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Why am I not getting the right answer?" is a question many Knowledge Base users may ask themselves. In particular, novice users can easily make mistakes and find differences between the answer they expected and the answer they got. This problem is known as the unsatisfactory answer problem. A subproblem, where no answers are returned, has been widely studied and identifying failure causes can help users modify their queries to fit their requirements. But users may be unhappy with their results for multiple other reasons: they may be overwhelmed by too many answers, expect a particular answer that is not included, or even encounter a combination of these problems. In this paper, we classify the various types of unsatisfactory answers, and propose algorithms to compute generalized failure causes. We evaluate the performance of our algorithms and show that they perform comparably to existing problemspecific methods, while being more extensive.

Introduction

A Knowledge Base (KB) is a solution for storing data as RDF triples (subject, predicate, object). KBs are widely used in industry and academia. Well-known examples of KBs are DBpedia [START_REF] Lehmann | DBpedia -A Largescale, Multilingual Knowledge Base Extracted from Wikipedia[END_REF] and Google's Knowledge Vault [6]. Users unfamiliar with the technology are likely to need to extract information from a KB. Specific interfaces can allow for text based searching, but the most common method for retrieving information from a KB is the SPARQL query language [START_REF] Harris | Sparql 1.1 query language[END_REF]. Novice users can struggle to write queries, inaccurately describing their requirements. Therefore, mistakes or misconceptions may appear, causing unexpected or unsatisfactory answers. Mistakes refer to the user incorrectly writing their query, for example misspelling a term. Misconceptions refer to a user's incorrect understanding of a KB [START_REF] Webber | Varieties of user misconceptions: Detection and correction[END_REF]. There are five unexpected answers problems, each linked to a why-question: no answers (why empty), too few answers (why so few ), too many answers (why so many), missing answers (why not), and unwanted answers (why so). So far each problem has been studied separately, so combined problems are difficult to handle. These can occur if fixing one type of unexpected answer creates another (i.e. turning an insufficiently restricted query into a too restrictive one), or in situations with precise cardinality requirements.

Consider the example of a hospital KB, and a user who wants information on the patients who died in the intensive care unit (ICU) and suppose the user expects around 100 answers based on their knowledge of the hospital. A section of the KB and succession of query attempts are shown in figure 1. The user writes a SPARQL query (b), but receives no answers. From their contextual knowledge, the user determines there must be a mistake somewhere. However they have no way of knowing what is causing the problem, as there are several possibilities. There could be an inappropriate term within the query (ICU rather than Intensive Care Unit), or some incompatible properties (dead patients are not being treated by anyone). Once the user manages to produce some results (d), they find over 10,000 answers, which is far too many to be able to deal with. Again they will wonder where the mistake is, as they have fixed the initial problem, but created another. Some possible explanations for the overabundant answers are having two triple patterns whose combination causes a multiplication of the number of answers (illness and the people treating a patient) or having an insufficiently constrained variable. All in all, a user faced with unsatisfactory answers must undergo a time-consuming and frustrating trial and error process to fix their query without a guarantee to receive the expected answers in the end. To help a user facing an unexpected answer, there are two approaches: explain what is causing these answers, or suggest changes to the query. Existing work focusing on a specific type of unexpected answers has mainly explored the query modification solution [START_REF] Moises | Dealing with empty and overabundant answers to flexible queries[END_REF][START_REF] Song | Answering why-questions for subgraph queries in multi-attributed graphs[END_REF]. The answer explanation strategy has been successfully used to deal with empty answers [START_REF] Fokou | Cooperative techniques for SPARQL query relaxation in RDF databases[END_REF] and was shown to increase the performance of subsequent query modification steps [2, [START_REF] Jannach | Techniques for fast query relaxation in content-based recommender systems[END_REF][START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF]. Figure 2 shows how identifying failure causes would help to deal with the previous query by studying its constituent parts. The lattice shows the successful queries, and those that fail either because they have empty answers or too many answers (for a threshold of 200 in this example). We are interested in providing the MFIS (Minimal Failure Inducing Subqueries) and XSS (maXimal Succeeding Subqueries). The MFIS are the smallest parts of the query that induce unexpected answers if they are part of a query and the XSS are largest parts of the query that produce acceptable answers. Here, the MFIS show that the inclusion of triple pattern t 4 : ?n ward ICU with any other triple pattern causes unexpected answers (either because there will be empty answers if t 3 is also included, or because there will be too many answers with another triple pattern). Indeed, the user has used the property ward which applies to a patient, but with subject n which in the context of the query is meant to indicate a member of the hospital staff. This query could be fixed by removing triple pattern t 4 , therefore replacing the query with the XSS t 1 t 2 t 3 t 5 , or by modifying the predicate in t 4 from ward to worksIn. The interpretation of MFIS and XSS to fix a query is beyond the scope of this paper.

In this paper, we apply the failure cause definition used for the why empty and why so many problems, called Minimal Failure Inducing Subquery (MFIS) to the other elementary problems in order to propose a generalized system to deal with unsatisfactory answers. We will show that our method can cope with combinations of unexpected answers and we will perform experimental evaluation to determine its usability on real data from DBpedia along with real queries from the Linked SPARQL Queries Dataset [START_REF] Saleem | LSQ: The Linked SPARQL Queries Dataset[END_REF].

We start by exploring related work for each unexpected answer problem in section 2. In section 3, we give the elementary notions of RDF, and introduce a classification for unexpected answers and related properties. Section 4 presents the algorithms for computing failure causes. We perform experimental evaluation of our algorithms in section 5 and conclude with future prospects in section 6.

Related Work

Unexpected answers have been studied using both a data based and a query based approach. The data based approach provides information on data provenance: operations that led to missing information [START_REF] Huang | On the provenance of non-answers to queries over extracted data[END_REF] or the data source producing problematic answers [START_REF] Woodruff | Supporting fine-grained data lineage in a database visualization environment[END_REF]. These methods can help database providers enhance data quality, but rarely help end users with no control over the KB content. On the other hand, the query based approach uses the hypothesis that the user incorrectly specified their query so it does not match their requirement.

To fix the unexpected answer problem, most query-based methods modify the user query by removing, changing or adding triple patterns. Various modification strategies have been used for specific problems. For the why empty and why so many problems in graph queries, maximum common connected subgraphs are computed by removing parts of the initial query to create the largest succeeding query graph [START_REF] Vasilyeva | Answering "why empty?" and "why so many?" queries in graph databases[END_REF]. For the same problems in KBs, maXimal Succeeding Subqueries are computed by triple pattern suppression [9]. For the why not problem in relational databases, a similarity metric based on edit distance is used to rank modified queries [START_REF] Tran | How to conquer why-not questions[END_REF]. Exact algorithms and heuristics are used for the why not and why so problems in knowledge graphs, to change a query step by step to include new answers [START_REF] Song | Answering why-questions for subgraph queries in multi-attributed graphs[END_REF]. To deal with the why so many problem with fuzzy queries, intensification techniques can be used [START_REF] Moises | Dealing with empty and overabundant answers to flexible queries[END_REF]. New queries are found via an exhaustive search [START_REF] Vasilyeva | Answering "why empty?" and "why so many?" queries in graph databases[END_REF][START_REF] Song | Answering why-questions for subgraph queries in multi-attributed graphs[END_REF], or using semantic information to chose more relevant queries [START_REF] Tran | How to conquer why-not questions[END_REF]. New queries may still produce unexpected answers, so finding queries that return the desired answers remains a trial and error process.

To address this issue, some query based techniques identify the reasons for unexpected answers. Failure causes were introduced for the why empty problem: false presuppositions are returned to the user if their query produces no answers [START_REF] Kaplan | Cooperative responses from a portable natural language query system[END_REF][START_REF] Motro | Seave: A mechanism for verifying user presuppositions in query systems[END_REF]. Minimal Failing Subqueries (MFS) have then been used to describe the smallest parts of a query that lead to empty answers [9, [START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF][START_REF] Dellal | On addressing the empty answer problem uncertain knowledge bases[END_REF]. A related notion, Minimal Failure Inducing Subquery, is used for the why so many problem [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF]. Failure causes have also been used in the why not problem in relational databases [START_REF] Bidoit | Query-based why-not provenance with nedexplain[END_REF], and KBs [START_REF] Wang | Answering why-not questions on SPARQL queries[END_REF] to identify the triple pattern or SPARQL operator responsible for an absent answer. To our knowledge, no query based failure causes have been studied for the why so few and why so problems, or combined problems.

Failure causes can be used to enhance query modification by focusing changes on the parts responsible for unexpected answers. MFS have been used in automated query modification systems dealing with empty answers [2, 14] and in interactive query rewriting frameworks, where users can select parts to be relaxed [START_REF] Jannach | Techniques for fast query relaxation in content-based recommender systems[END_REF][START_REF] Mcsherry | Incremental relaxation of unsuccessful queries[END_REF]. In RDF, a hybrid method balances the MFS computation cost and the gain of not executing modified queries [START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF]. Thus, the efficiency of query modification methods can be improved if unexpected answers have been explained first.

Problem Formalization

We start by describing the formalism and semantics of RDF and SPARQL necessary for the paper, using notations and definitions from Pérez et al. [START_REF] Pérez | Semantics and complexity of SPARQL[END_REF]. We then give definitions for unexpected answers and introduce related properties. For space considerations, some proofs are not provided here.

Basic Notions

Data Model We consider three pairwise disjoint infinite sets: I the set of IRIs, B the set of blank nodes, and L the set of literals. An RDF triple is a triple (subject, predicate, object) ∈ (I ∪B)×I ×(I ∪B ∪L). An RDF database stores a set of RDF triples. We also consider V a set of variables disjoint from I ∪ B ∪ L.

RDF Queries A triple t (subject, predicate, object) ∈ (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V
) is a triple pattern. We denote by s(t), p(t), o(t), and var(t) the subject, predicate, object and variables of t. In this paper, we will consider RDF queries defined as conjunctions of triple patterns

Q = SELECT * W HERE t 1 • • • t n , which we write as Q = t 1 • • • t n .
We write that t is a triple pattern appearing in a query Q by t ∈ Q. The variables of a query are var(Q) = var(t i ). We define an order on queries using triple pattern inclusion. Given

Q = t 1 • • • t n , Q ′ = t i • • • t j is a subquery of Q, denoted by Q ′ ⊆ Q, iff ∀t ∈ Q ′ , t ∈ Q. Then Q is a superquery of Q ′ . For a query Q = t 1 • • • t n and a triple pattern t / ∈ Q, we denote the addition of t to Q by Q ∧ t = t 1 • • • t n t. This notation is extended to queries, so Q ∧ Q ′ refers to the conjunction of Q and Q ′ . Conversely for t ′ ∈ Q, removing t from Q is denoted by Q -t.
Query Evaluation A mapping µ from V to T is a partial function µ : V → T . For a triple pattern t, we denote by µ(t) the triple obtained by replacing the variables in t according to µ. The domain of µ, dom(µ), is the subset of V where µ is defined. The restriction of a mapping µ to a subset of variables var ⊆ V is denoted by µ |var and defined as a partial function µ |var : var → T , where ∀x ∈ var, µ |var (x) = µ(x). Two mappings µ 1 and µ 2 are compatible if ∀x ∈ dom(µ 1 ) ∩ dom(µ 2 ), µ 1 (x) = µ 2 (x). The join of two sets of mappings Ω 1 and Ω 2 is:

Ω 1 ▷◁ Ω 2 = {µ 1 ∪ µ 2 | µ 1 ∈ Ω 1 , µ 2 ∈ Ω 2 are compatible mappings}. The evaluation of a triple pattern t over a KB D, is [[t]] D = {µ | dom(µ) = var(t) ∧ µ(t) ∈ D}. The evaluation of a query Q = t 1 • • • t n over D is [[Q]] D = [[t 1 ]] D ▷◁ • • • ▷◁ [[t n ]] D .
Boolean Function A boolean function of n variables is a function on B n into B, where B is the set [0,1], n is a positive integer, and B n denotes the n-fold cartesian product of the set B with itself [START_REF] Crama | Boolean functions: Theory, algorithms, and applications[END_REF].

Unexpected Answers

There are many reasons why a user may be unsatisfied by the answer to their query. To formalize this, we define a failure condition, using the formalism of boolean functions, which takes as entry a query Q, and returns a boolean value describing whether its answer is satisfactory or not when executed on a given KB. The boolean function has n variables, (x 1 , ..., x n ) where n is the number of triple patterns of the initial query, and ∀i,

x i = 1 ⇐⇒ Q contains t i .
For a query Q and a KB D, we denote this property: F AIL(Q, D). There are five elementary types of query failure [START_REF] Jagadish | Making database systems usable[END_REF]. They are based on the query result [[Q]] D , and can be split into cardinality based, and content based properties.

Cardinality based failure conditions depend on the number of answers of a query. As such, it is not necessary to know the content of the answers to determine if the query succeeds or fails. The failure conditions will be based on a threshold value K to be determined by the user or the system. They are:

-Why so many:

F AIL >K (Q, D) = (|[[Q]] D | > K) for K ≥ 0. -Why so few : F AIL <K (Q, D) = (|[[Q]] D | < K) for K > 0. -Why empty: F AIL ∅ (Q, D) = (|[[Q]] D | = 0)
. This is a special case of Why so few with K=1.

Example 1. F AIL <2 (Q, D) is a failure property denoting that queries with under 2 answers fail. In the example in figure 1, t 1 t 3 t 4 and t 2 t 5 fail with respectively 0 and 1 answer. t 4 t 5 and t 1 t 2 t 5 succeed with respectively 3 and 2 answers.

Content based failure conditions are based on the content of the answers. In particular, a user is interested in obtaining or avoiding a particular mapping. The failure conditions will be based on a provided mapping µ w . They are:

-Why not : F AIL ̸ ⊆µw (Q, D) = (∀µ ∈ [[Q]] D : µ w and µ are not compatible) -Why so : F AIL ⊆µw (Q, D) = (∃µ ∈ [[Q]] D : µ w and µ are compatible)
For the content based failure condition to have meaning, the variables of the mapping must all be included in the query. As such, F AIL ̸ ⊆µw (Q, D) and F AIL ⊆µw (Q, D) are undefined if dom(µ w ) ̸ ⊆ var(Q). So when studying subqueries obtained by removing triple patterns, we will eliminate from the search space any query which does not respect this condition.

Example 2. For µ w , where dom(µ w ) = {p} and µ w (p) = p 2 , F AIL ̸ ⊆µw (Q, D) is a failure property denoting that queries where no answer has p 2 as the value for variable p fail. In figure 1, t 1 t 3 and t 2 t 5 fail, and t 4 t 5 succeeds. t 4 is not a valid query for this problem, as variable p from the mapping is missing.

For µ w , where dom(µ w ) = {n} and µ w (n) = p 2 , F AIL ⊆µw (Q, D) is a failure property denoting that queries where an answer has p 2 as the value for variable n fail. In figure 1, t 1 t 2 t 3 t 4 t 5 succeeds, and t 2 t 4 fails. t 1 is not a valid query for this problem, as variable n is missing.

These five elementary unexpected answers can be combined using the basic logical operators conjunction (∧), disjunction (∨) and negation (¬).

Negation For each problem, the negation can be expressed as another problem:

-¬(F AIL >K (Q, D)) = F AIL <K+1 (Q, D) -¬(F AIL ⊆µw (Q, D)) = F AIL ̸ ⊆µw (Q, D) -¬(F AIL ∅ (Q, D)) = F AIL >0 (Q, D)
Conjunction and Disjunction We define conjunction and disjunction based on the failure conditions:

-(F AIL 1 ∧ F AIL 2 )(Q, D) = F AIL 1 (Q, D) ∧ F AIL 2 (Q, D) -(F AIL 1 ∨ F AIL 2 )(Q, D) = F AIL 1 (Q, D) ∨ F AIL 2 (Q, D)

Relations Between Problems

The why not problem can be transformed into a why empty problem. We consider a query Q and a why not question µ w mapping some variables v to µ w (v). We build a new query Q ′ , based on Q by replacing the variables v with their mappings according to µ w . This technique was used to deal with the why not problem in KBs [START_REF] Wang | Answering why-not questions on SPARQL queries[END_REF]. The following property transforms a failure of Q into a failure of Q ′ : Property 1. Consider a query Q, a why not question µ w , and

Q ′ built by replac- ing each v ∈ dom(µ w ) ∩ var(Q) by µ w (v). F AIL ̸ ⊆µw (Q, D) = F AIL ∅ (Q ′ , D) Proof. If F AIL ̸ ⊆µw (Q, D) = true, suppose ∃µ ′ ∈ [[Q ′ ]] D . From the definition of Q ′ , dom(µ ′ ) ∩ dom(µ w ) = ∅, so µ ′ and µ w are compatible. So µ = µ ′ ∪ µ w is a mapping, µ ∈ [[Q]] D ,
and µ and µ w are compatible which contradicts ∄µ ∈ Similarly, a why so problem can be transformed into a why so many problem (with a threshold K=1).

[[Q]] D , µ and µ w are compatible. So [[Q ′ ]] D = ∅ and F AIL ∅ (Q ′ , D) = true. If F AIL ∅ (Q ′ , D) = true, suppose ∃µ ∈ [[Q]] D such that µ w and µ are com- patible. From the definition of Q ′ , µ |var(Q ′ ) ∈ [[Q ′ ]] D which contradicts [[Q ′ ]] D = ∅. So ̸ ∃µ ∈ [[Q]] D ,
Property 2. Consider a query Q, a why not question µ w , and

Q ′ built by replac- ing each v ∈ dom(µ w ) ∩ var(Q) by µ w (v). F AIL ⊆µw (Q, D) = F AIL >1 (Q ′ , D)

Monotony of the Failure Condition

A particular type of boolean functions are Monotone Boolean Functions (MBF) [START_REF] Crama | Boolean functions: Theory, algorithms, and applications[END_REF]. A boolean function f is positive if for each of its variables x, f x=0 ≤ f x=1 . In that case, we call the associated failure condition positive, meaning that if a query fails, all its superqueries fails, and therefore if a query succeeds, all its subqueries succeed. More formally,

F AIL(Q ′ , D)∧Q ′′ ⊆ Q ′ =⇒ F AIL(Q ′′ , D).
Considering the partial order of queries based on triple pattern inclusion, the failure condition is upward closed. A boolean function f is negative if for each of its variables x, f x=0 ≥ f x=1 . In that case, we call the associated failure condition negative, meaning that if a query succeeds, all its superqueries succeed, and if a query fails, all its subqueries fail. A monotonic failure condition is either a positive or a negative failure condition. As ¬(F AIL ⊆µw (Q, D)) = F AIL ̸ ⊆µw (Q, D), it follows that the why so problem has a negative failure condition. We show that the why so few and why so many problems do not have monotonic failure conditions with a counter-example.

Example 3. We use KB D and query Q from figure 1, failure causes

F 1 (Q, D) = F AIL >1 (Q, D), F 2 (Q, D) = F AIL <2 (Q, D) and subqueries Q 1 = t 3 , Q 2 = t 2 t 3 , Q 3 = t 1 t 2 t 3 t 5 . |[[Q 1 ]] D | = 5, |[[Q 2 ]] D | = 1, |[[Q 1 ]] D | = 2. As Q 1 ⊆ Q 2 ⊆ Q 3 and F 1 (Q 1 , D) = true, F 1 (Q 2 , D) = f alse, F 1 (Q 3 , D) = true, F 1 is not monotnic. As F 2 (Q 1 , D) = f alse, F 2 (Q 2 , D) = true, F 2 (Q 3 , D) = f alse, F 2 is not monotonic.
Table 3 summarises the characteristics of all five elementary failure conditions. Some combinations of failure properties can also be monotonic. Property 4. A conjunction or disjunction of positive (resp. negative) properties is positive (resp. negative).

Failure Causes

Having defined what a user can consider a query failure, we want to provide tools describing the parts of the query responsible for query failure. These notions should be computed quickly to improve user experience. To that end we suggest algorithms to determine failure causes that execute as few queries as possible.

Definitions

Our aim is to identify the parts of a query responsible for its failure. Building on the Minimal Failing Subquery (MFS) and maXimal Succeeding Subqueries (XSS) introduced in the why empty problem, the following definitions have been proposed to deal with the why so many answers problem [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF]. Definition 1. A Failure Inducing Subquery (FIS) of a query is one of its failing subqueries whose superqueries all fail. The set of FIS of a query Q is:

fis(Q, D, F AIL) = {Q * | Q * ⊆ Q ∧ FAIL(Q * , D) ∧ ∀Q ′ ⊆ Q, Q * ⊂ Q ′ ⇒ FAIL(Q ′ , D)}
Definition 2. A Minimal Failure Inducing Subquery (MFIS) of a query is one of its failure inducing subqueries such that none of its subqueries are FIS. The set of MFIS of a query Q is:

mfis(Q, D, F AIL) = {Q * ∈ fis(Q, D, F AIL) |̸ ∃Q ′ ⊂ Q * , Q ′ ∈ fis(Q, D, F AIL)} Definition 3.
A maXimal Succeeding Subquery (XSS) of a query is a succeeding subquery whose superqueries are all FIS. The set of XSS of a query Q is:

xss(Q, D, F AIL) = {Q * | Q * ⊆ Q ∧ ¬FAIL(Q * , D) ∧ ∀Q ′ , Q * ⊂ Q ′ ⇒ Q ′ ∈ f is(Q, D, F AIL)}
These definitions do not rely on the monotony of the failure condition. In this paper we apply them in a general setting, for any unexpected answer problem. In the case of a negative failure condition (for the why so problem), if the initial query fails then all its subqueries fail. This means that there are no XSS, and that the MFIS are all the smallest subqueries that contain the variables of the missing mapping. The notions of MFIS and XSS are therefore not very useful to solve problems with a negative failure condition. They can however be used if that failure condition is a part of a disjunction in a bigger failure condition. We will now consider methods for identifying the MFIS and XSS of a query.

Computation

Finding the queries that succeed and fail can be accomplished by executing them on the KB and analyzing the answer or by applying deduction rules based on the answers of related queries. To measure the cost of finding MFIS, we will start by using the metric of number of queries executed. The number of query executions is measured relative to n, the number of triple patterns in the initial query, as the search space, i.e. the number of subqueries is equal to 2 n -1. For any problem, a baseline method, called Base is to execute every subquery, and check if it succeeds or fails using the failure property.

In the general case, finding all the MFIS and XSS can require an exponential number of operations, as a query can have up to n ⌊n/2⌋ MFIS and XSS [9]. However for some problems, we can apply properties to execute fewer queries.

Positive Failure Properties If the failure property is positive, the Lattice Based Algorithm (LBA) proposed by Fokou [START_REF] Fokou | Cooperative techniques for SPARQL query relaxation in RDF databases[END_REF] based on the a mel fast algorithm by Godfrey [9] can be used to compute the MFIS. It uses the following property: Property 5. Consider a positive failure property F AIL, queries Q and Q i and triple pattern

t i with Q = Q i ∧ t i . If F AIL(Q, D) and ¬F AIL(Q i , D), every MFIS of Q contains t i .
The LBA algorithm finds a first MFIS Q * by removing triple patterns from the initial query Q one by one. For a triple pattern t i , and

Q i where Q = Q i ∧ t i , if Q i succeeds, t i is added to Q * . LBA continues, replacing Q with Q i ∧ Q * . A first MFIS Q * is
found once all triple patterns have been removed. The process is repeated over the largest subqueries of Q that do not contain the found MFIS.

Pruning Properties To reduce the number of query executions, some query properties can be leveraged. A general property can be applied to all problems [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF]:

Property 6. If a subquery Q ′ succeeds and Q ′′ ⊂ Q ′ , Q ′′ is not an MFIS or XSS.
Using this property, subqueries of XSS do not need to be studied, so we start by checking that the query does not have a succeeding query, and only study its failure if that is the case. The why so many study also introduces properties that use the failure of a query to determine the failure of another query [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF]. We have adapted these to be useful to any cardinality based problem. 

Property 7. Given a query Q and triple pattern t, if var(Q ∧ t) = var(Q) then |[[Q ∧ t]] D | ≤ |[[Q]] D |.
a variable object o(t) ̸ ∈ var(Q) and s(t) ∈ var(Q), if card max (p(t), D) = 1 then |[[Q ∧ t]] D | ≤ |[[Q]] D | and if card min (p(t), D) = 1 then |[[Q ∧ t]] D | ≥ |[[Q]] D |.
These properties are useful to determine an upper or lower bound of the number of answers to a query if the number of answers of another query is known. For cardinality based problems they can be used to determine success or failure of queries without executing them. In a top-down algorithm, these properties can be used to determine the status of a query Q, knowing Q∧t, but for an algorithm with another execution order, they can be applied in the other direction.

Dealing with Combined Problems When considering a combined problem, there are two possibilities for finding the MFIS. The first option is to execute an algorithm for each elementary part of the failure cause, then combine the results. The second option is to execute a single algorithm as previously, applying the combined failure definition when considering a query execution. In the first case, we should consider whether the knowledge of the MFIS and XSS for two failure properties is sufficient to determine the MFIS and XSS for their combination.

The MFIS and XSS of a query for a conjunction of failure properties can be computed from the MFIS and XSS of the query for each property.

Property 9. Consider a query Q, a failure condition

F AIL = F 1 ∧ F 2 , Q ′ an MFIS of Q for F AIL and Q ′′ an XSS of Q for F AIL. Q ′ is a superquery of an MFIS of Q for F 1 and a superquery of an MFIS of Q for F 2 . Q ′′ is an XSS of Q for F 1 or for F 2 . Proof. Consider Q ′ an MFIS of Q for F AIL. Since Q ′ ∈ mf is(Q, D, F AIL), then Q ′ ∈ f is(Q, D, F AIL). So Q ′ ∈ f is(Q, D, F 1 ) and Q ′ ∈ f is(Q, D, F 2 ). From the MFIS definition, ∃Q 1 ∈ mf is(Q, D, F 1 ) and ∃Q 2 ∈ mf is(Q, D, F 2 ) such that Q 1 ⊆ Q ′ and Q 2 ⊆ Q ′ . Consider Q ′ an XSS of Q for F AIL. Suppose Q ′ is not an XSS of Q for F 1 . Either ∃Q ′′ , Q ′ ⊆ Q ′′ ∧ F 1 (Q ′′ , D) = f alse, which means F AIL(Q ′′ , D) = f alse and contradicts the assertion that Q ′ is an XSS of Q for F AIL or F 1 (Q ′ , D) = true. Since F AIL(Q ′ , D) = f alse, then F 2 (Q ′ , D) = f alse. Suppose ∃Q ′′′ , Q ′ ⊆ Q ′′′ ∧ F 2 (Q ′′′ , D) = f alse, meaning F AIL(Q ′′′ , D) = f alse and contradicting the assertion that Q ′ is an XSS of Q for F AIL. So Q ′ is an XSS of Q for F 2 .
To show that this is not the case for a disjunction of failure properties, consider the introduction example. The failure cause was F AIL = F AIL ∅ ∨ F AIL >200 . For the initial query Q, we have F AIL >200 (Q, D) = f alse. So Q is the XSS and there are no MFIS for F AIL >200 . But F AIL >200 is significant for finding the MFIS and XSS for F AIL. So for a disjunction of failure properties, we need to know the entire status of the lattice. The previous algorithms must therefore be adapted to return the status of the whole lattice rather than the MFIS and XSS.

Experimentation

We propose two sets of experiments. The first will compare variations of our algorithms to illustrate the various improvements from the use of the properties introduced in section 4. The second will compare our generic algorithm, Shiny, with specific solutions proposed for the why empty [START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF], why so many [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF], and why not [START_REF] Wang | Answering why-not questions on SPARQL queries[END_REF] problems. We will observe the performance cost of a general method compared with specific solutions, and compare the proposed failure causes.

Experimental Setup

Hardware Our experiments were run on a Ubuntu Server 16.04 LTS system with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and 32GB RAM. The results presented are the average of five consecutive runs of the algorithms. To prevent a cold start effect, a preliminary run is performed but not included in the results.

Algorithms The algorithms are implemented in Oracle Java 1.8 64bits and run on top of Jena TDB. To compare the generic solution to specific methods from the state of the art, we have used the QARS system [START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF] (why empty), the TMA4KB system [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF] (why so many), and the ANNA system [START_REF] Wang | Answering why-not questions on SPARQL queries[END_REF] (why not). We used the reference implementations for the first two systems 34 , and we re-implemented the ANNA algorithm as a reference implementation was not available. Dataset and Queries We downloaded the DBpedia dataset (the English 3.9 version) which contains 812M triple patterns and used conjunctive queries from the LSQ project [START_REF] Saleem | LSQ: The Linked SPARQL Queries Dataset[END_REF] for our first experiments. Minor adaptations were made as some original queries used URIs incompatible with DBpedia v.3.9. Values for content-based questions were taken from the domain of one of the triple patterns of query in order to have plausible missing answers.

To compare with state of the art methods, we have used the datasets and queries from the initial papers: 7 queries on the LUBM dataset [START_REF] Guo | Lubm: A benchmark for owl knowledge base systems[END_REF] for why empty, 9 queries on DBpedia for why so many, 5 queries with 6 missing mappings on DBpedia for why not.

Results

Content-Based Problems Figure 4 shows the execution times for finding the MFIS and XSS for 13 why not questions. The card method uses the transformation to an equivalent why empty problem, whereas the content method searches for the expected mapping in the query answers. Dealing with the why not problem by transforming it into a cardinality problem is a significant improvement. Execution times are reduced by up to five orders of magnitude. On average, the card method runs in 7% of the content method's time. For the content method the execution time is related to the size of the result set as determining that an answer is missing requires checking every other answer. In the card method, we only need to know if a query produced an answer, without examining all the answers. By transforming the content problem to a cardinality problem, results unrelated to the mapping of interest are not generated and most of the processing is performed by the underlying triplestore. Combined Problems Figure 5 shows the execution times for finding the MFIS and XSS for 16 combinations of two failure causes. All odd numbered executions are disjunctions, and even numbered executions are conjunctions. The single method uses one algorithm execution, using the Base algorithm and leveraging property 6, and determines failure based on the conjunction of failure conditions. The multiple method executes one algorithm per failure condition then combines the results, either combining the MFIS and XSS for a conjuction or the complete lattices for a disjunction. In most cases, the single execution performs better, in particular for conjunctions. When executing the single algorithm, a success with a conjunction is detected faster, since only one failure condition needs to be false for a query to succeed. For queries 9 to 12, the failure condition involves a why not failure condition. In the multiple execution method, this is dealt with by transforming the why not failure condition into a cardinality failure condition, which is a significant performance improvement as shown previously. Here the multiple execution method performs up to three orders of magnitude better.

Q1

Comparison with State of the Art Algorithms Figure 6 shows the execution time to identify the MFIS and XSS in the why so many problem, using TMA4KB [START_REF] Parkin | Dealing with plethoric answers of sparql queries[END_REF], and our generic algorithm. Figure 7 shows the time to identify the MFS and XSS using QARS [START_REF] Fokou | Rdf query relaxation strategies based on failure causes[END_REF], and to find the MFIS and XSS with our algorithm. For the empty answer problem, MFIS and MFS are the same. For the why not problem, figure 8 shows the execution time to produce modified queries using ANNA [START_REF] Wang | Answering why-not questions on SPARQL queries[END_REF], and to identify the MFIS and XSS with our algorithm. An example of the results returned is given in table 9. The modified answer returned by ANNA is similar to an XSS, but may differ slightly if one of the triple patterns has been relaxed. For all the experiments, the execution times are close, our system is on average 1% slower than ANNA, 13% faster than QARS, and 8% slower than TMA4KB.

Overall, the added genericity does not have a major impact on performance.

Conclusion

In this paper, we have addressed the problem on unexpected answers in the context of RDF. While the specific problem of empty answers has received much attention in existing work, no solution for a problem with multiple unsatisfactory aspects has yet been proposed. Through the study of specific problems, we have proposed a framework for unexpected answers and identified existing definitions of MFIS and XSS which can be applied to the general problem. Using existing algorithms for specific problems, we studied adaptations to deal with any unsatisfactory answers. We have shown the benefits of the adaptations experimentally, and compared the performance of our generic method with three specialized algorithms. Our methods perform on average 1% faster than the specialized algorithms execution time, and are faster in 55% of cases.

Our next goal is to use the MFIS in a query modification process. So far, our algorithms only allow modification through triple pattern removal, but the MFIS could help identify triple patterns for relaxation. In the comparison with ANNA, we saw that the XSS provided by our method are similar to the modified queries provided to deal with the why not problem, but that modifying the content of triple patterns can provide a finer tuning of the user's queries.
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