators very much connected to the flow scales

resolution, is capable of sustaining high levels of turbulence. Another concern

is whether it can be used as numerical substitutes to full DNS data retrieval

and storage; DNS remaining so far the standard tool for validation and inter-

comparison with experimental results.

We explore the use of PINNs surrogate modeling for turbulent natural con-

vection flows, mainly relying on DNS temperature data from the fluid bulk

and velocity data at some fluid boundaries. This technique depends on the

minimization of a composite loss-function relying on labels and PDE residuals.

We demonstrate the large computational requirements under which PINNs are

capable of accurately recovering the flow hidden quantities. We then propose

new techniques to mitigate the need for large training datasets. First, we pro-

∗Corresponding author
Email addresses: didier.lucor@lisn.upsaclay.fr (Didier Lucor),

atul.agrawal@tum.de (Atul Agrawal), anne.sergent@sorbonne-universite.fr (Anne
Sergent)

Preprint submitted to Journal of Computational Physics January 27, 2022

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0021999122000845
Manuscript_2e814df20618e5a92c1b1cf3ae6faf59

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0021999122000845
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0021999122000845

pose a padding technique to better distribute some of the scattered coordinates

at which PDE residuals are minimized, in particular in zones where no labels

are available. We show how it comes to play as a regularization close to the

training boundaries and results in a noticeable global accuracy improvement

at iso-budget. We then propose a relaxation of the incompressibility condi-

tion involved in the loss function contribution related to the PDE residuals.

This development drastically benefits the optimization search and results in a

much improved convergence. The results obtained for Rayleigh-Bénard flow at

Ra = 2 · 109 are particularly impressive. With training data amounting for

only 0.32% of the stored DNS dataset, the predictive accuracy of the surrogate

over the entire half a billion DNS coordinates yields errors for all flow variables

ranging between [0.3%− 4%] in the relative L2 norm.

Keywords: deep learning, machine learning, PINNs, DNS, turbulence,

convection

1. Introduction

Deep learning (DL) is investigated among data-driven methods as a surro-

gate for physics-driven computational fluid dynamics (CFD) methods solving

expensive nonlinear coupled PDEs, such as the ones describing turbulent numer-

ical simulations or experiments. It seems to be somehow capable of producing5

realistic instantaneous flow fields with reasonable physically accurate spatio-

temporal coherence, without explicitly solving the actual partial differential

equations (PDEs) governing the system [1, 2]. DL is also promising because of

its proficiency in extracting low-dimensional information from large amount of

high-dimensional turbulent data. This new paradigm is interesting for appli-10

cations involving flow optimization and control, uncertainty quantification [3],

data assimilation [4], gappy data reconstruction or multi-scale flow analysis, for

which the prediction may be queried in real-time or many times. In practice, DL

models are solved with streams of data as “black boxes” [5]. In their standard

form, they lack knowledge of the underlying physics and when they achieve low15

2

prediction errors their efficiency remains hard to interpret. In fact, they do not

necessarily satisfy the physics of the systems they model. It is therefore crucial

to inject some known physics and principles into their framework, not only to

get more physically meaningful results but also in order to better guide the

learning process [6]. Besides, the physical invariants may help in recovering hid-20

den system quantities for which no data were available, which is very common

in experiments. While machine learning methods make sense as data-driven clo-

sure models for Reynolds-Averaged Navier Stokes (RANS) [7] and Large Eddy

Simulations (LES) techniques [8], they may also be used for full PDE modeling

[9]. An interrogation remains in terms of their potential as actual proxy for25

costly PDE solution methods at all scales, such as direct numerical simulations

(DNS). In this paper, we will test the efficiency of physics-aware DL for meta-

modeling turbulent natural convection.

Turbulent natural convection is a spontaneous physical process present in many

natural systems (oceans, atmospheres or mantles) as well as in engineering ap-30

plications, such as passive cooling of braking systems, nuclear power plants or

electronic devices or natural ventilation of buildings. A canonical system of

such turbulent heat transport mechanisms is the Rayleigh-Bénard (RB) cell,

where the temperature and velocity fields interact through the buoyancy force

[10]. Efficiently modelling of this phenomenon is the first step towards heat35

transfer control for more sustainable energy systems, but it requires to track

the heat carriers, namely the small-scale plumes. This remains a challenge due

to the double kinetic and thermal nature of plumes, and the nonlinear interac-

tions between various spatial and time scales from the large scale circulation to

the small vortices and plumes [11]. The continued increase of supercomputing40

power in recent years has enabled the DNS of highly turbulent flows, resolving

the entire array of scales at very high Rayleigh number. But it involves such

a computational effort in terms of degree of parallelism, CPU resources and

storage capacity that it will eventually entail a restriction on the spatial DNS

resolution/storage and will therefore hamper its analysis. In practice, it is in-45

deed very frustrating to not be able to store (part or most of) the computed

3

data.

Few recent studies have been pioneering the use of DL in the framework of tur-

bulent heat transfer with various aims. For instance, Kim et al. [12] used DL,

in the form of a convolutional neural network (CNN), to predict the turbulent50

heat transfer – reconstructing the wall-normal heat flux at the wall – on the

basis of other wall information obtained by DNS of channel flow with a passive

temperature field. Fonda et al. [13] have tracked turbulent superstructures in

RB convection in horizontally extended systems at Ra = 105,6,7 with U-shaped

network (encoder-decoder CNN) allowing to reduce the dimensionality of the55

structures to slowly-evolving temporal 2D planar network of ridges; the idea be-

ing to propose an automated tool exploiting a large DNS simulation in order to

explore heat transfer properties more easily. Pandey et al. were more interested

by turbulent statistical prediction of 2D large scale structures. They relied on

reservoir computing modeling, which may be seen as an hybridization between60

a proper orthogonal decomposition (POD) of DNS data and a recurrent neural

network, to tackle RB cavity flow at Ra = 107 [14]. At the foundation of all of

these works is the use of large DNS database from which partial information, in

the form of wall data or time-windowed averaging, or more global information,

in the form of POD, are extracted. We propose to leverage deep neural net-65

works to substitute for the DNS three-dimensional solver by a much more agile

data-driven and physics-aware surrogate. Most importantly, this surrogate will

be trained with partial DNS data, but will incorporate known physics (such as

symmetries, constraints and conservation laws in the training process), allowing

the inference of hidden fluid quantities of interest [15, 16].70

Raissi et al. [9] first introduced the concept of physics-informed neural networks

(PINNs) to solve forward and inverse problems involving several different types

of PDEs. This approach may be apprehended as a combination of data-driven

supervised and physically-constrained unsupervised learning. For instance, they

propose a way of approximating Navier-Stokes (NS) solutions that do not require75

mesh generation. Most of the flows considered in the aforementioned works are

laminar at relatively low Reynolds numbers. A fundamental question related

4

to whether PINNs could simulate three-dimensional turbulence directly, simi-

larly to high-order DNS, was answered in [16]. In this study, the authors test

different NS formulations for simulating turbulence. For their velocity-pressure80

formulation, that they found most effective, they provide their PINNs with ve-

locity DNS data collected from the initial condition, boundaries and inside of

a subdomain of their turbulent channel flow system. Closer to our application,

they propose in [15] a similar approach for inferring pressure and fluid velocity

from monitoring of passively advected scalar data with applications to laminar85

flows.

These previous studies [15, 16] have shown the high potential of the PINNs

approach for recovering hidden quantities at any points inside the training do-

main. This is particularly important for measurements of experimental fluid

systems which can be plagued by significant data gaps that negatively affect90

subsequent analysis and need efficient numerical methods for filling such miss-

ing data (e.g. gappy POD, Kriging interpolation). As a consequence, PINN can

be viewed as a retrieval algorithm of the full flow (e.g. velocity, pressure, scalars)

from partial information while keeping time and space coordinates as inputs.

One may envision that improved version of PINNs, will be able to efficiently95

reduce data storage costs by selecting training data limited to an appropriate

subsampling, both in time, space and variable type.

In this paper, we investigate the relevance of the approach to 3D turbulent

heat transfer in the form of natural convection and modeled as Navier-Stokes

equations under Boussinesq approximation. With this setup, the temperature100

acts as an active quantity with a feedback on the momentum equations. We

will put particular emphasis on the efficiency of the surrogate modeling with

respect to data and residual sampling strategy.

This study shows that standard PINN version can be trained to learn a portion

of the turbulent flow if large amount of data information is provided. In this105

framework, we propose two simple strategies to alleviate the need for large

data even in highly turbulent regimes. The paper is organized as follows: we

first recall the basics of the PINNs formulation and we detail our choices in

5

terms of networks architecture, hyperparameters and databases in section 2.

We then introduce the turbulent RB cavity problem setup and present standard110

and improved PINNs results for moderate turbulence level in section 3. In

the next section, we propose a new numerical relaxation that improves the

prediction for more turbulent flows. We then discuss our findings and sketch

some perspectives in section 5. We have also referenced some additional results,

which are important from our point of view but not crucial to the main message115

of the paper in an Appendix section.

2. Standard PINNs for natural convection

2.1. Context and main ideas

Deep learning tools have recently seemed to start providing a different ap-

proach to computational mechanics. In particular, deep neural networks (DNN)120

are now considered as an alternative way of approximating the solution of var-

ious deterministic PDEs types. Since some earlier studies [17, 18, 19, 20], and

thanks to significant computational advances in automatic differentiation, DNN

used as surrogates of PDEs solutions have generated a broad interest from the

community [21, 22, 23, 24]. Nevertheless, in the small data regime, their ef-125

ficiency remains often limited and their prediction lacks robustness and inter-

pretability, motivating the idea of “adding” any form of prior knowledge to the

numerical surrogate, in order to provide some kind of “training guidance”.

One approach is to design a specialized network architecture embedding the

prior knowledge relevant to the task at hand. This is for instance the case of130

the convolutional neural networks (CNN), thanks to their translation invari-

ant characteristics with impressive applications in image classification, medical

image analysis, natural language processing, etc. Another approach relies on

a softer enforcing of this knowledge. Raissi et al. [9] have proposed physics-

inspired neural networks (PINNs) for approximating solutions to general PDEs135

and validated it with a series of benchmark test cases. The main feature is

the inclusion of some form of prior knowledge about the physics of the problem

6

in the learning algorithm, in addition to the data used to train the network.

This is done through an enlarged/enhanced loss/cost function. This way, the

outputs of the neural network are constrained to approximately satisfy a system140

of PDEs by using a regularization functional LPDE that typically corresponds

to the residual (or the variational energy) of the set of PDEs under the neu-

ral network representation. The algorithm imposes a penalty for non-physical

solutions and hopefully redirects it quicker towards the correct solution. As a

result, the algorithm has better generalization property even in the small data145

set regime. This approach recently drew a lot of attention, including recent

development of dedicated computational packages [25].

Nevertheless, the plain version of PINNs numerically suffers from several draw-

backs, e.g. [26]. They are notoriously hard to train for multi-scale and/or

high-frequency problems. In fact, a first difficulty resides in the discrepancy of150

the convergence rate between the different terms of the loss function depending

on the change in the learning rate. This comes from an imbalanced magnitude

of the back-propagated gradients during model training. It is therefore possible

in practice to assign some weight coefficients within the loss function than can

effectively assign a different learning rate to each individual loss term. These155

weights may be user-specified or tuned automatically during network training

[27]. Moreover, the required depth of the network increases with increasing or-

der of the set of PDEs, leading to slow learning-rate due to the issue of vanishing

gradients. It was also noticed that PINNs are not always robust in representing

sharp local gradients [28].160

Another source of discredit of PINNs as described is its dependence to the data.

Other teams have developed physics-constrained, data-free DNN for surrogate

modeling of incompressible flows. The idea is to enforce the initial/boundary

conditions instead of being penalized together during training, which is solely

driven by minimizing the residuals of the governing PDEs [29].165

7

2.2. Notations and formulation

Here we introduce our notations and show how the DNN framework is cou-

pled with a second network to form the PINN approach. The goal is to ap-

proximate the exact solution of a model noted M, i.e. a set of unsteady PDEs,

written in a generic form inside and at the boundary of a physical domain Ω170

evolving over a time interval D = [0, Tf] as:

u(x, t)t +N (u(x, t)) = R(x, t), (x, t) ∈ Ω ∈ Rd ×D,

B (u(x, t)) = B(x, t), (x, t) ∈ ∂Ω ∈ Rd−1 ×D. (1)

whose exact solution representing the system unknown variables is defined as

u = f̂(x, t) and satisfying M(u) = 0,

through the response of a neural network:

u ≈ uDNN = fθ(x, t), with M
(
fθ(x, t)

)
= r(x, t), (2)

with r representing the residual fields of the set of equations. In Eq. (1), N is

a general spatial differential operator in the domain Ω, while B is the boundary175

operator on ∂Ω; R and B are potential source fields.

More specifically, the model describing our physical system of interest encom-

passes the 3D incompressible Navier-Stokes equations under the Boussinesq ap-

proximation, which may be written in non-dimensional form as:

Tt + v · ∇T =
1

Ra1/2
∆T, (3)

vt + (v · ∇)v = −∇p+
Pr

Ra1/2
∆v + PrT ez, (4)

∇ · v = 0, (5)

with the Rayleigh number Ra = gβ∆T H3/νκ, ν the kinematic viscosity, κ180

the thermal diffusivity, β the thermal expansion coefficient, ∆T the reference

temperature difference and H the domain reference length, and the Prandtl

number Pr = ν/κ. The reference velocity is taken equal to the convective veloc-

ity Vref =
κ

H

√
Ra. The time t is therefore expressed in convective time units.

Note that we have here omitted the initial and boundary conditions which are185

8

necessary for any numerical solution of the set of PDEs.

We denote the solution as: u ≡ (v, p, T), where v ≡ (vx, vy, vz)t, p and T are

the dimensionless fluid velocity, pressure and temperature, respectively. Follow-

ing the idea proposed in [15], an auxiliary variable T = 1 − T is added, that

satisfies a similar transport equation as the temperature field. The DNN will190

therefore have to learn the nonlinear continuous mapping relating inputs and

outputs of the system.

The main portion of this network is a multi-layer perceptron (MLP) made of

interconnected neurons assembled in ` ∈ N hidden layers. The network dimen-

sions are as follows: n0 = nx + 1 ∈ N the input dimension (here nx = 3),195

n`+1 = nu ∈ N the output dimension and nl the dimension of each hid-

den layer. The network architecture sequence A may be summarized as A =(
nx + 1, n1, . . . , nl, . . . , n`, nu

)
. Looking at computational mechanisms of the

DNN in more details, we define the following affine linear maps between adja-

cent layers:200

glθl : Rnl−1

→ Rnl

: al−1 7→W lal−1 + bl, for l = 2, . . . , `, (6)

where al−1 ∈ Rnl−1

is an array containing all the values taken by the neurons be-

longing to the (l−1)−layer. The quantities θ(l) ≡
(
W (l) ∈ Rnl−1×nl , b(l) ∈ Rnl

)
represent the parameters containing the weights and biases to be calibrated.

Summarizing the telescoping approximation form of the DNN output, we may

write it as follows:

u ≈ uDNN = fθ(x, t) = g`θ`

(
ρ

(
g`−1
θ`−1

(
ρ
(
. . . ρ(g1

θ1(x, t))
))))

, (7)

where ρ : R→ R is a nonlinear activation function, kept the same in the entire

network in this study.

Classically, for a chosen architecture, the neural network may be trained with a

large, but (potentially noisy and) scattered, training set of data {((x, t)(train),u
(train)
?)}

by optimizing its parameters θ. In order to minimize the error associated with

the prediction of the DNN, an objective function is required by the optimization.

9

It is referred as the loss (or cost) function and maps the set of parameter values

for the network onto a scalar value. For regression problems, mean-squared error

(MSE) loss functions also named L2-based loss functions are usually preferred:

L (θ) =
1

N

N∑
i=1

‖u(i)
DNN − u

(i)
? ‖, (8)

where N is the size of the data sample collected over the training domain of

interest.

Finding the optimal value of θ under this norm is equivalent to maximizing

the conditional log-likelihood distribution
∑NL

i=1 log π
(
u(i)|(x, t)(i),θ

)
[5].

Once the parameters have been tuned, thanks to the graph-based implemen-205

tation of DNNs, it is straightforward to compute exactly derivatives of the

surrogate network outputs u with respect to its inputs. The spatial/temporal

derivatives are obtained by applying the chain rule for differentiating compo-

sitions of functions using the automatic differentiation, conveniently integrated

in many ML packages such as Tensorflow [30].210

The PINN approach takes advantage of this functionality. Different PINN for-

mulations exist which all share an evaluation of the PDE residuals. One formula-

tion rely on the PDEs information alone, for which knowledge of the differential

operator and initial and boundary data suffice, e.g. [31, 32]. Other formula-

tions also use some additional solution data, for instance from the interior of the215

training domain. Our work follows this second approach where the loss function

contains a mismatch in the given partial data on some state variables combined

with the residual of the PDEs computed on a set of points in the time-space

domain. It may be written as a combination of a loss term LLabel based on the

data, and another loss term LPDE based on the PINN-predicted residuals of the220

PDEs, (cf. Equations (3-5)):

L
(
θ, {(x, t)(k))}k∈I∪J

)
= LLabel

(
{(x, t)(i))}i∈I

)
+ LPDE

(
{(x, t)(j))}j∈J

)
=

1

NL

NL∑
i=1

‖u(i)
PINN − u(i)

? ‖+
1

NR

NR∑
j=1

‖r(j)
PINN‖, (9)

where I = {1, . . . , NL} is a defined set with NL the size of the input-output

10

data sample {(x, t)(i),u
(i)
? }i∈I (collected inside and/or at the boundaries of the

training domain), J = {1, . . . , NR} another set with NR the size of the sam-

ple at which PDEs residuals are computed. Note that the label and residuals

sample sets are not necessarily the same, as their size and location may differ.

The terms u· refer to sub-components of the full output (e.g. u
(i)
? ≡ T (i)

?,Ω×D or

u
(i)
? ≡ (T

(i)
?,Ω×D,v

(i)
?,∂Ω×D) if flow velocity information at the domain boundaries

is also considered). For a given sample (e.g. fixed spatial and temporal coor-

dinates), the residual is evaluated as the sum of an array of squared residuals

of size equals to the full number of PDEs in the model. In the standard ap-

proach, the same ponderation is assigned to each residual of each equation of

the system (cf. Equations (3-5)). The LLabel contribution can be decomposed

in several terms corresponding to the contribution of various data sources: e.g.

the initial condition, the boundaries or the inside of the domain. A very recent

work proposed to dynamically assign some weights to each term in order to get

a better error balance [27].

The standard PINN model is therefore a grid-free approach as no mesh is needed.

All the complexities of solving the model are transferred into the optimiza-

tion/training stage of the neural network. Updating the parameters requires

the knowledge of the loss gradient ∂L(θ, (x, t))/∂θ that is computed thanks to

the back-propagation algorithm [33]. A particular algorithm from the stochas-

tic gradient descent (SGD) class with mini-batch (MB) updates based on an

average of the gradients inside each block of MB examples:

θk+1 ← θk − εk
1

MB

(k+1)MB∑
k′=kMB+1

∂L(θ, (x, t)(k′))/∂θ, (10)

is considered and where εk is the learning rate of the kth epoch. The great ad-

vantage of SGD update methods is that their convergence does not depend on

the size of the training set, only on the number of updates and the richness of

the training distribution [34]. To be more specific, an Adam (for Adaptive mo-225

ment estimation) optimizer [35] is used, which combines the best properties of

the AdaGrad and RMSProp algorithms. Moreover, the parameters of the neural

11

networks are randomly initialized using the Xavier scheme [36]. The learning

rate will take different values depending on the epochs cycle, while Adam beta

values are β1 = 0.9, and β2 = 0.999, cf. [34].230

2.3. PINNs architectures, hyperparameters choice and databases

Training cycles MB epochs/cycle εk

1 2000 50 1e-03

2 2000 62 6.683e-4

3 2000 138 2.992e-4

4 2000 309 1.337e-4

5 2000 309 5.98e-5

6 2000 309 1e-5

7 2000 160 1e-6

Table 1: PINNs training hyper-parameters. MB is the size of the data sample contained in

the mini-batch. εk is the learning rate. For each PINN model, the training is made of seven

subsequent cycles.

In the following sections, the goal is to compare PINNs prediction with the

DNS reference and understand how the PINN model can be made accurate,

while as data-frugal as possible. The results are presented both in terms of235

training/validation for the chosen turbulent RB cavity with partial data infor-

mation.

Unless mentioned otherwise, the following setup is used to construct the

models. The standard PINN architecture contains ` = 10 hidden layers of

size nl=1,...,` = 300 neurons each, so we have A = (n0 = 4, n1 = 300, . . . , n` =240

300, nu = 6), for a total of ‖W ‖ = 813e3 weights to be calibrated1.

1Here is the computation of the weights goes according to: ‖W ‖ = n0 × n1 +
∑`

i=2 n
i ∗

ni−1+n`×nu, computation including the biases quantities is: ‖θ‖ = (n0+1)×n1+
∑`

i=2 n
i∗

(ni−1 + 1) + (n` + 1)× nu.

12

As for the training procedure, the results reported in the following are ob-

tained after seven cycles, each of them being made of a certain number of

consecutive epochs of the stochastic gradient Adam optimizer with a specific

learning rate, cf. Table (1), each epoch corresponding to one pass through an245

entire dataset.

The total number of iterations of the Adam optimizer is therefore given by

the total number of epochs (e.g. 1500) times the size of the training data used,

divided by the mini-batch size (e.g.MB = 2 · 103). The training is performed

on our laboratory Lab-IA cluster with a single NVIDIA Tesla V100 32GB GPU.250

The details of the various databases that have been extracted from DNS data

and used to train different PINN models are written down in Tables (2,3,6,7).

The idea was for instance to test the impact of the database size and resolution

on the quality of the prediction. Tables (2, 6) describe the spatial and temporal255

domains and their resolutions as well as the size of each database. Here the size

refers to the number of discrete points (x, t) at which the solution of the system

of equations (3-5) is known. The spatial resolution is equal to (or half of) the

full DNS while temporal resolution is much coarser than the one of the full

DNS.260

Tables (3, 7) summarize most of the proposed PINN models in terms of the

choice of their training and testing databases. The labels data is the following set

{((x, t)(i), T
(i)
Ω×D, T

(i)

Ω×D,v
(i)

∂Ω†×D)}NL
i=1, where v

(·)
∂Ω†

are fluid velocity components

collected at (some of) the boundaries of the training domain of interest. The

testing database is always disjoint from the training database. In the tables, NT265

refers to the size of the testing dataset (that is always disjoint from the training

database).

3. Improved PINNs capability with penalty padding

In this section, we tackle a moderately turbulent convective flow. We unwind

the PINNs methodology and we then propose a numerical technique to improve270

13

the predictive accuracy of the approach. We first explain how we perform DNS

for the system we consider.

3.1. DNS of turbulent Rayleigh-Bénard convection with heated blocks

We consider a Rayleigh-Bénard-like configuration made of a bi-periodic wa-

ter layer heated from below (Pr = 4.3). The two horizontal plates are isothermal275

(Tbottom = 1; Ttop = 0). Previous studies had shown that PINN reconstruction

performs better when the training domain encompasses lively flow structures

with non-zero gradients. Based on this experience, we propose a configuration

producing an organized natural convection in order to easily position our train-

ing domain. To this end, two heated square-based blocks at Tbottom are closely280

placed on the bottom plate. They are aligned along one of the main diagonals.

The resulting flow will be dominated by two main plumes developing over the

blocks. They interact with each others in a complex pattern and swirl before

impacting the ceiling (as seen on Figure 1).

The computational domain is a cube of width equal to H = 1, so the com-285

putational domain is defined as Ω = [0, H]3. The height of the square-based

blocks is equal to h = 0.05H. Their base spans (0.1H×0.1H), and their centres

are located at (x = 0.4, y = 0.4) and (x = 0.6, y = 0.6), respectively.

The Rayleigh number of the studied case is Ra = 2 · 107, leading to a mod-

erate turbulent flow regime (Figure 1). The DNS database is obtained using290

the in-house numerical solver SUNFLUIDH. It is based on a finite volume ap-

proach on staggered grids. A semi-implicit scheme and a pressure-correction al-

gorithm for the velocity–pressure coupling [37] are combined together to achieve

a second-order time accuracy. The resulting Poisson’s equation is solved by a

multi-grid method. The solid blocks are modeled through a loop truncation295

technique. A domain decomposition method with MPI communication protocol

is applied for parallel computation. The code has been validated in the context

of turbulent Rayleigh-Bénard convection with roughness [38]. DNS calculations

are done using (2×2×2) subdomains of 643 cells each with a constant convective

time step equal to 2.5e-3.300

14

We retain a training domain about 55 times smaller in volume than the DNS

computational domain (figure 1-a). It is a box-shaped volume placed over one

of the two roughness blocks, of dimension: {ΩPINN = [0.5, 0.7] × [0.5, 0.7] ×

[0.055, 0.5], containing (nx × ny × nz = 26× 26× 38) grid points in the (x, y, z)

frame of reference. The training domain therefore spans 20% along each x−305

and y−direction and 45% along the vertical z−direction. It is large enough to

cover the entirety of the plume formed above the block in its spatial ascent over

half the height of the cavity, and the fluid it entrains in its near field.

The databases which are extracted from the DNS are made of a collection

of fields spanning a maximum time length of 19.8 convective time units, cf.310

Table (2). Depending on the time sampling or the time span, four databases

are constructed from a single DNS. Their content corresponds to four sets of

time-space points that partly overlap, the most complete database being 2Db1.

We will refer to Γ#Db# as the spatial-temporal discretization of size (nx×ny ×

nz × nt) of the retained database.315

In addition to the turbulent character of the flow, the power spectrum of

the vertical velocity shows the dominant shedding frequency fmax of the plume

emission Figure (1-b). This indicates that the training domain time length

typically includes about 10 plume rises through the studied domain.

Database size ∆t (nx × ny × nz × nt) time interval

1Db1 2 568 800 0.1 26× 26× 38× 100 ∆Ts

1Db2 1 284 400 0.2 26× 26× 38× 50 ∆Ts

2Db1 5 137 600 0.1 26× 26× 38× 200 ∆Tl

2Db2 2 568 800 0.2 26× 26× 38× 100 ∆Tl

Table 2: Specifics of the databases extracted from our DNS of the RB flow at Ra = 2 · 107.

The size refers to the number of discrete points (x, t) of the database and is here affected by

temporal sampling. The fourth column describes the spatial/temporal resolution inside the

training domain ΩPINN ×DPINN for a given database. The shorter (1Db#) and longer time

intervals DPINN (2Db#) are defined as: ∆Ts = [62, 71.9] and ∆Tl = [62, 81.8] while ∆t refers

to the time between two successive saved DNS snapshots.

15

PINN model Training Testing

labels PDE loss labels

NL, database NR, space/time grid NT , database

1Ref 2e6, 1Db1 2e6, Γ1Db1 568.8e3, 1Db1

1C7 1e6, 1Db2 1e6, Γ1Db2 284.4e3, 1Db2

1C7∗ 1e6, 1Db2 5e5, Γ1Db2 284.4e3, 1Db2

2Ref 2e6, 2Db2 2e6, Γ2Db2 1.131912e6, 2Db1

Padding type

1P4 time 1e6, 1Db2 1e6, Γ2Db2 284.4e3, 1Db2

1P5 space-vertical 1e6, 1Db2 1e6, Γ∗1Db2 284.4e3, 1Db2

1P6 space-horizontal 1e6, 1Db2 1e6, Γ‡1Db2 284.4e3, 1Db2

Table 3: Training and testing details of various PINN models for the test case at Ra = 2 ·107.

Mentioned DNS databases sources are detailed in Table 2. Note that for the padding cases

(1P#), label and residual data points are issued from different databases. Γ∗1Db2 refers to

the 1Db2 grid which has been vertically extended to cover the domain Ω∗PINN = [0.5, 0.7] ×

[0.5, 0.7]× [0.05, 0.9] with resolution (26×26×60) and Γ‡1Db2 refers to the 1Db2 grid which has

been horizontally extended to cover the domain Ω‡PINN = [0.5, 0.78] × [0.5, 0.78] × [0.05, 0.5]

with resolution (37× 37× 38). Reference models are highlighted in bold.

(a) (b)

10 1 100 101

f

10 19

10 16

10 13

10 10

10 7

10 4

10 1

p.
s.d

.(v
_z

)

X=0.5 ; Y=0.6 ; Z=0.1
k^(-5/3)

Figure 1: Rayleigh-Bénard cavity flow, with two square-based roughness blocks (red cubes

attached to the bottom plate), at Ra = 2 · 107. Temperature isocontours (a) ; Temporal

power spectrum of vz at (x = 0.5, y = 0.6, z = 0.1). The maximum (arrow) is obtained at

fmax = 0.462 (b). The training domain ΩPINN is depicted as a box with thick black borders,

located just above one of the roughness elements. Other contiguous boxes with lighter borders

indicate the positioning of padding regions, used later in subsection 3.4.

16

3.2. Standard PINNs training and testing datasets320

Table (3) shows the choice of training/testing datasets for the PINN models.

In particular, for the 1Ref, 1C# and 2Ref models the training database is com-

mon for the data labels and the data points at which the LPDE loss is evaluated.

The data labels of total sizeNL is the following set {((x, t)(i), T
(i)
Ω×D,v

(i)

∂Ω†×D)}NL
i=1,

where v
(·)
∂Ω†

are fluid velocity components collected at the boundaries of the rect-325

angular blocks (excluding the top face).

Unless mentioned otherwise, for these models the training database is com-

mon for the NL data labels (and NR data points) at which LLabel (and LPDE)

loss is evaluated, respectively. For instance, if we refer to K1Db1 as the set of data330

points indices from the 1Db1 database of cardinality |K1Db1| = 2.5688e6, then

for the case 1C7 we consider I ⊂ K1Db1, the subset with cardinality |I| = 1e6

and containing any elements from K1Db1. For the residuals, the subset is then

taken the same, i.e. J ≡ I. Nevertheless, during training, mini-batches of data

and points are independently randomly selected among these subsets I and J ,335

meaning that the points at which labeled data are used and the points at which

residuals are computed are not necessarily collocated within the training do-

main. This is illustrated in the grey region of Figure (4), showing an example

of mini-batch sampling.

Testing data is not coming from a different DNS, but the database is partitioned340

at the beginning to separate testing and training datasets. In general testing

datasets are smaller because we allocate a larger portion of available data to

training. Nevertheless, an effort was made to have testing datasets keeping

the same size when studying the impact of diminishing training datasets, cf.

Appendix 6.345

3.3. Standard PINNs results

We first present the best results obtained, i.e. for the 1Ref case trained with

a large data sample over a short time period, i.e. 2e6 data points spanning the

space/time domain (i.e. 2e4 points per DNS snapshot). The specifics of the

17

accuracy of the PINN 1Ref model for each flow field are summarized in Tables350

(4,5). We see that the results are excellent with very small errors and high cor-

relations between the PINN model and the DNS for each field. We note that the

accuracy is a bit lower for the pressure field, and this finding will be consistent

across all of our numerical experiments. We emphasize that no data was pro-

vided for the pressure, which was a hidden state and was obtained indirectly via355

the incompressibility constraint without splitting the Navier-Stokes equations.

We also note that the accuracy on the temperature prediction is slightly

lower than the one obtained from a plain DNN (noted 1Ref DNN in the table)

with 10 layers and a loss function given by Eq. (8). A multi-output regression

providing linear velocity and pressure predictions based on spatial/temporal360

coordinates and temperature field regressors show poor agreement especially

for the first two components of velocity, which are known to be less correlated

to the temperature field than the vertical one.

Under the large data regime, it is possible to keep an accurate predictive

accuracy over a longer time period. In the following, the figure 2 shows some365

spatial comparisons of some flow quantities in the training domain at a specific

instant representative of a single plume ascent.

Despite strongly evolving three-dimensional spatial structures, PINN pre-

dictions accuracy is remarkable and only subtle differences are noticed.

While current results were promising, it was obtained with a large amount of370

data. In the Appendix 6, a thorough study is gathered where more models are

trained and discussed to understand the effect of - the architecture complexity,

- the size and sampling frequency of the training dataset and - the change in the

time acquisition range. In particular, it was shown how the prediction accuracy

deteriorates in the small training data regime. For instance, best and worse375

PINN model are compared in table 5 and their prediction quality is illustrated

by scatter plots (including all testing data points in space/time) in Figure (3),

where DNS and predicted vx flow velocity and fluid pressure are represented

together with their regression fit.

An attempt to improve the results in the small-data regime is the topic of the380

18

Model Accuracy

1Ref PINN RMSE MAE µ error σ error Rcorr R2

T 3.336e-03 2.05e-03 0.01 0.4 9.993e-01 9.986e-01

vx 1.778e-03 1.260e-03 0.8 0.8 9.997e-01 9.993e-01

vy 1.953e-03 1.386e-03 0.7 1.0 9.996e-01 9.991e-01

vz 3.316e-03 2.064e-03 0.4 0.5 9.998e-01 9.996e-01

p 8.904e-04 6.341e-04 – 2.9 9.989e-01 9.971e-01

1Ref DNN RMSE MAE µ error σ error Rcorr R2

T 9.035e-04 6.362e-04 0.004 0.03 9.999e-01 9.999e-01

1Ref MOR RMSE MAE µ error σ error Rcorr R2

vx 5.95e-02 4.73e-02 0.16 51.7 4.83e-01 2.33e-01

vy 5.25e-02 4.11e-02 0.11 40.5 5.96e-01 3.55e-01

vz 1.121-e01 9.02e-02 0.06 24 7.61e-01 5.8e-01

p 1.08-e02 8.2-e03 – 22.15 7.78e-01 6.05e-01

Table 4: 1Ref PINN model accuracy details (root mean squared error: RMSE, mean absolute

error: MAE, the correlation coefficient: Rcorr and the coefficient of determination : R2),

for each of the flow fields. Mean (µ) and standard deviation (σ) errors are expressed as

percentage. Relative error of the mean pressure is not computable as the pressure signals are

centered (zero-mean) prior to be compared. The 1Ref DNN temperature prediction and a

multi-output linear regression (1Ref MOR) are also provided for comparison.

next subsection.

3.4. Temporal- or spatial-penalty padding

Given a fixed training labelled dataset of size NL, the idea is to increase the

predictive accuracy of the PINN by adopting a smarter positioning/sampling

strategy for the choice of the points at which the residual penalties are im-385

posed. If we assume that the labeled data points are localized in a single tem-

poral/spatial domain of interest, here referred as I for simplicity, cf. black dots

in grey area in Figure (4), the standard approach is to allocate all of the residual

points within the same domain. Our idea is to use part of the residual samples

to pad, either in space or/and in time, the surrounding regions of this domain,390

so that they belong to a larger domain Jp encompassing the data domain I.

19

PINN model Accuracy

aRMSE aMAE µ error σ error aRcorr aR2

1Ref 2.255e-03 1.479e-03 0.5 1.1 9.995e-01 9.988e-01

1C7 4.952e-03 2.841e-03 0.5 2.5 9.968e-01 9.928e-01

1C7∗ 9.858e-03 6.034e-03 0.9 7.6 9.783e-01 9.526e-01

2Ref 4.163e-03 2.469e-03 0.5 1.7 9.982e-01 9.961e-01

1P4 2.626e-03 1.736e-03 0.4 1.3 9.992e-01 9.982e-01

1P5 3.762e-03 2.354e-03 0.4 1.8 9.981e-01 9.958e-01

1P6 2.927e-03 1.982e-03 0.4 1.2 9.991e-01 9.980e-01

Table 5: Accuracy of PINN models compared to the DNS simulation at Ra = 2 · 107.

Statistics are computed from the available testing dataset and collected for each compo-

nent of the flow fields u = (v, p, T). They are then averaged for aRMSE, e.g. aRMSE =

1
nu

∑nu
j=1

(
1

NT

∑NT
i=1(u

(i)
PINN,j − u

(i)
DNS,j)2

)1/2
, aMAE, aRcorr and aR2.

Figure 2: Comparison of some ground truth (DNS) (top) and 2Ref PINN-predicted (bottom)

instantaneous flow fields. Left: temperature T (x0 = 0.595, ·, z0 = [0.15, 0.3, 0.4], t = 70.7),

middle: vertical flow velocity vz and right column: pressure field p. Remark: Neither DNS

data nor PDE residual points at the predicted time instant (issued from Γ2Db1) were used

for the training.

Indeed, it was noted that predictive accuracy of the PINNS is often lower

close to spatial and temporal boundaries [27], so we hope to improve the ac-

20

(a) (c) (e)

(b) (d) (f)

Figure 3: Examples of scatter plots comparing DNS and predicted values from most accurate

1Ref (a-b), least accurate 1C7 (c-d) and padded 1P6 (e-f) PINN models, with top row: in-

plane x−axis flow velocity vx, and bottom row: fluid pressure p.

Figure 4: Various spatial/temporal-padding strategies: residual points are evenly distributed

across the monitored (gray) region as well as in neighbor space/time (colored) regions where

data points are lacking. The goal is to improve the approximation in close neighborhood

(hatched layer) of the domain of interest boundaries. In space, only one dimension is repre-

sented for clarity. Points at which data are available (iron color circles) and points at which

PDEs residual are minimized (black hollow stars) are not necessarily collocated during the

optimization process due to the random selection of the minibatch SGD approach. Remark

that regularization padding may be deployed in space, in time or both.

21

curacy there by extending the domain of regularization. For simplicity, in the

following, we will assume that (NR = NL). We may rewrite the loss function395

as:

L
(
θ, {(x, t)(k))}k∈I∪J p

)
=

1

NL

(NL∑
(i∈I,j∈J p)=1

‖u(i)
PINN − u(i)

? ‖+ ‖r(j)
PINN‖

)
, (11)

where J p is the set of indices of the points scattered across Jp. If we note

αI ≡ NL/(nx ny nz nt) the average density of data points in I relative to the 3D

DNS resolution (assuming this grid is regular), the average density of residual

points in Jp, αJp < αI , will depend on the way the padding is extended around400

I (choice of direction(s), simple/complex extrusion, symmetry, etc.). In practice

once Jp is chosen, the positioning of the NL residual points is really flexible and

for instance does not need to lay on a regular grid.

Table (3) shows the details of some numerical experiments used to investi-

gate this idea. Three new cases, 1P4, 1P5 and 1P6, adopt the same database405

and data sampling as case 1C7, but this time the residual points span a longer

time period for 1P4, a wider spatial vertical (horizontal) range for 1P5 (1P6),

respectively. For all of these cases, Jp domains have been setup so as to lower

the residual points density by a factor two (either in time or space; padding in

time and space has not been tested).410

Numerical testing over the 1Db2 database shows that the accuracy is much im-

proved for those cases compared to case 1C7. In particular, improvement of

case 1P6 for which the spatial domain has been horizontally padded is spectac-

ular, cf. subplots (e-f) from the Figure (3). Another numerical experiment has

been ran (i.e. 1C7∗), in order to check that the improvement obtained for this415

particular application was not simply due to the lower density of residual point

within the training domain, instead of the padding effect. This was not the case

as 1C7∗ produced very poor results, cf. Table (5).

The other padded cases, such as the temporal padding, are also interesting.

For instance, Figure (5) compares the temporal distribution of the L2 spatial420

errors integrated for case 1C7 (thin black line) and 1P4 (thick gray line). The

curves in each subplot are normalized by the maximum value of the error for

22

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2
L

2 e
rr

or

(a)

0 2 4 6 8 10 12 14 16 18

(time - 62)

0

0.5

1

1.5

L
2 e

rr
or

(b)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

L
2 e

rr
or

(a)

0 2 4 6 8 10 12 14 16 18

(time - 62)

0

0.5

1

1.5

L
2 e

rr
or

(b)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

L
2 e

rr
or

(a)

0 2 4 6 8 10 12 14 16 18

(time - 62)

0

0.5

1

1.5
L

2 e
rr

or

(b)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

L
2 e

rr
or

(a)

0 2 4 6 8 10 12 14 16 18

(time - 62)

0

0.5

1

1.5

L
2 e

rr
or

(b)

Figure 5: Comparison of the temporal distribution of L2 spatial errors for case 1C7 (thin

line) and 1P4 (thick line) for temperature (a) and vz vertical flow velocity (b). The curves

in each subplot are normalized by the maximum value of the error for case 1P4 (i.e. 20% for

temperature and 83% for velocity). The padded approach 1P4 controls errors much better,

especially in the second half of the time window.

case 1P4 (i.e. 20% for temperature and 83% for velocity). The PINN models

are asked to predict the solution on the long time range and for a resolution that

is doubled (i.e. 200 snapshots for ∆Tl) compared to the one of their training425

data. We clearly identify the first half of the time domain in which errors are

low. The 1C7 PINN solution is then predicted in the later time domain (no

information from this time range was used during training of this model), while

the 1P4 prediction benefits from a training with residual points (but no data) in

this time range, as explained previously. Not only, the 1P4 solution is improved430

in the first half but it is also much more robust in the second half, controlling

better error spikes all along the time window.

In conclusion, despite diluting their concentration, redistributing in a larger

domain the grid points at which low residuals are enforced, helps in improving

the predictive accuracy of the PINN model within the domain of interest. In435

the following section, we will address the issue of modeling higher turbulence

levels by proposing a new simple idea that considerably improves the prediction

results.

4. Improving modeling capability for more turbulent scenario by re-

laxing surrogate constraints440

The promising results obtained in the previous sections motivate an inves-

tigation of more challenging natural convection metamodeling at higher turbu-

23

lence levels. The attempt might fail as it is known that conventional PINN

models are not very successful at approximating complex dynamics leading to

solutions with non-trivial behavior, such as directional anisotropy, multi-scale445

features or very sharp gradients. The specificity of the PINN approach is that

the constraints alter the loss landscape of that type of deep neural networks. As

seen previously, different terms in the PINN composite loss function have differ-

ent nature and magnitudes, sometimes leading to imbalanced gradients during

back-propagation. Recent works have pointed to the problem of the stiffness450

of the PINN gradient flow dynamics. They have proposed a learning rate an-

nealing algorithm that utilizes gradient statistics during training to adaptively

weight the different terms in the label part of the loss function. They have also

proposed a new fully-connected neural network architecture that is less sensitive

to the stiffness of gradient flow.455

In the following, we propose a minimal modification of the PINN computational

framework to make it more efficient for our type of application. In particular,

we do not want to modify the PINN architecture, the training computational

budget or to upgrade too drastically the training dataset size. As we will de-

scribe in more details below, our idea is to relax some of the PDE residual losses460

in order to enhance the accuracy and robustness of our PINNs.

4.1. DNS of turbulent Rayleigh-Bénard convection in smooth cavity at high

Rayleigh number

In the following, we consider a much more challenging case of RB flow in a

smooth cavity filled with water (Pr = 4.4) at higher Ra number, cf. Fig. 6.465

The geometry does not bear any roughness anymore and the flow turbulence

is much more developed than previously, with a larger Rayleigh value by two

order of magnitude, i.e. Ra = 2 · 109. Our goal is to investigate the level of

accuracy we can achieve with a computational budget equivalent to the previ-

ous simulations. We keep the same simple fully-connected PINN architecture470

(` = 10 layers) and the same total number of epochs = 1500 (which is very

low compared to other works). A DNS is performed in a computational do-

24

main of size Ω = [0, 1] × [0, 0.5] × [0, 1], cf. Fig. 6. The quite large domain

ΩPINN = [0.65, 0.85] × [0.2, 0.3] × [0.05, 0.3] over which the PINN models are

trained, is depicted as a transparent box. The spatial flow scales are hard to475

capture with dispersed and disorganized small and thin turbulent plumes, which

travelling direction and orientation are not well established relative to ΩPINN.

They do not necessarily travel across the domain from bottom to top because

the flow velocity components are less dominated by their vertical component.

At this Ra, the amount of data from our full DNS is colossal with a spatial res-

(a) (b)

100 101

f

10 20

10 17

10 14

10 11

10 8

10 5

10 2

p.
s.d

.(T
)

X=0.65 ; Y=0.25 ; Z=0.1
f^(-5/3)

Figure 6: Example of instantaneous heat dissipation isocontours (2D (x, z) slice at (y =

0.25, t = 290.83)) from DNS of the RB cavity flow at Ra = 2 ·109 (a). The domain ΩPINNover

which the PINN model is trained, is depicted as a transparent box. Temporal power spectrum

of temperature at location (x = 0.65, y = 0.25, z = 0.1) (b)

480

olution for the PINN domain (ΩPINN) alone of (129× 65× 219) points updated

every ∆tDNS = 4.5 · 10−4. The database being too large to be stored, we have

saved the solution with a coarser time resolution, i.e. we have collected 249 snap-

shots collected every 40×∆tDNS, totalizing almost half a billion (4.57242435e8)

points at which the flow data are saved. It is this latter downsampled version485

that we will refer as our “stored” DNS. Finally, a more tractable database 3Db1,

referenced in Table (6), is constructed from the aforementioned stored DNS,

with a lower resolution in space and time. The PINN training dataset retained

from the 3Db1 database totalizes 90% of the (velocity-temperature) data points

of the initial condition, 100% of the (velocity) boundary conditions (excluding490

25

the top of the training domain as before) and only 25% of the (temperature)

bulk totalizing 7.334712e6 data points from the 3Db1 database, which is only

1.6% of the stored (i.e. 0.04% of the full) DNS spatial/temporal coordinates

points and about 0.32% of the stored DNS data (i.e. temperature, velocity and

pressure data fields). The training dataset being now 3.7 times the size of the495

largest dataset used for the Ra = 2 ·107 studies, the mini-batch size is increased

to MB = 18522 (so as to keep about the same cpu computational time).

Database size ∆t (nx × ny × nz × nt) time interval

3Db1 20 673 972 0.054 66× 34× 111× 83 ∆Tm

Table 6: Specifics of DNS-extracted database for RB flow at at Ra = 2 · 109. Similar caption

to table 2. The medium time interval is defined as: ∆Tm = [287.572, 292] while ∆t refers to

the time between two successive snapshots.

4.2. Methodology of relaxing surrogate constraints

The convergence of the various terms of the loss function are depicted in

Figures (7). In subplot (a), standard PINN results show that the optimization

is very sensitive to the incompressibility constraint (PDE5: yellow line, cf. Eq.

(5)), in agreement with the findings of other researchers [16]. Oscillations are

very strong compared to the other components. Moreover PDE5 convergence

exhibits a piecewise behavior with error magnitude and fluctuations getting

lower across changes in learning rate cycles, but a convergence that does not

really progresses within each of the learning cycles. Despite being quite low, the

convergence of the temperature loss (PDE1, cf. cf. Eq. (3)) looks very flat and

seems to stagnate.

With the PINN velocity-pressure formulation, the pressure equation is not ob-

tained through an additional Poisson pressure equation as it is usually done with

splitting methods. In fact, the pressure is a hidden state and is obtained via

the incompressibility constraint. Nevertheless, the incompressibility condition

is hard to impose through our SGD algorithm. Recent works have investigated

26

other Navier-Stokes (NS) formulations [16] including a streamfunction-pressure

formulation for which the incompressibility constraint is exactly satisfied [27].

They concluded that these alternative formulations were more efficient, espe-

cially for laminar flows.

Keeping our original velocity-pressure formulation, our novel idea is simply to

relax the most sensitive constraints, i.e. the incompressibility constraint.

The new loss function reads:

L(θ) = Lbulk(θ)+Lboundaries(θ)+Linitial(θ)+

M=5∑
l=1

λlLPDEl

(
θ, {(x, t)(j))}j∈J

)
,

(12)

with500

Lbulk =
1

Nbu

Nbu∑
i=1

‖T (i)
PINN − T

(i)
? ‖,

Lboundaries =
1

Nb

Nb∑
i=1

‖v(i)
PINN − v

(i)
? ‖,

Linitial =
1

Ni

Ni∑
i=1

‖(T (i)
PINN,v

(i)
PINN)− (T

(i)
? ,v

(i)
?)‖,

LPDE5
=

1

NR

NR∑
j=1

‖∇ · v(j)‖, (13)

where Lbulk, Lboundaries and Linitial are the bulk, boundaries and initial data-fit

terms respectively, and NL = Nbu +Nb +Ni and the other PDEs residuals are

obtained from system (cf. Equations (3-5)). Then a preliminary study followed

by a careful search has shown us that only λ5 needed adjustment to relax the

constraint on the conservation of mass. We refer to this relaxed version of the505

physics-informed neural network as PINNr.

4.3. Results

Results obtained with this new approach are spectacular, and the total loss

reaches a much lower value at the end of the training, cf. Figure (7-(b)). The510

loss of the relaxed version of the divergence-free equation converges much faster

27

and more regularly (cf. yellow curve). Its normalized version - not presented

here and accounting for the λ5 parameter rescaling - shows that the loss achieved

is of the same order of magnitude as the original one without relaxation. But it

impacts the temperature loss that follows a much more flattering convergence515

slope as well. Very interestingly, there is also a retro-action of these lower PDE

residual losses onto the convergence of the label losses (cyan curve). This cou-

pling is extremely interesting as it demonstrates how an improved learning on

the PDE part of the losses directly benefits the learning of the scarce tempera-

ture data.

0 2000 4000
iterations/99

10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
ss

es

(a)

total
PDE

1

PDE
2-4

label
PDE

5

0 2000 4000
iterations/99

10-6

10-5

10-4

10-3

10-2

10-1

100
Lo

ss
es

(b)

total
PDE

1

PDE
2-4

label
relaxed PDE

5

Figure 7: Ra = 2 · 109 study: details of the convergence of loss functions for standard PINN

3C1 (a) and best relaxed PINN model (3C1r, λ5 = 0.1) (b) for which the mass conservation

PDE constraint (i.e. PDE5) is relaxed during training. PDE1: loss term associated with

the temperature equation and PDE2−4: sum of loss terms associated with the momentum

equations, cf. system (3-5).

520

Tables (7,8) summarize the specifics and accuracy of various relaxed models

(3C1r) compared to the reference one (3C1). The results are very clear and show

the undeniable superiority of the PINNr approach with very good accuracy, for

λ5 < 1. In particular, best results are obtained for the relaxed model with

λ5 = 0.1. Moreover, an ambitious validation of this approach was also carried525

28

PINN models Training Testing

labels PDE loss labels

NL, database NR, space/time grid NT , database

3C1; 3C1r 7.334712e6, 3Db1 7.334712e6, Γ3Db1 6e6, 3Db1

Table 7: Ra = 2 · 109 study: the caption is similar to the one of Table (3).

PINN model Accuracy

λ5 aRMSE aMAE µ error σ error aRcorr aR2

3C1r 10 1.591e-02 1.071e-02 30.6 20.2 8.218e-01 6.948e-01

3C1 1 5.354e-03 3.03e-03 8.1 6.8 9.704e-01 9.413e-01

3C1r 0.1 1.262e-03 6.522e-04 1.4 1.0 9.983e-01 9.964e-01

3C1r 0.01 2.156e-03 1.13e-03 1.4 2.1 9.948e-01 9.893e-01

3C1r 0 2.827e-03 1.565e-03 4.1 2.2 9.949e-01 9.894e-01

Table 8: Ra = 2·109 study: accuracy details for PINN models with various relaxed constraint;

the caption is similar to the one of Table (5). Best relaxed PINN model is obtained for

λ5 = 0.1.

(a)
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

T

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

f T

DNS
PINN

PINNr

(b)

Figure 8: PINN predictive capabilities for RB flow at Ra = 2 · 109: comparisons between

standard (3C1) and relaxed (3C1r, λ5 = 0.1) approaches. Temperature scatter plots (a) and

probability density function (b) compared to the reference DNS. The reference pdf is computed

from the full DNS while the PINNs pdf are evaluated on the predicted test sample.

out on the full DNS. That is to say that the best model was used to predict

the solution at the coordinates of the full DNS referenced hereinbefore (i.e. on

29

a sample of size NT = 129 × 65 × 219 × 249, corresponding to a doubling of

the spatial resolution in each direction and a tripling of the temporal resolution

compared to the training sample). Very impressively, the errors computed in530

the relative L2 norm were only: 0.3% for the temperature, 1.79% for vx, 2.708%

for vy, 3.416% for vz and 4.038% for the pressure, respectively.

Figures (8) present the scatter plot of the PINN temperature results of case 3C1

and 3C1r (λ5 = 0.1) (a), and the corresponding pdf compared to the reference

DNS. The difference is for instance very striking when looking at the way the535

approximation is now capable of sharply capturing the long tail of the skewed

temperature probability density function (PDF). This asymmetric PDF shape

is typical of the mixing layer [39], in which the training domain is placed. The

long quasi-exponential tail for large temperature fluctuations is the signature of

the travelling hot plumes, intermittently passing through the domain. Even if540

temperature is only scrutinized here, quantitative improvements of the PINNr

approach do occur for all flow variables. On the contrary, it can be seen that the

original PINN approach miss a large part of the warm plumes, but especially

the cold (descending) ones.

Figures (9) were chosen to show an example on how the surrogate is capable545

of accurately predicting a strong small plume with very anisotropic structure,

despite being located close to the domain boundaries and occurring at a time

instant never visited during training. It is remarkable how well the intricate

temperature distribution within the plume is approached by PINNr.

5. Discussion550

5.1. Importance of boundary information: data vs. penalty padding

The previous discussion based on our results confronted to a literature re-

view, clearly points to the importance of the boundary data information in the

various PINN formulations. If no training data are used from the bulk, i.e.

only the residuals are to be evaluated (for which knowledge of the differential555

operator and PDEs inputs suffice), initial and boundary data of the full solution

30

(a) (b) (c)

(d) (e) (f)

Figure 9: Comparison of some ground truth (DNS) (a,d), PINNr-predicted (3C1r, λ5 = 0.1)

(b,e) and standard PINN-predicted (3C1) (c,f) instantaneous sliced fields with a thin sheet-

like plume located at the bottom of the domain. Top row: vertical flow velocity vz(·, y0 =

0.25, ·, t = 290.83) and bottom row: temperature T (x0 = 0.82, ·, ·, t = 290.83) fields. The time

instant is chosen so as to correspond to a DNS snapshot that is not included in the training

database. Predictions are requested on the fine DNS spatial grid.

state (which are implicitly included into the formulation of the PDEs) must be

provided. With this approach, velocity, temperature and pressure data would

therefore be needed initially and at the boundaries of the training domain. We

will refer to this approach as the plain vanilla one.560

Our motivation was different with a desire to rely mainly on temperature data

from the bulk [15]. Unlike two-dimensional laminar flow problems, it was noticed

in [16] that for more complex convective three-dimensional flows, temperature

data was not sufficient (problem of well-posedness) to satisfactorily train the

31

model, and information relative to flow velocity boundary conditions were also565

necessary. This is indeed something that we have confirmed in previous studies

as well as the importance of the positioning of the training domain relative to the

flow features [40]. For our numerical experiments, DNS fluid velocity from the

domain boundaries (except the top one) is used to complement the temperature

data. The dimensionality of this information being lower, for instance for case570

1Ref: |vDNS
∂Ω† | = 4628 at each given time, the small mini-batch size that we use

at each training iteration (MB = 2000) collects (on average due to the random

sampling) about (MB/100snapshots)/5faces = 4 flow velocity data points per face

which is a small number. Nevertheless, for each epoch based on the tempera-

ture data, the algorithm cycles more than once (here about 4 times) through575

the fluid velocity boundary values, therefore using this information many times.

It will be interesting to further quantify the impact of the boundaries informa-

tion on the method efficiency. This could be achieved by playing with the ratio

of training data points chosen at the boundaries vs. the inside of the domain.

The penalty padding that we have proposed in the previous section can also be580

handy in this case. It comes to play as a regularization over the spatial and/or

temporal zones surrounding the training boundaries which are often regions of

poor accuracy of the PINN surrogate. It seems to complement the local bound-

ary data and blends the solution nicely across the chosen boundaries, resulting

in a noticeable global accuracy improvement. Future works need to be pursued585

in order to determine how to improve this technique, e.g. choice of the padding

domains extent and shapes, distribution of the residual points density, choice of

PDEs to enforce, etc.

It is important to check if the padding regularization may substitute (at least

in part) the amount of boundary data required for learning. That is we wish to590

reduce the training data at the boundaries relative to the padding penalty. To

this end, a test was carried out in order to infer on the importance of missing

boundaries information: the best padded case (1P6) was rerun without includ-

ing velocity data on certain domain faces covered by the padding. To make

things clear, only velocity data at the bottom, back and left faces were pro-595

32

vided during training, while velocity at front (respectively right) face located at

x = 0.7 (respectively y = 0.7) were not provided. The idea was to check if miss-

ing local boundary information could be supplemented thanks to the padded

neighbor region filled with low PDE residuals enforcement points. The results

(not reported here) were deceptive with an averaged error close to 20%. This600

shows that the boundary information remains very important for this type of

flows, especially when the amount of bulk labeled data is on the lower side. This

finding is consistent with recent works applied to incompressible internal flows

where a structured DNN architecture was devised in order to automatically en-

force (in a “hard” way) initial/boundary conditions [29]. In this particular case,605

it was not necessary to include any bulk simulation data [32], the DNN being

trained by solely minimizing the residuals of the Navier-Stokes equations.

Another question relates to the relevance of the padding technique in case

the PINN domain overlaps the entire computational domain. If we retain the

idea that the padding acts as a regularization on the surroundings of the studied610

domain, a possible extension of our approach would be to add an external volume

to weakly impose boundary conditions on its frontiers. An elegant formulation

would then be to consider the initial domain and its extension as a whole over

which an (enhanced) set of PDEs (with proper forcing terms accounting for

the boundary conditions) would be enforced with the PINN formulation, in a615

manner analogous to what is done for immersed boundaries [41].

5.2. Impact of the composite loss regularity

Physics-guided regularization of the loss function acts very differently than

the more standard (L1 or L2) norm-based ML regularization techniques. In-

deed the underlying differential operator makes the loss landscape very hard620

to optimize, and from a PDE perspective, if the operator is ill-conditioned the

PINN generalization will most likely contain large errors. PINNs seek to find a

neural network that minimizes the loss in a particular class of neural networks.

The minimizer then serves as an approximation to the solution of the PDEs. It

is accepted that PINNs accuracy depends on an approximation error (dictated625

33

by the choice of the class of neural networks considered), an optimization error

(which depends on how well the global minimizer is found), and an estimation

error (which comes from the use of finite data). While balancing these dif-

ferent sources of errors seems a reasonable goal, very recent papers started to

build rigorous foundations of the approximations of PDEs by PINNs, and are630

particularly interested by the generalization error of plain vanilla PINNs for var-

ious systems (e.g. linear elliptic/parabolic, nonlinear viscous scalar conservation

laws, etc.) [32, 31]. These papers focus on a simpler PINNs implementation, for

which the goal is only to minimize the PDEs residual, at training points cho-

sen as the quadrature points. For a given choice of data sampling/quadrature,635

they obtain estimates for the generalization error in terms of the training error

and number of training samples, showing that under the assumption of a small

training error, increasing the number of samples at which residuals are evalu-

ated guarantees convergence of the approximation. While - our formulation is

slightly different and - a fully turbulent convection regime is not yet covered640

by the theory, we thought that it was interesting to interpret our results in the

light of these findings.

Figuring a priori the amount of data information necessary to the PINN train-

ing, is a complex matter because of the interplay of many different terms in-

volved in the composite loss function. Indeed the lost function, that is just an645

evolving scalar, encapsulates various error terms related to the data and to the

PDEs-based penalties. This apparently simple formulation hides its underlying

complexity because LLabel gathers several data-fit terms, possibly including ini-

tial, boundary and internal data. It was for instance shown that this approach

might lead to an unstable imbalance in the magnitude of the back-propagated650

gradients during model training using gradient descent [27]. Some formulations

have proposed a regularization parameter that acts as a weight in front of the

penalty term.

For the relaxation method we have proposed, we have fixed the number of data

and residual points and focused instead on a way of improving the optimization655

error by relaxing some of the underlying PDEs. In reference to the aforemen-

34

tioned works, we believe that our generalization error has therefore lowered

thanks to a lower training error induced by a better conditioned loss function

to minimize. A better way to pursue this approach would probably be to do

it dynamically as it is straightforward to monitor the distribution of the back-660

propagated gradients of each individual loss terms with respect to the neural

network parameters in each hidden layer during training. Some preliminary

work on adaptive dynamic weights strategy, shows that for turbulent flows (cf.

section 4 in [16]), the perfect balance of the residuals gradients is not easily

reachable and asks the question of the proper normalization with careful tuning665

of those anisotropic weights.

5.3. Perspectives

The results obtained in this paper open the way for more involved parametric

surrogate modeling (useful in the context of design optimization, model calibra-

tion, sensitivity analysis, etc), i.e. nonlinear problem parametrized by some670

(potentially not well-known) physical quantities, playing the role of additional

inputs to our PINNs models. Despite the large body of literature on uncertainty

quantification, including aleatoric and epistemic uncertainties in fluid mechan-

ics [42], few works have attempted to propose DNN-based scalable algorithms

for parametric surrogate CFD modeling, due to the lack of a posteriori error675

estimation and convergence theory. Moreover, training data is a severe bot-

tleneck in most parametric fluid dynamics problems since each data point in

the parameter space requires an expensive numerical simulation based on first

principles.

Nevertheless, some numerical perspectives may be drafted by examining some680

of the limiting computational aspects of the PINN approach. The algorithm

infuses the system governing equations into the network by modifying the loss

function with a contribution acting as a penalizing term to constrain the space

of admissible solutions. The high-dimensional non-convex optimization prob-

lem of this composite loss function involves a large training cost related to the685

time-integration of the nonlinear PDEs and the depth of the neural network ar-

35

chitectures. We have seen that the approach may be efficient despite a training

based on a very sparse data sample, while other approaches investigate variant

sampling strategy, e.g. [43, 44].

But in the more demanding case of parametric surrogate construction, an effort690

should be pursued on the front of efficient data sampling strategy. Indeed, opti-

mal sampling would ensure a right balance and therefore good complementarity

between the information provided by the PDEs and by the data. A poten-

tial breakthrough would be to propose a dynamic selection of relevant data for

the PINN learning, operating synchronously with the physical simulation, and695

allowing sparser spatial-temporal sampling, responding in part to the storage

problem of DNS simulations. Moreover, it could be beneficial to simultaneously

build a data index structure allowing to benefit from importance sampling, e.g.

importance sampling tree technique [45].

In the case of parametric surrogate modeling, another interesting approach700

would be the one of transfer learning (TL). The TL domain seeks precisely

to transfer the knowledge acquired to a training dataset to better process a new

so-called “target dataset”. The transfer can therefore take the form of a parallel

relearning of the neural network taking into account the evolving parameters

(geometric or physical for instance).705

More importantly, we have experienced the high sensitivity of the learning pro-

cess to the way we enforce (some of) the PDEs in the PINNs framework and

the impact it had on the global accuracy of the scheme. Inspired by the work

of Perdikaris and co-authors [27], we believe it would be worthwhile tracking

the gradients of each individual terms in the PDEs constraints with respect to710

the weights in each hidden layer of the neural network, rather than tracking

the gradients of the aggregated loss. This will help monitoring the distribution

of those back-propagated gradients during training and propose a learning rate

annealing algorithm that utilizes gradient statistics to balance the interplay be-

tween the different terms in the regularization components of the composite loss715

function. More specifically, due to the stochastic nature of the gradient descent

updates, updated learning rates should be computed as running averages of pre-

36

vious values and do not need to be updated at each iteration of the optimization

solver.

Other perspectives and current works involve – the decomposition of the720

computational domain into several training sub-domains in order to better scale

locally-adapted PINN models, – handling of aleatoric uncertainty associated

with noisy training data by means of physics-informed Bayesian neural net-

works [46], – the mixing of various labeled data sources – hybrid regularization

techniques combining physics-informed regularization with more classical L2,725

L1 and/or dropout regularizations.

6. Appendix

In this Appendix, a preliminary study is carried out to determine reference

PINN models that will be used in Section (3.3).

In particular, several models were trained to understand the effect of - the730

architecture complexity, - the size and sampling frequency of the training dataset

and - the change in the time acquisition range. Table (9) provides a summary

of the accuracy of the different models considered. The model names – starting

with a 1·, refer to the cases with training and testing over a short time window

∆Ts, while the names – starting with a 2· refer to the cases with a longer time735

window ∆Tl. Another difference resides in the way models are tested. The first

models are always tested on an independent sample of points coming from the

same database as the one used for training.

The second models are always tested on an independent sample of points

coming from a different database (e.g. denser in time) than the one used for740

training.

We see how the 10-layer PINN architecture with large amount of data and

residual evaluations provide the best overall results for the first models. With

less data sampled in space (i.e. conserving the same temporal resolution), cases

1C5-6 show some reasonable decline of their accuracy. With less data sampled745

in time (i.e. conserving the same averaged spatial sampling frequency), cases

37

1C7-8 exhibit a worse decay of their predictive capability.

PINN model ` Training Testing

size (NL, NR) database size (NT) database

1C3 6 (2e6, 2e6) 1Db1 5.688e5 1Db1

1C4 8 (2e6, 2e6) 1Db1 5.688e5 1Db1

1Ref 10 (2e6, 2e6) 1Db1 5.688e5 1Db1

1C5 10 (1e6, 1e6) 1Db1 5.688e5 1Db1

1C6 10 (5e5, 5e5) 1Db1 5.688e5 1Db1

1C7 10 (1e6, 1e6) 1Db2 2.844e5 1Db2

1C8 10 (5e5, 5e5) 1Db3 1.422e5 1Db3

2Ref 10 (2e6, 2e6) 2Db2 1.131912e6 2Db1

2C2 10 (1e6, 1e6) 2Db2 1.131912e6 2Db1

2C3 10 (5e5, 5e5) 2Db2 1.131912e6 2Db1

Table 9: Training and testing details of the `-layer PINN models considered in this study.

Each number of points spans space/time domain. When a single database is mentioned, it

means that this database is used for the labeled data and for the residual points (i.e. residuals

are evaluated at some DNS grid points). Reference models are highlighted in bold.

PINN model Accuracy

aRMSE aMAE µ error σ error aRcorr aR2

1C3 3.701e-03 2.418e-03 0.4 1.6 9.986e-01 9.969e-01

1C4 2.468e-03 1.612e-03 0.5 1.2 9.994e-01 9.985e-01

1Ref 2.255e-03 1.479e-03 0.5 1.1 9.995e-01 9.988e-01

1C5 3.156e-03 2.125e-02 0.6 1.6 9.990e-01 9.976e-01

1C6 7.134e-03 4.802e-03 0.5 3.3 9.944e-01 9.880e-01

1C7 4.952e-03 2.841e-03 0.5 2.5 9.968e-01 9.928e-01

1C8 4.485e-03 2.999e-03 0.3 1.7 9.976e-01 9.950e-01

2Ref 4.163e-03 2.469e-03 0.5 1.7 9.982e-01 9.961e-01

2C2 6.313e-03 4.271e-03 0.5 2.4 9.959e-01 9.914e-01

2C3 7.571e-03 5.156e-03 0.5 2.8 9.943e-01 9.881e-01

Table 10: Accuracy of PINN models compared to the DNS simulation. Statistics are computed

from the available testing dataset and collected for each component of the flow fields u =

(v, p, T). They are then averaged for aRMSE, e.g. aRMSE = 1
nu

∑nu
j=1

(
1

NT

∑NT
i=1(u

(i)
PINN,j−

u
(i)
DNS,j)2

)1/2
, aMAE, aRcorr and aR2.

38

When adequately tuned, PINN models demonstrate a fine expressivity. For

instance, for the training of case 2C3, a half-a-million time-space scattered

temperature data points over 50 snapshots and available boundary velocity750

data points (on ∂Ω†) were used and provided a very good average accuracy

of aR2 = 0.988 over a testing sample encompassing 100 snapshots. This train-

ing corresponds to a moderate sampling of the DNS data: i.e. temperature data

were randomly collected with a temporal sampling of ∆t = 0.2, that is every

80 DNS time steps and a spatial sampling of about 20% of the (26 × 26 × 38)755

available DNS temperature data points at each time step.

An important matter to this study was the one of the PINNs robustness to lower

resolution in the observation data. While it was shown that we were able to

“replay” DNS simulations with the PINNs models, the PINNs accuracy depends

on many factors including the amount of data and regularization used and the760

choice of the physical quantity under scrutiny. For this particular application,

DNS temperature data inside the domain was preferentially provided, justifying

the very good predictive accuracy obtained for the temperature and the vertical

component of the flow velocity. Indeed, vz is strongly correlated to the temper-

ature gradient due to the vertical buoyant forces induced by the consideration765

of the gravity. In plane flow velocities which magnitude is lower were in general

a bit less accurate. Finally, the pressure field was the least accurate predicted

quantity. We emphasize that no data was provided for the pressure as boundary

or initial conditions, which was a hidden state and was obtained indirectly via

the incompressibility constraint without splitting the Navier-Stokes equations.770

The loss function is typically minimized using SGD algorithm and a large num-

ber of training points can be randomized within each SGD iteration. Therefore,

it is also the relative amount of points density which are sampled from those

data and PDE residuals penalization sources, that are weighting either explic-

itly or implicitly (depending on the formulation) the importance of the different775

terms. In this paper, we have decided to keep our approach simple and to fine

tune the error balance by adjusting sampling density of data and residual points.

39

Acknowledgments. The DNS database has been built using granted access to

the HPC resources of IDRIS under allocation 2a0326 made by GENCI. We

thank Dr. Yann Fraigneau for his help and great expertise in the development780

of the DNS SUNFLUIDH solver.

References

[1] J. N. Kutz, Deep learning in fluid dynamics, Journal of Fluid Mechanics

814 (2017) 1–4.

[2] S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for fluid785

mechanics, Annual Review of Fluid Mechanics 52 (2020) 477–508.

[3] S. El Garroussi, S. Ricci, M. De Lozzo, N. Goutal, D. Lucor, Tackling

random fields non-linearities with unsupervised clustering of polynomial

chaos expansion in latent space: application to global sensitivity analysis

of river flooding, Stochastic Environmental Research and Risk Assessment790

(2021) 1–26.

[4] S. Cheng, J.-P. Argaud, B. Iooss, A. Ponçot, D. Lucor, A graph clustering

approach to localization for adaptive covariance tuning in data assimilation

based on state-observation mapping, Mathematical Geosciences (2021) 1–

30.795

[5] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[6] J. Ling, R. Jones, J. Templeton, Machine learning strategies for systems

with invariance properties, Journal of Computational Physics 318 (2016)

22–35.

[7] H. Xiao, P. Cinnella, Quantification of model uncertainty in RANS simu-800

lations: A review, Progress in Aerospace Sciences 108 (2019) 1–31.

[8] K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age of

data, Annual Review of Fluid Mechanics 51 (2019) 357–377.

40

[9] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neu-

ral networks: A deep learning framework for solving forward805

and inverse problems involving nonlinear partial differential equa-

tions, Journal of Computational Physics 378 (2019) 686 – 707.

doi:https://doi.org/10.1016/j.jcp.2018.10.045.

URL http://www.sciencedirect.com/science/article/pii/

S0021999118307125810

[10] F. Chillà, J. Schumacher, New perspectives in turbulent Rayleigh-Bénard

convection, Eur. Phys. J. E 35 (2012) 58.

[11] A. Castillo-Castellanos, A. Sergent, B. Podvin, M. Rossi, Cessation and

reversals of large-scale structures in square Rayleigh–Bénard cells, J Fluid

Mech. 877 (2019) 922 – 954.815

[12] J. Kim, C. Lee, Prediction of turbulent heat transfer using Convolutional

Neural Networks, Journal of Fluid Mechanics 882 (2020).

[13] E. Fonda, A. Pandey, J. Schumacher, K. R. Sreenivasan, Deep learning in

turbulent convection networks, Proceedings of the National Academy of

Sciences 116 (18) (2019) 8667–8672.820

[14] S. Pandey, J. Schumacher, Reservoir computing model of two-dimensional

turbulent convection, arXiv preprint arXiv:2001.10280 (2020).

[15] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learn-

ing velocity and pressure fields from flow visualizations, Science 367 (6481)

(2020) 1026–1030.825

[16] X. Jin, S. Cai, H. Li, G. E. Karniadakis, NSFnets (Navier-Stokes flow

nets): Physics-informed neural networks for the incompressible Navier-

Stokes equations, arXiv preprint arXiv:2003.06496 (2020).

[17] A. Meade, A. Fernandez, The numerical solution of linear or-

dinary differential equations by feedforward neural networks,830

41

Mathematical and Computer Modelling 19 (12) (1994) 1 – 25.

doi:https://doi.org/10.1016/0895-7177(94)90095-7.

URL http://www.sciencedirect.com/science/article/pii/

0895717794900957

[18] I. E. Lagaris, A. C. Likas, D. G. Papageorgiou, Neural-network methods835

for boundary value problems with irregular boundaries, IEEE Transactions

on Neural Networks 11 (5) (2000) 1041–1049.

[19] I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving

ordinary and partial differential equations, IEEE transactions on neural

networks 9 (5) (1998) 987–1000.840

[20] K. S. McFall, J. R. Mahan, Artificial neural network method for solution

of boundary value problems with exact satisfaction of arbitrary boundary

conditions, IEEE Transactions on Neural Networks 20 (8) (2009) 1221–

1233.

[21] M. Kumar, N. Yadav, Multilayer perceptrons and radial basis function845

neural network methods for the solution of differential equations: A survey,

Computers & Mathematics with Applications 62 (10) (2011) 3796 – 3811.

doi:https://doi.org/10.1016/j.camwa.2011.09.028.

[22] S. Mall, S. Chakraverty, Application of legendre neural network for solving

ordinary differential equations, Applied Soft Computing 43 (2016) 347 –850

356. doi:https://doi.org/10.1016/j.asoc.2015.10.069.

[23] J. Berg, K. Nyström, A unified deep artificial neural network approach to

partial differential equations in complex geometries, Neurocomputing 317

(2018) 28–41.

[24] C. Yang, X. Yang, X. Xiao, Data-driven projection method in fluid simu-855

lation, Computer Animation and Virtual Worlds 27 (3-4) (2016) 415–424.

[25] E. Haghighat, R. Juanes, SciANN: A Keras/TensorFlow wrapper for scien-

tific computations and physics-informed deep learning using artificial neural

42

networks, Computer Methods in Applied Mechanics and Engineering 373

(2021) 113552. doi:https://doi.org/10.1016/j.cma.2020.113552.860

[26] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M. W. Mahoney, Char-

acterizing possible failure modes in physics-informed neural networks, Ad-

vances in Neural Information Processing Systems 34 (2021).

[27] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient

flow pathologies in physics-informed neural networks, SIAM Journal on865

Scientific Computing 43 (5) (2021) A3055–A3081.

[28] V. Dwivedi, N. Parashar, B. Srinivasan, Distributed physics informed neu-

ral network for data-efficient solution to partial differential equations, arXiv

preprint arXiv:1907.08967 (2019).

[29] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows870

based on physics-constrained deep learning without simulation data, Com-

puter Methods in Applied Mechanics and Engineering 361 (2020) 112732.

doi:https://doi.org/10.1016/j.cma.2019.112732.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,875

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heteroge-880

neous systems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

[31] Y. Shin, J. Darbon, G. E. Karniadakis, On the convergence and generaliza-

tion of physics informed neural networks, arXiv e-prints (2020) arXiv–2004.

[32] S. Mishra, R. Molinaro, Estimates on the generalization error of physics885

43

informed neural networks (PINNs) for approximating PDEs, arXiv preprint

arXiv:2006.16144 (2020).

[33] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations

by back-propagating errors, nature 323 (6088) (1986) 533–536.

[34] Y. Bengio, Practical recommendations for gradient-based training of deep890

architectures, in: Neural networks: Tricks of the trade, Springer, 2012, pp.

437–478.

[35] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980 (2014).

[36] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-895

forward neural networks, in: Proceedings of the thirteenth international

conference on artificial intelligence and statistics, 2010, pp. 249–256.

[37] J. Guermond, P. Minev, J. Shen, An overview of projection methods for

incompressible flows, Comp. Meth. Appl. Mech. Eng. 195 (44) (2006) 6011

– 6045. doi:https://doi.org/10.1016/j.cma.2005.10.010.900

[38] M. Belkadi, A. Sergent, Y. Fraigneau, B. Podvin, On the role of roughness

valleys in turbulent Rayleigh-Bénard convection, J. Fluid Mech. 923 (A6)

(2021).

[39] Y. Wang, X. He, P. Tong, Turbulent temperature fluctuations in a closed

Rayleigh–Bénard convection cell, J. Fluid Mech. 874 (2019) 263 – 284.905

[40] A. Agrawal, D. Lucor, Y. Fraigneau, B. Podvin, A. Sergent, PDE-

constrained neural network for turbulent Rayleigh-Bénard convection, in:

Workshop on Frontiers of Uncertainty Quantification in Fluid Dynamics

(FrontUQ19), 11–13 September 2019.

URL https://frontuq19.files.wordpress.com/2019/09/frontuq19_910

book_of_abstracts-1.pdf

44

[41] T. Engels, D. Kolomenskiy, K. Schneider, J. Sesterhenn, Numerical simu-

lation of fluid–structure interaction with the volume penalization method,

Journal of Computational Physics 281 (2015) 96–115. doi:https://doi.

org/10.1016/j.jcp.2014.10.005.915

[42] H. Bijl, D. Lucor, S. Mishra, C. Schwab (Eds.), Uncertainty Quantification

in Computational Fluid Dynamics, Vol. 92 of Lecture Notes in Computa-

tional Science and Engineering, Springer, Cham, 2013.

[43] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neu-

ral networks for high-speed flows, Computer Methods in Ap-920

plied Mechanics and Engineering 360 (2020) 112789. doi:https:

//doi.org/10.1016/j.cma.2019.112789.

URL https://www.sciencedirect.com/science/article/pii/

S0045782519306814

[44] S. Mishra, T. K. Rusch, Enhancing accuracy of deep learning algorithms by925

training with low-discrepancy sequences, arXiv preprint arXiv:2005.12564

(2020).

[45] O. Canevet, C. Jose, F. Fleuret, Importance sampling tree for large-scale

empirical expectation, in: M. F. Balcan, K. Q. Weinberger (Eds.), Proceed-

ings of The 33rd International Conference on Machine Learning, Vol. 48 of930

Proceedings of Machine Learning Research, PMLR, New York, New York,

USA, 2016, pp. 1454–1462.

URL http://proceedings.mlr.press/v48/canevet16.html

[46] L. Yang, X. Meng, G. E. Karniadakis, B-PINNs: Bayesian physics-informed

neural networks for forward and inverse PDE problems with noisy data,935

Journal of Computational Physics 425 (2021) 109913.

45

