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The use of machine learning techniques has been a wide reference in many speech processing tasks. The
power of neural networks (NN) allows to solve some very complex tasks such as automatic speech emotion
prediction. Our works aim at continuously estimating the degree of satisfaction or frustration of speaker in call-
center conversations. More precisely, we extract an acoustic representation directly from the audio signal and a
linguistic representation from the automatic textual transcription, which will then be processed by a recurrent
NN able to predict the level of satisfaction between 0 and 1 every 0.25s. Self-supervised learning allows to learn
general contextualized speech representations with multi-layer convolutional networks from very large amount
of unlabeled data. It is then possible to extract such representations (or embeddings) from new specific data as
emotional speech. These representations have the advantage of capturing informations from a lot of data, what is
not the case of models learnt on specific emotional speech only. We set up a protocol including different types
of representation in input of the network : (i) cepstral coefficients (MFCCs), (ii) expert prosodic descriptors ; (iii)
words pre-trained embeddings and (iv) signal pre-trained embeddings. Our results confirm the high potential of
embedding representations for our task. More surprisingly, we show that the linguistic content seems to bring more
emotional information than the single audio signal. A fine grained linguistic analysis will confirm this result.

1 Introduction
Affective computing is a field of research at the

crossroads between artificial intelligence and human
emotions. A lot of applications are derived from such
a field. In social sciences, the characterization of the
emotional content of a speaker can help to analyse political
debates, understand social interactions in dialogues. From
an industrial point of view, the knowledge of a speaker’s
emotional state can provide information to improve
commercial relations with customers in call centers.

It is usually established that emotion in speech can
be transmitted through linguistic messages conveyed by
words and paralinguistic messages conveyed by the acoustic
signal [1]. While activation (passive/active) is known
to be well-recognized from acoustic features, valence
(negative/positive) is known to be better recognized with
linguistic ones [2]. According to the circumflex model of
emotion from Scherer [3], satisfaction and frustration can
be considered as a combination of activation and valence
dimensions. Consequently, linguistic and acoustic features
should both be highly relevant to retrieve such emotions.

For a long time, paralinguistic information in speech has
been modelled with expert prosodic and acoustic features
capturing intensity, intonation, rhythm or voice quality.
These features are supposed to describe the voice production
process usually on the basis of a source-filter model.
Most of the expert feature sets [4, 5] intend to describe
prosody in the signal, with low level descriptors (LLDs)
such as fundamental frequency, loudness, spectral envelop
features, rhythmic patterns, combined with additional
statistical functionals. These features are still used in the
Music Information Retrieval domain [6]. However, with the
automatic processing of massive audio data, expert acoustic
features has been replaced by standardized features such
as Mel Frequency Cepstral Coefficients (MFCC) which are
more robust to acoustic environment changes [7]. Emotion
in speech is then captured by machine learning models
trained on annotated audio databases in supervised manner.

Because manual discrete and continuous emotion
annotation is a highly subjective perception task, it has
to be done by multiple annotators to be relevant, and this

explains the huge cost of the creation of large emotional
speech datasets. Consequently, Speech Emotion Recognition
(SER) databases are usually quite small (SEWA [8] : ∼44 h,
RECOLA [9] : ∼2.8 h, AlloSat [10] : ∼37 h). That is one
of the reasons why deep neural networks (DNN) have been
used only recently in SER in comparison to Automatic
Speech Recognition (ASR) where accessible databases
are drastically bigger (e.g. TED-LIUM 3 [11] ∼450 h,
LibriSpeech [12] : ∼960 h).

Transfer learning [13] within the deep learning paradigm,
is a machine learning method where a DNN trained for a
task is reused partially or entirely as the starting point to
train or fine-tune a neural network on a second task. Such
methods were also proposed to limit the impact of lack of
data when only small databases are available to train a neural
network for a specific domain or task. Transfer learning from
ASR is widely used in Text Sentiment Analysis, where large
databases are used to train generic cues which are fed into
the training process, leading to better generalization abilities
given limited training data [14].

As a variant of transfer learning, self-supervised learning
of speech or language representations has been proposed in
these last few years, for instance with the BERT system [15],
used for textual representation. Such representations,
computed by neural models trained on huge amounts of
unlabelled data, have shown their effectiveness on some
tasks under certain conditions, for instance for computer
vision [16] and Natural Language Processing (NLP) tasks as
described in [17].

For these reasons, we decided to study the impact
of linguistic and acoustic features extracted with self-
supervised pre-trained models in order to predict continuous
emotion. In this paper, we investigate different speech and/or
textual representations computed by models pre-trained
through self-supervised learning for SER task. Since these
already existing pre-trained models were initially designed
for speech recognition ASR [18] or natural language
understanding [15], it is not obvious that they are also
relevant for SER. For instance, at the acoustic level ASR
tends to focus on phone level that lasts about 30 ms while
emotions are usually supported on about 1 s of speech.
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2 Experimental protocol
This section describes the data used to train and evaluate

our models, and the neural network designed to continuously
predict the satisfaction.

2.1 Speech emotional data : AlloSat corpus
AlloSat corpus [10] is composed of real-life call-center

conversations, annotated along the satisfaction axis. It was
precisely built to continuously predict the evolution of
the customer satisfaction on call-centers audio recordings
of French speaking adult callers (i.e. customers). Various
information are asked by the callers -contract information,
global details on the company, or complains - and we intend
to predict the satisfaction associated with such conversations.

All conversations were recorded at 8kHz between July
2017 and November 2018 in call-centers located in French-
speaking countries. The agents are employees of various
companies in different domains, mainly energy, travel
agency, real estate agency and insurance. The two telephone
channels were recorded separately. Due to commercial
constraints, we discarded the part of the receiver (i.e agent).
Consequently, there is no overlap in the conversations.

AlloSat contains 303 conversations for a total duration
of 37h 23’ as summarized in Table 1. There is generally one
single speaker per conversation even if some conversations
can involve multiple speakers, for instance when the caller
gives the telephone to someone else. In order to preserve the
speakers’ privacy, all personal information were obfuscated
with a jazzy sound letting the annotator knows that there was
private information at this very moment. This anonymization
process ensures to respect the General Data Protection
Regulation (GDPR) recommendation. Because we removed
the agent speech, there can be long moments of silence in the
remaining caller speech. To minimize the annotator effort,
we decided to replace these silences by 2 seconds of white
noise, allowing the annotators to identify these moments of
silence.

Emotion annotation is known to be a highly subjective
task. To compensate for the subjectivity of the annotation
task, three annotators rated continuously the 303
conversations along the satisfaction axis. This axis range
from frustration to satisfaction with a neutral state in the
middle and is sampled every 0.25 seconds. Individual
annotations were averaged to get a gold reference, used in
the prediction task. For more details about the coherence
of the annotations, please refer to our previous work [10].
An automatic transcription was provided by Allo-Media for
each conversation.

The corpus has been divided into three subsets : The
train set contains 201 conversations corresponding to about
25h of audio signal and 16h of speech ; The development set
is composed of 42 conversations ; and the test set contains
60 conversations. Both Development and Test sets are
composed of about 6h of audio signal and 3h of speech.

Tableau 1 – Summary of AlloSat characteristics. F/M :
number of female/male speakers.

Statistics Value
number of conversations 303
number of speakers (F/M) 308 (191/117
total duration 37h23m27s
min duration conversations 32s
max duration conversations 41m
mean duration conversations 7m24s

Figure 1 – Baseline network architecture. Number of
neurons of each layer are written in red.

2.2 SER neural network model
2.2.1 Baseline architecture

We designed a regressive baseline neurol network to
continuously predict the satisfaction along the conversation.
To do so, a recurrent network, inspired from [19], is used
for the prediction task using bidirectionnal Long Short-Term
Memory units (biLSTM).

The sizes of the different layers have been optimized in
our previous work, and the final architecture is composed of
4 biLSTM layers of respectively 200, 64, 32, 32 units with a
tanh activation as shown on Figure 1. A single output neuron
is also used to predict the regression value each 250 ms
at the emotional segment level. Neither dropout nor batch
normalisation is used in this approach.

The baseline network is fed with expert acoustic,
respectively linguistic, feature sets of low dimension (40,
respectively 48) described in the next section. When moving
to pre-train features, the input dimension explodes up to
hundreds as they intend to represent huge amounts of
speech data. A mean and variance normalization of the input
features is done over the training data for all experiments.
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2.2.2 Loss and evaluation function

The concordance correlation coefficient (CCC) [20]
goes from 0 (chance level) to 1 (perfect) and is calculated
according to eq. 1, where x is the prediction and y the
reference. µx and µy are the means for the two variables and
σx and σy their corresponding variances. ρ is the correlation
coefficient between the two variables x and y.

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2 (1)

In previous experiments on the prediction of emotional
dimensions [21, 19], the loss function to be minimized during
the training phase is defined according to eq. 2, where the
CCC is computed over all concatenated conversations within
a batch.

Lc = 1 −CCC (2)

The CCC is also used as the evaluation metric on the
Development and Test subsets. The score is computed at once
on all the concatenated conversations of a given data subset,
as described in AVEC challenges [22].

2.2.3 Hyper-parameters

All networks are implemented under Pytorch framework 1.
Preliminary experiments on the development set, helped to
settle the baseline network architecture (number of biLSTM
layers and number of neurons per layer) and the following
hyper-parameters : training is done on batches from 8 to 20
conversations using the Adam optimiser, depending on the
size of the input embedding and memory constraints. All the
conversations are kept without any padding. The learning
rate is optimized at 0.001 by empirical method, tested on a
range from 0.001 to 0.02 by a 0.005 step. After preliminary
experiments, we noticed that networks were not improving
after the first 400 epochs, so the maximum number of epochs
is set to 500. For each training process, the final model is the
one extracted from the epoch that gets the best score on the
Development set. This final model is then evaluated on the
Test set.

2.2.4 Initialization

The initialization of the model can have a huge impact
on both the execution time and the accuracy of the
resulting system. To handle with this hypothesis, 5 random
initializations are tested on our best decision fusion system.
In additional experiments 2, the final CCC score of one of
the experiments varies from .873 to .911 depending on the
seed used for the initialization. It is a high variability which
is considered to be relevant if we refer to the confidence
interval, allowing us to conclude that the initialization is
crucial. In such a situation, if a new model is trained with
same data and same architecture, there is a significant
uncertainty on the final performances. This will not be
investigated in the reste of the article.

1. https://pytorch.org/
2. The results are not presented here

3 Signal representations

3.1 Acoustic modality
Baseline (MFCCs, eGeMAPS) In speech processing, the
spectral content is considered as constant on small audio
segments of around 30 ms. Our signal is sampled at 8 kHz,
therefore MFCC 1-12 and their delta values are extracted on
30 ms frames each 10 ms with torchaudio toolkit 3. Mean
and standard deviation of each coefficient are computed
over the emotional segment in order to get a 48 dimensional
vector each 250 ms.

The extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [4]. enables to capture prosodic features
suitable for SER. 23 LLDs are extracted at the frame level.
Mean and standard deviation of these 23 LLDs are computed
over the emotional segment. This feature set is extracted
with the toolkit OpenSmile [23]. While eGeMAPS intend to
precisely capture and represent prosody in speech, MFCCs
are known to be robust to low quality audio signals such as
telephone.

Pre-trained Wav2Vec Self-supervised learning approaches
have been designed in order to take benefit of huge amount of
unlabelled data. Wav2Vec (1.0) [18] is a neural model trained
through self-supervision to compute speech representations
from raw audio. This model is composed of two distinct
convolutional neural networks. A first encoder network
converts the audio signal into a new representation that
is given to the second network, the “context network”,
which takes care of the context by aggregating multiple
time step representations into a contextualized tensor that
matches to a receptive field of about 210 ms. Both are then
used to minimize a contrastive loss function. The resulting
embedding is a 512-dimensional feature vector. As the
training of such model demands a lot of data and calculation
power, we use the large pre-trained model provided by
Schneider et al. in [18], trained on Librispeech corpus [12]
consisting of 960 hours of English audio book samples
at 16 kHz. Our features were extracted on an upsampled
version of AlloSat 4. In order to investigate the influence
of the acoustic context on Wav2Vec representations,
embeddings are extracted either on the current 250 ms
emotional segment (without context) or on the whole
conversation input (with context).

In the end, each emotional segment is represented by
a 512-dimensional vector which consists of the averaged
values of obtained embeddings over each segment of 250 ms.

3.2 Linguistic modality
Baseline (Word2Vec) Word2Vec embeddings have
been extensively used for sentiment analysis or opinion
mining from text [24, 25], this motivated us to use such
representation for the prediction of satisfaction. In the
following experiments, a Word2Vec model has been trained

3. https://pytorch.org/audio/stable/index.html
4. We used FFMpeg resampling function with sinc interpolation

function
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with the toolkit GENSIM [26], using private data owned
by Allo-Media composed of manual call transcriptions
received by call centers, totaling over 500 hours of speech,
with CBoW algorithm [27]. No stop list is used before
extracting the embeddings. In a first step, the output size
embedding is fixed to 40 in order to have similar dimension
with baseline MFCC features (i.e 48). It is also motivated
with empirical results showing that in the range between 20
and 60, the dimension 40 gave the best results. We also did
the experiment with a more standardized output size, fixed
at 100.

Pre-trained (CamemBERT) Inspired by BERT,
CamemBERT [29] is a multi-layer bidirectional Transformer.
CamemBERT is trained on the Masked Language Modeling
task which consists of replacing some tokens by either the
token <MASK> or a random token and asking the model to
correct the tokens. The network uses a cross-entropy loss.
The input consists of a mix of whole words and sub-words
in order to take advantage of the context.

We use the “camemBERT-base” pre-trained model
delivered by the authors and trained on the French part of
OSCAR corpus [30] consisting of a set of monolingual
corpora extracted from Common Crawl snapshot and
totaling 138GB of raw text and 32.7B tokens after sub-word
tokenization. Text representations were extracted on Allosat
by using this pre-trained model, and we summarized the
results by averaging the continuous representations of
sub-words occurring in the current emotional segment. In
total, we use a 768-dimensional feature vector. In order
to investigate the influence of the linguistic context on
CamemBERT representations, embeddings are extracted
either on the words pronounced during the current emotional
segment (without context) or on the whole conversation
input (with context).

4 Results

4.1 Satisfaction performances
Figure 2 presents the evolution of satisfaction according

time. The three curves summarize the ground truth (average
value over the three annotators in red), the values predicted
with baseline features (green) and pre-trained features (blue).
The predicted values are obtained with a late fusion of the
predictions obtained with both modalities. We can seen that
pre-trained features predicts a smooth curve which as very
close to the ground truth, while baseline features predicts a
noisy curve which is clearly distinct from the labels.

The obtained performances in terms of CCC on both
Development and Test sets are summarized in Table 2.
From this table, we can clearly claim the advantage of using
pre-trained features for this task. Indeed for both acoustic
and linguistic modalities, the pre-trained features get the
best performances on both Development and Test sets. It
is however surprising that wav2vec is best (CCC=.806)
when the context (previous and next frames) is not included,

Figure 2 – Automatic prediction with the fusion of baseline
features (MFCC + Word2Vec) and pre-trained features
(Wav2Vec + CamemBERT

while CamemBERT is best (CCC=.924) when the context
(previous and next words) is included. One of the reason
which can explain this difference is the fact that anonymized
words have been replaced in the speech signal by jazzy
sounds which can disturb the surroundings of the current
segment.

From the results, we can also conclude to the supremacy
of the linguistic modality to predict satisfaction in our
telephone conversations. Because this result was not
expected as most SER models are based on the acoustic
signal only. The automatic transcription has the advantage
of providing some information at higher level that the signal
itself. To better understand this insight, we have conducted a
deep linguistic analysis on a small subset of conversations.

Tableau 2 – Comparison of the audio and text modalities in
terms of CCC computed on Development and Test sets on
AlloSat. Shuffle is activated within batches. woc : without
context ; wc : with context.

Satisfaction
Modality # size Dev Test
AUDIO
MFCC 48 .698 .513
eGeMAPS 46 .422 .354
Wav2Vec woc 512 .844 .806
Wav2Vec wc 512 .823 .656
TEXT
Word2vec 40 .805 .569
Word2vec 100 .860 .759
CamemBERT woc 768 .916 .817
CamemBERT wc 768 .917 .924

4.2 Linguistic analysis
Through the linguistic analysis, we intend to provide

elements that could explain the importance of linguistics to
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Tableau 3 – Extract (137 - 166 sec.) from a conversation about a certified letter. Disfluencies : italic ; Hesitations, repairs,
babbling : underline ; Semantic evidences of frustration : bold ; self-breaks : //

French English translation
- voilà et la deuxième lettre // c’est pareil mais bon cette lettre
// elle est où maintenant. . . pas comprendre pourquoi
on n’a pas retiré la lettre... la deuxième lettre // c’est
pareil mais elle venait d’où // cette lettre... c’était qui //

qui a envoyé cette lettre... parce que c’est important //

on est une société // nous. . . quand on sait pas qui c’est
// ... comment on peut savoir qui c’est ouais mais
ça va pas du tout hein ça va pas du tout // ça

- there we are and the second letter // it is the same but yes
this letter // where is it now ... not understand why no one
removed this letter ... the second letter // it is the same but
where does it come from // this letter ... it is who // who sent
this letter ... because it is important // we are a society // we ...
when we don’t know who it is // ... how can we know who it is
yeah but it’s not ok eh it’s not ok // it

retrieve the satisfaction. This analysis have been done on 13
conversations selected in order to cover different dynamics
of the satisfaction dimension : Globally flat, occurrences
of high frustration (ground truth < 4) and occurrences of
strongly decreasing satisfaction (frustration drops). The
analysis has been done using the automatic transcription, the
reference satisfaction annotation and tags corresponding to
high frustration and frustration drop.

Our hypothesis is that frustrated speech mainly
correspond to the accentuation of the oral phenomena.
Consequently, we specifically investigated the following
orality clues :

• Amount of disfluencies,
• Hesitations, repairs, repetitions, babbling,
• Importance of self-breaks,
• Usage of interrogations and negations,
• Semantic evidences of frustration or unhappiness,
• Amount of meaningfull segments vs. semantically

empty segments.

Based on these clues, the analysis concludes to different
observations. There are semantic evidences of frustration
in the conversations such as the usage of the negation (ça
ne m’amuse pas, c’est inadmissible), strong markers (c’est
gonflé, putain de ...) and weak markers (quand même,
franchement). It seems also that the amount of meaningful
segments, self-breaks and disfluencies, are generally
correlated with high frustration or satisfaction drops. The
syntactic structure of interrogative utterances seems also
correlated with frustration.

5 Discussion and conclusion
This article investigates the use of different signal

representations on both linguistic and acoustic modalities.
The results suggest that pre-trained features are highly
relevant for this kind of task for which the amount of data
is relatively small. Indeed, pre-trained features are extracted
with models which have seen a lot of diverse speech data
during the training phase, thus are highly efficient when
training SER models with unseen data. In the context
of call-center conversations, the experiments described

below conclude that the satisfaction-frustration axis is more
supported by linguistic than acoustic content. This work
raises the question of the place of acoustic cues, especially
prosodic features. We suppose that DNN learn an implicit
representation of prosody, however, it is a very hard task to
turn these internal representations into interpretable cues. To
pursue our investigation, we aim at applying the presented
protocol on additional speech data, for instance broadcast
news, political debates, etc.
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