
HAL Id: hal-03847824
https://hal.science/hal-03847824v1

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining Unexpected Answers of SPARQL Queries
Louise Parkin, Brice Chardin, Stéphane Jean, Allel Hadjali

To cite this version:
Louise Parkin, Brice Chardin, Stéphane Jean, Allel Hadjali. Explaining Unexpected Answers of
SPARQL Queries. Web Information Systems Engineering – WISE 2022, Nov 2022, Biarritz, France.
pp.136-151, �10.1007/978-3-031-20891-1_11�. �hal-03847824�

https://hal.science/hal-03847824v1
https://hal.archives-ouvertes.fr

Explaining Unexpected Answers of SPARQL
Queries

Louise Parkin1, Brice Chardin1, Stéphane Jean2, and Allel Hadjali1

1 ISAE-ENSMA, LIAS, Chasseneuil-du-Poitou, France
louise.parkin@ensma.fr brice.chardin@ensma.fr allel.hadjali@ensma.fr

2 Université de Poitiers, LIAS, Poitiers, France
stephane.jean@univ-poitiers.fr

Abstract. ”Why am I not getting the right answer?” is a question many
Knowledge Base users may ask themselves. In particular, novice users can
easily make mistakes and find differences between the answer they ex-
pected and the answer they got. This problem is known as the unsatisfac-
tory answer problem. A subproblem, where no answers are returned, has
been widely studied and identifying failure causes can help users modify
their queries to fit their requirements. But users may be unhappy with
their results for multiple other reasons: they may be overwhelmed by too
many answers, expect a particular answer that is not included, or even
encounter a combination of these problems. In this paper, we classify
the various types of unsatisfactory answers, and propose algorithms to
compute generalized failure causes. We evaluate the performance of our
algorithms and show that they perform comparably to existing problem-
specific methods, while being more extensive.

Keywords: Knowledge bases, SPARQL, Unexpected answers, MFIS, XSS

1 Introduction

A Knowledge Base (KB) is a solution for storing data as RDF triples (subject,
predicate, object). KBs are widely used in industry and academia. Well-known
examples of KBs are DBpedia [16] and Google’s Knowledge Vault [6]. Users
unfamiliar with the technology are likely to need to extract information from a
KB. Specific interfaces can allow for text based searching, but the most common
method for retrieving information from a KB is the SPARQL query language [11].

This version of the contribution has been accepted for publication, af-
ter peer review but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record
is available online at http://dx.doi.org/10.1007/978-3-031-20891-1 11. Use of
this Accepted Version is subject to the publisher’s Accepted Manuscript
terms of use https://www/springernature.com/gp/open-research/policies/accepted-
manuscript-terms.

L. Parkin et al.

subject predicate object
p1 age 25
p1 suffersFrom brokenArm
p1 suffersFrom flu
p1 ward ICU
p1 status Dead
p2 age 47
p2 suffersFrom stroke
p2 ward ER
n1 worksIn ICU
n1 treats p3

n2 worksIn ER
n2 treats p2

n2 treats p3

n3 worksIn ICU
n3 treats p1

n3 treats p2

SELECT * WHERE {
?p ward ICU . #t1
?p status Dead . #t2
?n treats ?p . #t3
?n ward ICU . #t4
?p suffersFrom ?i } #t5
No answers

SELECT * WHERE {
?p ward ICU . #t1
?p status Dead . #t2
?n treats ?p . #t3
?n ward ICU . } #t4
No answers

SELECT * WHERE {
?p ward ICU . #t1
?p status Dead . #t2
?n ward ICU . #t4
?p suffersFrom ?i } #t5
Too many answers

SELECT * WHERE {
?p ward ICU . #t1
?p status Dead . #t2
?p suffersFrom ?i } #t5
Satisfactory answers

(a) Knowledge base D

(b) Query Q = t1t2t3t4t5 (c) Q′ = t1t2t3t4

(d) Query Q′′ = t1t2t3t5 (e) Q′′′ = t1t2t5

Fig. 1. A Knowledge Base, SPARQL queries and their results

Novice users can struggle to write queries, inaccurately describing their re-
quirements. Therefore, mistakes or misconceptions may appear, causing unex-
pected or unsatisfactory answers. Mistakes refer to the user incorrectly writing
their query, for example misspelling a term. Misconceptions refer to a user’s in-
correct understanding of a KB [27]. There are five unexpected answers problems,
each linked to a why-question: no answers (why empty), too few answers (why
so few), too many answers (why so many), missing answers (why not), and un-
wanted answers (why so). So far each problem has been studied separately, so
combined problems are difficult to handle. These can occur if fixing one type of
unexpected answer creates another (i.e. turning an insufficiently restricted query
into a too restrictive one), or in situations with precise cardinality requirements.

Consider the example of a hospital KB, and a user who wants information
on the patients who died in the intensive care unit (ICU) and suppose the user
expects around 100 answers based on their knowledge of the hospital. A section
of the KB and succession of query attempts are shown in figure 1. The user
writes a SPARQL query (b), but receives no answers. From their contextual
knowledge, the user determines there must be a mistake somewhere. However
they have no way of knowing what is causing the problem, as there are several
possibilities. There could be an inappropriate term within the query (ICU rather
than Intensive Care Unit), or some incompatible properties (dead patients are
not being treated by anyone). Once the user manages to produce some results
(d), they find over 10,000 answers, which is far too many to be able to deal
with. Again they will wonder where the mistake is, as they have fixed the initial
problem, but created another. Some possible explanations for the overabundant
answers are having two triple patterns whose combination causes a multiplication
of the number of answers (illness and the people treating a patient) or having
an insufficiently constrained variable. All in all, a user faced with unsatisfactory
answers must undergo a time-consuming and frustrating trial and error process
to fix their query without a guarantee to receive the expected answers in the end.

Explaining Unexpected Answers of SPARQL Queries

∅

t1 t2 t3 t4 t5

t1t2 t1t3 t1t4 t1t5 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5

t1t2t3 t1t2t4 t1t2t5 t1t3t4 t1t3t5 t1t4t5 t2t3t4 t2t3t5 t2t4t5 t3t4t5

t1t2t3t4 t1t2t3t5 t1t2t4t5 t1t3t4t5 t2t3t4t5

t1t2t3t4t5

Q : Failure (empty) Q : Failure (too many) Q : Success Q : MFIS Q : XSS

Fig. 2. Lattice of subqueries of Q

To help a user facing an unexpected answer, there are two approaches: ex-
plain what is causing these answers, or suggest changes to the query. Existing
work focusing on a specific type of unexpected answers has mainly explored the
query modification solution [18, 23]. The answer explanation strategy has been
successfully used to deal with empty answers [8] and was shown to increase the
performance of subsequent query modification steps [2, 14, 7]. Figure 2 shows how
identifying failure causes would help to deal with the previous query by studying
its constituent parts. The lattice shows the successful queries, and those that fail
either because they have empty answers or too many answers (for a threshold of
200 in this example). We are interested in providing the MFIS (Minimal Failure
Inducing Subqueries) and XSS (maXimal Succeeding Subqueries). The MFIS are
the smallest parts of the query that induce unexpected answers if they are part
of a query and the XSS are largest parts of the query that produce acceptable
answers. Here, the MFIS show that the inclusion of triple pattern t4 : ?n ward

ICU with any other triple pattern causes unexpected answers (either because
there will be empty answers if t3 is also included, or because there will be too
many answers with another triple pattern). Indeed, the user has used the prop-
erty ward which applies to a patient, but with subject n which in the context of
the query is meant to indicate a member of the hospital staff. This query could
be fixed by removing triple pattern t4, therefore replacing the query with the
XSS t1t2t3t5, or by modifying the predicate in t4 from ward to worksIn. The
interpretation of MFIS and XSS to fix a query is beyond the scope of this paper.

In this paper, we apply the failure cause definition used for the why empty
and why so many problems, called Minimal Failure Inducing Subquery (MFIS)
to the other elementary problems in order to propose a generalized system to
deal with unsatisfactory answers. We will show that our method can cope with
combinations of unexpected answers and we will perform experimental evalua-
tion to determine its usability on real data from DBpedia along with real queries
from the Linked SPARQL Queries Dataset [22].

We start by exploring related work for each unexpected answer problem in
section 2. In section 3, we give the elementary notions of RDF, and introduce a

L. Parkin et al.

classification for unexpected answers and related properties. Section 4 presents
the algorithms for computing failure causes. We perform experimental evaluation
of our algorithms in section 5 and conclude with future prospects in section 6.

2 Related Work

Unexpected answers have been studied using both a data based and a query
based approach. The data based approach provides information on data prove-
nance: operations that led to missing information [12] or the data source pro-
ducing problematic answers [28]. These methods can help database providers
enhance data quality, but rarely help end users with no control over the KB
content. On the other hand, the query based approach uses the hypothesis that
the user incorrectly specified their query so it does not match their requirement.

To fix the unexpected answer problem, most query-based methods modify
the user query by removing, changing or adding triple patterns. Various mod-
ification strategies have been used for specific problems. For the why empty
and why so many problems in graph queries, maximum common connected sub-
graphs are computed by removing parts of the initial query to create the largest
succeeding query graph [25]. For the same problems in KBs, maXimal Succeed-
ing Subqueries are computed by triple pattern suppression [9]. For the why not
problem in relational databases, a similarity metric based on edit distance is
used to rank modified queries [24]. Exact algorithms and heuristics are used for
the why not and why so problems in knowledge graphs, to change a query step
by step to include new answers [23]. To deal with the why so many problem
with fuzzy queries, intensification techniques can be used [18]. New queries are
found via an exhaustive search [25, 23], or using semantic information to chose
more relevant queries [24]. New queries may still produce unexpected answers, so
finding queries that return the desired answers remains a trial and error process.

To address this issue, some query based techniques identify the reasons for
unexpected answers. Failure causes were introduced for the why empty problem:
false presuppositions are returned to the user if their query produces no answers
[15, 19]. Minimal Failing Subqueries (MFS) have then been used to describe the
smallest parts of a query that lead to empty answers [9, 7, 5]. A related notion,
Minimal Failure Inducing Subquery, is used for the why so many problem [20].
Failure causes have also been used in the why not problem in relational databases
[1], and KBs [26] to identify the triple pattern or SPARQL operator responsible
for an absent answer. To our knowledge, no query based failure causes have been
studied for the why so few and why so problems, or combined problems.

Failure causes can be used to enhance query modification by focusing changes
on the parts responsible for unexpected answers. MFS have been used in auto-
mated query modification systems dealing with empty answers [2, 14] and in in-
teractive query rewriting frameworks, where users can select parts to be relaxed
[14, 17]. In RDF, a hybrid method balances the MFS computation cost and the
gain of not executing modified queries [7]. Thus, the efficiency of query modifica-
tion methods can be improved if unexpected answers have been explained first.

Explaining Unexpected Answers of SPARQL Queries

3 Problem Formalization

We start by describing the formalism and semantics of RDF and SPARQL nec-
essary for the paper, using notations and definitions from Pérez et al. [21]. We
then give definitions for unexpected answers and introduce related properties.
For space considerations, some proofs are not provided here.

3.1 Basic Notions

Data Model We consider three pairwise disjoint infinite sets: I the set of IRIs,
B the set of blank nodes, and L the set of literals. An RDF triple is a triple
(subject, predicate, object) ∈ (I∪B)×I×(I∪B∪L). An RDF database stores a
set of RDF triples. We also consider V a set of variables disjoint from I ∪B ∪L.

RDF Queries A triple t (subject, predicate, object) ∈ (I∪L∪V)×(I∪V)×(I∪
L ∪ V) is a triple pattern. We denote by s(t), p(t), o(t), and var(t) the subject,
predicate, object and variables of t. In this paper, we will consider RDF queries
defined as conjunctions of triple patterns Q = SELECT ∗ WHERE t1 · · · tn,
which we write as Q = t1 · · · tn. We write that t is a triple pattern appearing
in a query Q by t ∈ Q. The variables of a query are var(Q) =

⋃
var(ti). We

define an order on queries using triple pattern inclusion. Given Q = t1 · · · tn,
Q′ = ti · · · tj is a subquery of Q, denoted by Q′ ⊆ Q, iff ∀t ∈ Q′, t ∈ Q. Then Q
is a superquery of Q′. For a query Q = t1 · · · tn and a triple pattern t /∈ Q, we
denote the addition of t to Q by Q ∧ t = t1 · · · tnt. This notation is extended to
queries, so Q ∧Q′ refers to the conjunction of Q and Q′. Conversely for t′ ∈ Q,
removing t from Q is denoted by Q− t.

Query Evaluation A mapping µ from V to T is a partial function µ : V → T .
For a triple pattern t, we denote by µ(t) the triple obtained by replacing the
variables in t according to µ. The domain of µ, dom(µ), is the subset of V
where µ is defined. The restriction of a mapping µ to a subset of variables
var ⊆ V is denoted by µ|var and defined as a partial function µ|var : var → T ,
where ∀x ∈ var, µ|var(x) = µ(x). Two mappings µ1 and µ2 are compatible if
∀x ∈ dom(µ1) ∩ dom(µ2), µ1(x) = µ2(x). The join of two sets of mappings Ω1

and Ω2 is: Ω1 ▷◁ Ω2 = {µ1 ∪µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}.
The evaluation of a triple pattern t over a KB D, is [[t]]D = {µ | dom(µ) =
var(t) ∧ µ(t) ∈ D}. The evaluation of a query Q = t1 · · · tn over D is [[Q]]D =
[[t1]]D ▷◁ · · · ▷◁ [[tn]]D.

Boolean Function A boolean function of n variables is a function on Bn into
B, where B is the set [0,1], n is a positive integer, and Bn denotes the n-fold
cartesian product of the set B with itself [3].

3.2 Unexpected Answers

There are many reasons why a user may be unsatisfied by the answer to their
query. To formalize this, we define a failure condition, using the formalism of

L. Parkin et al.

boolean functions, which takes as entry a query Q, and returns a boolean value
describing whether its answer is satisfactory or not when executed on a given
KB. The boolean function has n variables, (x1, ..., xn) where n is the number of
triple patterns of the initial query, and ∀i, xi = 1 ⇐⇒ Q contains ti.

For a query Q and a KB D, we denote this property: FAIL(Q,D). There are
five elementary types of query failure [13]. They are based on the query result
[[Q]]D, and can be split into cardinality based, and content based properties.

Cardinality based failure conditions depend on the number of answers of
a query. As such, it is not necessary to know the content of the answers to
determine if the query succeeds or fails. The failure conditions will be based on
a threshold value K to be determined by the user or the system. They are:

– Why so many : FAIL>K(Q,D) = (|[[Q]]D| > K) for K ≥ 0.
– Why so few : FAIL<K(Q,D) = (|[[Q]]D| < K) for K > 0.
– Why empty : FAIL∅(Q,D) = (|[[Q]]D| = 0). This is a special case of Why so

few with K=1.

Example 1. FAIL<2(Q,D) is a failure property denoting that queries with un-
der 2 answers fail. In the example in figure 1, t1t3t4 and t2t5 fail with respectively
0 and 1 answer. t4t5 and t1t2t5 succeed with respectively 3 and 2 answers.

Content based failure conditions are based on the content of the answers. In
particular, a user is interested in obtaining or avoiding a particular mapping.
The failure conditions will be based on a provided mapping µw. They are:

– Why not : FAIL ̸⊆µw
(Q,D) = (∀µ ∈ [[Q]]D : µw and µ are not compatible)

– Why so : FAIL⊆µw(Q,D) = (∃µ ∈ [[Q]]D : µw and µ are compatible)

For the content based failure condition to have meaning, the variables of
the mapping must all be included in the query. As such, FAIL ̸⊆µw

(Q,D) and
FAIL⊆µw

(Q,D) are undefined if dom(µw) ̸⊆ var(Q). So when studying sub-
queries obtained by removing triple patterns, we will eliminate from the search
space any query which does not respect this condition.

Example 2. For µw, where dom(µw) = {p} and µw(p) = p2, FAIL ̸⊆µw
(Q,D) is

a failure property denoting that queries where no answer has p2 as the value for
variable p fail. In figure 1, t1t3 and t2t5 fail, and t4t5 succeeds. t4 is not a valid
query for this problem, as variable p from the mapping is missing.

For µw, where dom(µw) = {n} and µw(n) = p2, FAIL⊆µw(Q,D) is a failure
property denoting that queries where an answer has p2 as the value for variable
n fail. In figure 1, t1t2t3t4t5 succeeds, and t2t4 fails. t1 is not a valid query for
this problem, as variable n is missing.

These five elementary unexpected answers can be combined using the basic
logical operators conjunction (∧), disjunction (∨) and negation (¬).

Negation For each problem, the negation can be expressed as another problem:

– ¬(FAIL>K(Q,D)) = FAIL<K+1(Q,D)

Explaining Unexpected Answers of SPARQL Queries

– ¬(FAIL⊆µw
(Q,D)) = FAIL ̸⊆µw

(Q,D)
– ¬(FAIL∅(Q,D)) = FAIL>0(Q,D)

Conjunction and Disjunction We define conjunction and disjunction based
on the failure conditions:

– (FAIL1 ∧ FAIL2)(Q,D) = FAIL1(Q,D) ∧ FAIL2(Q,D)
– (FAIL1 ∨ FAIL2)(Q,D) = FAIL1(Q,D) ∨ FAIL2(Q,D)

3.3 Relations Between Problems

The why not problem can be transformed into a why empty problem. We consider
a query Q and a why not question µw mapping some variables v to µw(v).
We build a new query Q′, based on Q by replacing the variables v with their
mappings according to µw. This technique was used to deal with the why not
problem in KBs [26]. The following property transforms a failure of Q into a
failure of Q′:

Property 1. Consider a query Q, a why not question µw, and Q′ built by replac-
ing each v ∈ dom(µw) ∩ var(Q) by µw(v). FAIL ̸⊆µw

(Q,D) = FAIL∅(Q
′, D)

Proof. If FAIL ̸⊆µw(Q,D) = true, suppose ∃µ′ ∈ [[Q′]]D. From the definition of
Q′, dom(µ′) ∩ dom(µw) = ∅, so µ′ and µw are compatible. So µ = µ′ ∪ µw is
a mapping, µ ∈ [[Q]]D, and µ and µw are compatible which contradicts ∄µ ∈
[[Q]]D, µ and µw are compatible. So [[Q′]]D = ∅ and FAIL∅(Q

′, D) = true.
If FAIL∅(Q

′, D) = true, suppose ∃µ ∈ [[Q]]D such that µw and µ are com-
patible. From the definition of Q′, µ|var(Q′) ∈ [[Q′]]D which contradicts [[Q′]]D =
∅. So ̸ ∃µ ∈ [[Q]]D, µ and µw are compatible, and FAIL ̸⊆µw(Q,D) = true.

Similarly, a why so problem can be transformed into a why so many problem
(with a threshold K=1).

Property 2. Consider a query Q, a why not question µw, and Q′ built by replac-
ing each v ∈ dom(µw) ∩ var(Q) by µw(v). FAIL⊆µw

(Q,D) = FAIL>1(Q
′, D)

3.4 Monotony of the Failure Condition

A particular type of boolean functions are Monotone Boolean Functions (MBF)
[3]. A boolean function f is positive if for each of its variables x, fx=0 ≤ fx=1.
In that case, we call the associated failure condition positive, meaning that if
a query fails, all its superqueries fails, and therefore if a query succeeds, all its
subqueries succeed. More formally, FAIL(Q′, D)∧Q′′ ⊆ Q′ =⇒ FAIL(Q′′, D).
Considering the partial order of queries based on triple pattern inclusion, the
failure condition is upward closed. A boolean function f is negative if for each of
its variables x, fx=0 ≥ fx=1. In that case, we call the associated failure condition
negative, meaning that if a query succeeds, all its superqueries succeed, and if
a query fails, all its subqueries fail. A monotonic failure condition is either a
positive or a negative failure condition.

L. Parkin et al.

problem cardinality or content failure condition monotonic

why empty cardinality [[Q]]D = ∅ positive

why so many cardinality |[[Q]]D| > K no monotony

why so few cardinality |[[Q]]D| < K no monotony

why not content ∀µ ∈ [[Q]]Dµw ̸⊆ µ positive

why so content ∃µ ∈ [[Q]]Dµw ⊆ µ negative

Fig. 3. The five elementary failure conditions

Property 3. FAIL∅ and FAIL ̸⊆µw
are positive properties.

As ¬(FAIL⊆µw
(Q,D)) = FAIL ̸⊆µw

(Q,D), it follows that the why so prob-
lem has a negative failure condition. We show that the why so few and why so
many problems do not have monotonic failure conditions with a counter-example.

Example 3. We use KB D and query Q from figure 1, failure causes F1(Q,D) =
FAIL>1(Q,D), F2(Q,D) = FAIL<2(Q,D) and subqueries Q1 = t3, Q2 = t2t3,
Q3 = t1t2t3t5. |[[Q1]]D| = 5, |[[Q2]]D| = 1, |[[Q1]]D| = 2. As Q1 ⊆ Q2 ⊆ Q3 and
F1(Q1, D) = true, F1(Q2, D) = false, F1(Q3, D) = true, F1 is not monotnic. As
F2(Q1, D) = false, F2(Q2, D) = true, F2(Q3, D) = false, F2 is not monotonic.

Table 3 summarises the characteristics of all five elementary failure condi-
tions. Some combinations of failure properties can also be monotonic.

Property 4. A conjunction or disjunction of positive (resp. negative) properties
is positive (resp. negative).

4 Failure Causes

Having defined what a user can consider a query failure, we want to provide tools
describing the parts of the query responsible for query failure. These notions
should be computed quickly to improve user experience. To that end we suggest
algorithms to determine failure causes that execute as few queries as possible.

4.1 Definitions

Our aim is to identify the parts of a query responsible for its failure. Building
on the Minimal Failing Subquery (MFS) and maXimal Succeeding Subqueries
(XSS) introduced in the why empty problem, the following definitions have been
proposed to deal with the why so many answers problem [20].

Definition 1. A Failure Inducing Subquery (FIS) of a query is one of its failing
subqueries whose superqueries all fail. The set of FIS of a query Q is:

fis(Q,D,FAIL) = {Q∗ | Q∗ ⊆ Q ∧ FAIL(Q∗, D) ∧
∀Q′ ⊆ Q, Q∗ ⊂ Q′ ⇒ FAIL(Q′, D)}

Explaining Unexpected Answers of SPARQL Queries

Definition 2. A Minimal Failure Inducing Subquery (MFIS) of a query is one
of its failure inducing subqueries such that none of its subqueries are FIS. The
set of MFIS of a query Q is:

mfis(Q,D,FAIL) = {Q∗ ∈ fis(Q,D,FAIL) |̸ ∃Q′ ⊂ Q∗, Q′ ∈ fis(Q,D,FAIL)}

Definition 3. A maXimal Succeeding Subquery (XSS) of a query is a succeeding
subquery whose superqueries are all FIS. The set of XSS of a query Q is:

xss(Q,D,FAIL) = {Q∗ | Q∗ ⊆ Q ∧ ¬FAIL(Q∗, D) ∧
∀Q′, Q∗ ⊂ Q′ ⇒ Q′ ∈ fis(Q,D,FAIL)}

These definitions do not rely on the monotony of the failure condition. In this
paper we apply them in a general setting, for any unexpected answer problem.
In the case of a negative failure condition (for the why so problem), if the initial
query fails then all its subqueries fail. This means that there are no XSS, and
that the MFIS are all the smallest subqueries that contain the variables of the
missing mapping. The notions of MFIS and XSS are therefore not very useful
to solve problems with a negative failure condition. They can however be used
if that failure condition is a part of a disjunction in a bigger failure condition.
We will now consider methods for identifying the MFIS and XSS of a query.

4.2 Computation

Finding the queries that succeed and fail can be accomplished by executing them
on the KB and analyzing the answer or by applying deduction rules based on
the answers of related queries. To measure the cost of finding MFIS, we will
start by using the metric of number of queries executed. The number of query
executions is measured relative to n, the number of triple patterns in the initial
query, as the search space, i.e. the number of subqueries is equal to 2n − 1. For
any problem, a baseline method, called Base is to execute every subquery, and
check if it succeeds or fails using the failure property.

In the general case, finding all the MFIS and XSS can require an exponential
number of operations, as a query can have up to

(
n

⌊n/2⌋
)
MFIS and XSS [9].

However for some problems, we can apply properties to execute fewer queries.

Positive Failure Properties If the failure property is positive, the Lattice Based
Algorithm (LBA) proposed by Fokou [8] based on the a mel fast algorithm by
Godfrey [9] can be used to compute the MFIS. It uses the following property:

Property 5. Consider a positive failure property FAIL, queries Q and Qi and
triple pattern ti with Q = Qi ∧ ti. If FAIL(Q,D) and ¬FAIL(Qi, D), every
MFIS of Q contains ti.

The LBA algorithm finds a first MFIS Q∗ by removing triple patterns from the
initial query Q one by one. For a triple pattern ti, and Qi where Q = Qi ∧ ti,
if Qi succeeds, ti is added to Q∗. LBA continues, replacing Q with Qi ∧ Q∗. A
first MFIS Q∗ is found once all triple patterns have been removed. The process
is repeated over the largest subqueries of Q that do not contain the found MFIS.

L. Parkin et al.

Pruning Properties To reduce the number of query executions, some query prop-
erties can be leveraged. A general property can be applied to all problems [20]:

Property 6. If a subquery Q′ succeeds and Q′′ ⊂ Q′, Q′′ is not an MFIS or XSS.

Using this property, subqueries of XSS do not need to be studied, so we start
by checking that the query does not have a succeeding query, and only study
its failure if that is the case. The why so many study also introduces properties
that use the failure of a query to determine the failure of another query [20]. We
have adapted these to be useful to any cardinality based problem.

Property 7. Given a query Q and triple pattern t, if var(Q ∧ t) = var(Q) then
|[[Q ∧ t]]D| ≤ |[[Q]]D|.

Definition 4. The global minimum and maximum cardinality of a predicate p
in a dataset D are [4]:

cardmin(p,D) = min
s|∃ p,o:(s,p,o)∈D

|{(s, p, o) | (s, p, o) ∈ D}|

cardmax(p,D) = max
s|∃ p,o:(s,p,o)∈D

|{(s, p, o) | (s, p, o) ∈ D}|

Property 8. Given a query Q, and a triple pattern t with a fixed predicate p(t),
a variable object o(t) ̸∈ var(Q) and s(t) ∈ var(Q), if cardmax(p(t), D) = 1 then
|[[Q ∧ t]]D| ≤ |[[Q]]D| and if cardmin(p(t), D) = 1 then |[[Q ∧ t]]D| ≥ |[[Q]]D|.

These properties are useful to determine an upper or lower bound of the number
of answers to a query if the number of answers of another query is known. For
cardinality based problems they can be used to determine success or failure of
queries without executing them. In a top-down algorithm, these properties can
be used to determine the status of a query Q, knowing Q∧t, but for an algorithm
with another execution order, they can be applied in the other direction.

Dealing with Combined Problems When considering a combined problem,
there are two possibilities for finding the MFIS. The first option is to execute an
algorithm for each elementary part of the failure cause, then combine the results.
The second option is to execute a single algorithm as previously, applying the
combined failure definition when considering a query execution. In the first case,
we should consider whether the knowledge of the MFIS and XSS for two failure
properties is sufficient to determine the MFIS and XSS for their combination.
The MFIS and XSS of a query for a conjunction of failure properties can be
computed from the MFIS and XSS of the query for each property.

Property 9. Consider a query Q, a failure condition FAIL = F1 ∧ F2, Q
′ an

MFIS of Q for FAIL and Q′′ an XSS of Q for FAIL. Q′ is a superquery of an
MFIS of Q for F1 and a superquery of an MFIS of Q for F2. Q

′′ is an XSS of Q
for F1 or for F2.

Proof. Consider Q′ an MFIS of Q for FAIL. Since Q′ ∈ mfis(Q,D,FAIL),
then Q′ ∈ fis(Q,D,FAIL). So Q′ ∈ fis(Q,D,F1) and Q′ ∈ fis(Q,D,F2).

Explaining Unexpected Answers of SPARQL Queries

From the MFIS definition, ∃Q1 ∈ mfis(Q,D,F1) and ∃Q2 ∈ mfis(Q,D,F2)
such that Q1 ⊆ Q′ and Q2 ⊆ Q′.

Consider Q′ an XSS of Q for FAIL. Suppose Q′ is not an XSS of Q for F1.
Either ∃Q′′, Q′ ⊆ Q′′ ∧ F1(Q

′′, D) = false, which means FAIL(Q′′, D) = false
and contradicts the assertion that Q′ is an XSS of Q for FAIL or F1(Q

′, D) =
true. Since FAIL(Q′, D) = false, then F2(Q

′, D) = false. Suppose ∃Q′′′, Q′ ⊆
Q′′′ ∧ F2(Q

′′′, D) = false, meaning FAIL(Q′′′, D) = false and contradicting
the assertion that Q′ is an XSS of Q for FAIL. So Q′ is an XSS of Q for F2.

To show that this is not the case for a disjunction of failure properties, consider
the introduction example. The failure cause was FAIL = FAIL∅ ∨ FAIL>200.
For the initial query Q, we have FAIL>200(Q,D) = false. So Q is the XSS and
there are no MFIS for FAIL>200. But FAIL>200 is significant for finding the
MFIS and XSS for FAIL. So for a disjunction of failure properties, we need to
know the entire status of the lattice. The previous algorithms must therefore be
adapted to return the status of the whole lattice rather than the MFIS and XSS.

5 Experimentation

We propose two sets of experiments. The first will compare variations of our
algorithms to illustrate the various improvements from the use of the properties
introduced in section 4. The second will compare our generic algorithm, Shiny,
with specific solutions proposed for the why empty [7], why so many [20], and
why not [26] problems. We will observe the performance cost of a general method
compared with specific solutions, and compare the proposed failure causes.

5.1 Experimental Setup

Hardware Our experiments were run on a Ubuntu Server 16.04 LTS system with
Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and 32GB RAM. The results
presented are the average of five consecutive runs of the algorithms. To prevent
a cold start effect, a preliminary run is performed but not included in the results.

Algorithms The algorithms are implemented in Oracle Java 1.8 64bits and run on
top of Jena TDB. To compare the generic solution to specific methods from the
state of the art, we have used the QARS system [7] (why empty), the TMA4KB
system [20] (why so many), and the ANNA system [26] (why not). We used the
reference implementations for the first two systems34, and we re-implemented
the ANNA algorithm as a reference implementation was not available.

3 https://forge.lias-lab.fr/projects/qars
4 https://forge.lias-lab.fr/projects/tma4kb

L. Parkin et al.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
card 12 8 115 5 4 5 10 80 4 3 20 1 4
content 1.9E4 559 2.6E4 551 6 47 502 2,210 2.7E5 1,567 959 138 2.8E5

101

103

105

Ex
ec

ut
io

n
tim

e
(m

s)

Fig. 4. Execution time for WhyNot queries with cardinality or content method

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
single 326 9 16 2 7 2 646 1 1.2E4 5.2E4 5.6E4 5.6E4 1 125 1 200
multiple 32 21 29 23 21 22 865 752 163 234 240 238 704 760 859 940

101

103

Ex
ec

ut
io

n
tim

e
(m

s)

Fig. 5. Execution time for combined failure causes with single or multiple algorithms

Dataset and Queries We downloaded the DBpedia dataset (the English 3.9
version) which contains 812M triple patterns and used conjunctive queries from
the LSQ project [22] for our first experiments. Minor adaptations were made
as some original queries used URIs incompatible with DBpedia v.3.9. Values for
content-based questions were taken from the domain of one of the triple patterns
of query in order to have plausible missing answers.

To compare with state of the art methods, we have used the datasets and
queries from the initial papers: 7 queries on the LUBM dataset [10] for why
empty, 9 queries on DBpedia for why so many, 5 queries with 6 missing mappings
on DBpedia for why not.

5.2 Results

Content-Based Problems Figure 4 shows the execution times for finding the
MFIS and XSS for 13 why not questions. The card method uses the transforma-
tion to an equivalent why empty problem, whereas the content method searches
for the expected mapping in the query answers. Dealing with the why not prob-
lem by transforming it into a cardinality problem is a significant improvement.
Execution times are reduced by up to five orders of magnitude. On average, the
card method runs in 7% of the content method’s time. For the content method
the execution time is related to the size of the result set as determining that
an answer is missing requires checking every other answer. In the card method,
we only need to know if a query produced an answer, without examining all
the answers. By transforming the content problem to a cardinality problem, re-
sults unrelated to the mapping of interest are not generated and most of the
processing is performed by the underlying triplestore.

Explaining Unexpected Answers of SPARQL Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
tma-full 28 9 25 14 16 82 144 399 2,931
shiny-full 9 7 15 14 24 101 217 664 3,161

101

102

103

Ex
ec

ut
io

n
tim

e
(m

s)

Fig. 6. Execution time for why so many problem with TMA4KB and Shiny algorithms

Q1 Q2 Q3 Q4 Q5 Q6 Q7
QARS_LBA 4 13 60 7 87 74 477
shiny_LBA 2 14 58 6 64 78 437

101

102

Ex
ec

ut
io

n
tim

e
(m

s)

Fig. 7. Execution time for why empty prob-
lem with QARS and Shiny algorithms

Q1 Q2 Q3 Q4 Q5 Q6
Anna 23 34 12 13 397 575
shiny-LBA 25 56 11 9 616 16

101

102

Ex
ec

ut
io

n
tim

e
(m

s)

Fig. 8. Execution time for why not prob-
lem with ANNA and Shiny algorithms

Initial SELECT * WHERE {?f dbo:director ?dir . ?f dbo:starring ?dir .

query ?dir dbp:name ?name . ?f dbp:name ?fname . ?dir dbp:gender

Female . ?dir dbp:awards dbr:Academy Award for Best Picture}
Mapping ?fname → Argo

XSS SELECT * WHERE {?f dbo:director ?dir . ?f dbo:starring ?dir .

?dir dbp:name ?name . ?f dbp:name ?fname}
ANNA SELECT * WHERE {?f dbo:director ?dir . ?f dbo:starring ?dir .

modification ?dir dbp:name ?name . ?f dbp:name ?fname . ?dir ?v0

dbr:Academy Award for Best Picture}
Fig. 9. Results for Q6 in the why not experiment

Combined Problems Figure 5 shows the execution times for finding the MFIS
and XSS for 16 combinations of two failure causes. All odd numbered executions
are disjunctions, and even numbered executions are conjunctions. The single
method uses one algorithm execution, using the Base algorithm and leveraging
property 6, and determines failure based on the conjunction of failure conditions.
The multiple method executes one algorithm per failure condition then combines
the results, either combining the MFIS and XSS for a conjuction or the complete
lattices for a disjunction. In most cases, the single execution performs better, in
particular for conjunctions. When executing the single algorithm, a success with
a conjunction is detected faster, since only one failure condition needs to be false
for a query to succeed. For queries 9 to 12, the failure condition involves a why
not failure condition. In the multiple execution method, this is dealt with by
transforming the why not failure condition into a cardinality failure condition,
which is a significant performance improvement as shown previously. Here the
multiple execution method performs up to three orders of magnitude better.

Comparison with State of the Art Algorithms Figure 6 shows the execution time
to identify the MFIS and XSS in the why so many problem, using TMA4KB

L. Parkin et al.

[20], and our generic algorithm. Figure 7 shows the time to identify the MFS and
XSS using QARS [7], and to find the MFIS and XSS with our algorithm. For the
empty answer problem, MFIS and MFS are the same. For the why not problem,
figure 8 shows the execution time to produce modified queries using ANNA [26],
and to identify the MFIS and XSS with our algorithm. An example of the results
returned is given in table 9. The modified answer returned by ANNA is similar
to an XSS, but may differ slightly if one of the triple patterns has been relaxed.
For all the experiments, the execution times are close, our system is on average
1% slower than ANNA, 13% faster than QARS, and 8% slower than TMA4KB.
Overall, the added genericity does not have a major impact on performance.

6 Conclusion

In this paper, we have addressed the problem on unexpected answers in the
context of RDF. While the specific problem of empty answers has received much
attention in existing work, no solution for a problem with multiple unsatisfactory
aspects has yet been proposed. Through the study of specific problems, we have
proposed a framework for unexpected answers and identified existing definitions
of MFIS and XSS which can be applied to the general problem.

Using existing algorithms for specific problems, we studied adaptations to
deal with any unsatisfactory answers. We have shown the benefits of the adap-
tations experimentally, and compared the performance of our generic method
with three specialized algorithms. Our methods perform on average 1% faster
than the specialized algorithms execution time, and are faster in 55% of cases.

Our next goal is to use the MFIS in a query modification process. So far, our
algorithms only allow modification through triple pattern removal, but the MFIS
could help identify triple patterns for relaxation. In the comparison with ANNA,
we saw that the XSS provided by our method are similar to the modified queries
provided to deal with the why not problem, but that modifying the content of
triple patterns can provide a finer tuning of the user’s queries.

References

1. Bidoit, N., Herschel, M., Tzompanaki, K.: Query-based why-not prove-
nance with nedexplain. In: Extending database technology (EDBT) (2014).
https://doi.org/10.5441/002/edbt.2014.14

2. Bosc, P., Hadjali, A., Pivert, O.: Incremental controlled relaxation of failing
flexible queries. Journal of Intelligent Information Systems 33(3), 261 (2009).
https://doi.org/10.1007/s10844-008-0071-6

3. Crama, Y., Hammer, P.L.: Boolean functions: Theory, algorithms, and applica-
tions. Cambridge University Press (2011)

4. Dellal, I.: Management and Exploitation of Large and Uncertain Knowledge Bases.
Ph.D. thesis, ISAE-ENSMA - Poitiers (2019)

5. Dellal, I., Jean, S., Hadjali, A., Chardin, B., Baron, M.: On addressing the empty
answer problem in uncertain knowledge bases. In: DEXA’17. pp. 120–129 (2017).
https://doi.org/10.1007/978-3-319-64468-4 9

Explaining Unexpected Answers of SPARQL Queries

6. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K.,
Strohmann, T., Sun, S., Zhang, W.: Knowledge Vault: A Web-scale Ap-
proach to Probabilistic Knowledge Fusion. In: SIGKDD’14. pp. 601–610 (2014).
https://doi.org/10.1145/2623330.2623623

7. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Rdf query relaxation strategies based
on failure causes. In: European semantic web conference. pp. 439–454. Springer
(2016). https://doi.org/10.1007/978-3-319-34129-3 27

8. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Cooperative techniques for SPARQL
query relaxation in RDF databases. In: ESWC’15. pp. 237–252. Springer (2015).
https://doi.org/10.1007/978-3-319-18818-8 15

9. Godfrey, P.: Minimization in Cooperative Response to Failing Database Queries.
International Journal of Cooperative Information Systems 6(2), 95–149 (1997).
https://doi.org/10.1142/S0218843097000070

10. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowl-
edge base systems. Journal of Web Semantics 3(2-3), 158–182 (2005).
https://doi.org/10.1016/j.websem.2005.06.005

11. Harris, S., Seaborne, A.: Sparql 1.1 query language. W3C Recommendation (2013),
https://www.w3.org/TR/sparql11-query/.

12. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance of non-answers
to queries over extracted data. Proceedings of the VLDB Endowment 1(1) (2008).
https://doi.org/10.14778/1453856.1453936

13. Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A.,
Yu, C.: Making database systems usable. In: SIGMOD’07. p. 13–24 (2007).
https://doi.org/10.1145/1247480.1247483

14. Jannach, D.: Techniques for fast query relaxation in content-based recommender
systems. In: Annual Conference on Artificial Intelligence. pp. 49–63. Springer
(2006). https://doi.org/10.1007/978-3-540-69912-5 5

15. Kaplan, S.J.: Cooperative responses from a portable natural language query sys-
tem. Artificial Intelligence 19(2), 165–187 (1982). https://doi.org/10.1016/0004-
3702(82)90035-2

16. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A Large-
scale, Multilingual Knowledge Base Extracted fromWikipedia. Semantic Web 6(2),
167–195 (2015). https://doi.org/10.3233/SW-140134

17. McSherry, D.: Incremental relaxation of unsuccessful queries. In: Euro-
pean Conference on Case-Based Reasoning. pp. 331–345. Springer (2004).
https://doi.org/10.1007/978-3-540-28631-8 25

18. Moises, S.A., Pereira, S.d.L.: Dealing with empty and overabundant answers to
flexible queries. Journal of Data Analysis and Information Processing pp. 12–18
(2014). https://doi.org/10.4236/jdaip.2014.21003

19. Motro, A.: Seave: A mechanism for verifying user presuppositions in query sys-
tems. ACM Transactions on Information Systems (TOIS) 4(4), 312–330 (1986).
https://doi.org/10.1145/9760.9762

20. Parkin, L., Chardin, B., Jean, S., Hadjali, A., Baron, M.: Dealing with
plethoric answers of sparql queries. In: DEXA’21. pp. 292–304. Springer (2021).
https://doi.org/10.1007/978-3-030-86472-9 27

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3) (2009). https://doi.org/10.1145/1567274.1567278

22. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ:
The Linked SPARQL Queries Dataset. In: ISWC’15. pp. 261–269 (2015).
https://doi.org/10.1007/978-3-319-25010-6 15

L. Parkin et al.

23. Song, Q., Namaki, M.H., Wu, Y.: Answering why-questions for sub-
graph queries in multi-attributed graphs. In: ICDE’19. pp. 40–51 (2019).
https://doi.org/10.1109/ICDE.2019.00013

24. Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data (2010).
https://doi.org/10.1145/1807167.1807172

25. Vasilyeva, E., Thiele, M., Bornhövd, C., Lehner, W.: Answering “why empty?”
and “why so many?” queries in graph databases. JCSS 82(1), 3–22 (2016).
https://doi.org/10.1016/j.jcss.2015.06.007

26. Wang, M., Liu, J., Wei, B., Yao, S., Zeng, H., Shi, L.: Answering why-not questions
on SPARQL queries. Knowledge and Information Systems 58, 169–208 (2019).
https://doi.org/10.1007/s10115-018-1155-4

27. Webber, B.L., Mays, E.: Varieties of user misconceptions: Detection and correction.
In: IJCAI’83. vol. 2, pp. 650–652 (1983)

28. Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a
database visualization environment. In: ICDE. pp. 91–102. IEEE (1997).
https://doi.org/10.1109/ICDE.1997.581742

