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In modern audio systems, real-time digital signal processing algorithms are widely used for a variety of

applications. The possibility of using a simple electronic circuit for variety of research projects has shown

remarkable potential and is gradually attracting more and more attention from researchers and engineers. This

contribution describes a design of such a board used in the framework of a PhD thesis whose subject is centred

on the real-time correction of loudspeaker nonlinearities. The solution chosen in this work is based on a Teensy

3.6 microcontroller which is easy to program using the Arduino IDE and the libraries provided by Teensy. Two

solutions are provided : one with an Audio board available on the market and another with a homemade board. Both

solutions contain two inputs and at least one output (all 16 bits). This contribution does not detail the compensation

algorithm related to the loudspeaker nonlinearities but focuses on the boards design, comparison of proposed

solutions, and provides the basic codes to perform the real-time digital signal processing.

1 Introduction
The work presented in this paper is motivated by the

growing need to implement discrete real-time algorithms in

research projects in universities and research laboratories.

On the one hand, these projects are usually led by specialists

in the field of acoustics or electro-acoustics who do not

necessarily have expertise in electronics and in the design

of processor boards. On the other hand, there are many

solutions that are simple to use and require very little of

this expertise. The purpose of this article is to present two

inexpensive solutions that are currently being used in our

laboratory for research projects to run our algorithms in real

time.

Algorithms require a processor to perform the

mathematical operations that must be performed quickly

because the algorithms must be used in real time. They also

need information from the analog domain : the stimulus and

any other signals required, such as those used for feedback.

These analog stimuli must therefore be conditioned and

discretised using an ADC (analog-to-digital converter) for

use in the processor, and then converted back into the analog

domain using a DAC (digital-to-analog converter).

The choice of a processor and converters is usually based

on the need for at least two 16-bit channels, the ability

to perform very fast floating point calculations, low cost

availability and ease of use. The Teensy boards meet all

of these requirements while using the Arduino integrated

development environment (IDE). The programs are coded

in C and C++, using the free TeensyDuino add-on which

contains numerous libraries.

2 Teensy 3.6 Board
The Teensy 3.6 (Fig. 1) is based on an ARM Cortex M4

clocked at 180 MHz, which can be overclocked to 240 MHz

in the IDE. It has a floating point unit (FPU) which is used

to perform 32 bit hardware math operations on floating point

numbers. It is available from various retailers for a price of

about 35 euros.

The rest of the paper gives an overview of the use of

the Teensy 3.6 card for real-time processing in a research

project. Two solutions are proposed and compared in terms

of latency, distortion and noise.

Figure 1 – A picture of a Teensy 3.6 board.

Figure 2 – A picture of an Audio Adaptor Board for Teensy.

3 Teensy Board with I2S

3.1 Hardware
Teensy 3.6 includes hardware support for I2S, a serial

data protocol that handles high quality digital audio.

Therefore, any circuit equipped with I2S can be connected

to the Teensy board. In this work, we use the audio adapter

board for Teensy (Fig. 2). The board is equipped with an

SGTL5000 chip with support for I2Sand is available on

the market for the price of 20 EUR. The board includes

a 2 channel line level input, a 2 channel line level output

as pins on which connectors (BNC, jack, rca, ...) can be

soldered. The card also includes a stereo headphone output

and a mono microphone input.

3.2 Software
The Audio library that is part of the TeensyDuino

installation contains classes such as AudioInputI2S and

AudioOutputI2S that are very easy to use. In addition,

it contains many built-in functions such as waveform

generators, audio effects, fft analysis, etc. that can be directly

used. Since research projects often require us to build our

own algorithms, we provide in Appendix A the complete

Teensyduino code with a class called audio_processor
that provides direct access to input samples inL and inR and

output samples outL and outR in type float. The code can

also be found on github [1].

The Audio library provides access to a buffer
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containing input and output samples. The default

buffer length is 128 samples and can be modified in

the library file AudioStream.h which can be found

in the Teensyduino installation folder in the folder

\hardware\teensy\avr\cores\teensy3 . The sampling

frequency is set to 44.1 kHz, its value is defined in the same

file.

3.3 Characteristics
To provide the main characteristics of the map, we focus

on measuring three main limitations to system performance :

latency, distortion and noise. All measurements are

performed using Matlab and an RME Fireface 400 sound

card.

The latency of the system is a difference in time between

the moment when a signal is introduced into the system

and the moment when it appears at the output. We estimate

the latency from the impulse response which is measured

using a Maximum-Length Sequence (MLS) signal. The total

harmonic distortion (THD) is then estimated from a 1 kHz

sine wave with an amplitude of 0.5 Vrms as the ratio of the

sum of the powers of all harmonic components to the power

of the fundamental frequency. Finally, the THD+N (THD

and noise) is estimated as the ratio between the power of the

signal from which the fundamental frequency is removed

and the power of the fundamental frequency.

The latency results are compared below for several sizes

of the parameters AUDIO_BLOCK_SAMPLES. The THD and

THD+N are independent of this parameter. Fig. 3 then shows

the output power spectrum when excited by a 1 kHz sine

wave with an amplitude of 0.5 Vrms.

AUDIO_BLOCK_SAMPLES 128 64 32 16

Latency [ms] 9.24 4.9 2.7 1.63

THD -80 dB @ 1 kHz, 0.5 Vrms

THD+N -68 dB @ 1 kHz, 0.5 Vrms
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Figure 3 – Output Power Spectrum of the Tennsy 3.6 with

Audio Adapter (I2S) excited with a 1 kHz sine wave with

0.5 Vrms amplitude.

4 Teensy Board with ADCs and
external DAC

4.1 Hardware
The other solution is to use the internal ADCs and

external DACs. The Teensy 3.6 has two successive

approximation (SAR) ADCs that can access 25 different

pins on the Teensy PCB. The DACs on the board are only

12 bit, so an external DAC with a higher resolution is

needed.

ADC and Signal Conditioning

The ADCs can use an internal 3.3 V reference or an

external reference voltage for conversion. The ADCs are

capable of up to 16-bit resolution, but due to various sources

of noise, the effective number of bits (ENOB) is typically

specified at 13 bits for a single input. Thus, if overall noise

is to be kept low, special care must be taken in the design of

the signal conditioning section.

To ensure accurate data with the least amount of noise, a

proper analog signal conditioning circuit must be designed.

The signal conditioning circuit consists of three stages

(Fig. 4). The first stage is where the signal is combined with

the bias voltage required by the ADC. This bias voltage

Ubias is set to 1.65V, which is half the reference voltage of

the ADC and is provided by a precision voltage reference, a

MAX6043CAUT33+T from Maxim Integrated. To ensure

that no external DC voltage hinders the performance of

the 1st stage, the Uin input signal is AC-coupled via a CDC

capacitor. The value of the capacitor is extremely large

(1 mF) which ensures a very low cut-off frequency of about

40 mHz. The second stage is the one where the signal is

low pass filtered by a Sallen Key filter of 2nd order. The

values of the components in this stage are chosen to define

an anti-aliasing filter. It also reduces the amount of high

frequency noise present at the ADC inputs. The final stage

consists of two components, a resistor and a capacitor. The

capacitor is there to provide a charge reserve for the SAR

ADC while the resistor is there to help the stability of the

operational amplifier (Op-Amp).

−

+Uin

CDC
Rs

Rs2

Ubias

Rs1

Rfb1Rfb2

−

+
Rd Rd

Cd2

Cd1

Rc

Cc

UADC
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Figure 4 – Analogue Input

Due to the voltage limitations of the Teensy PCB,

voltages above 3.5 V or below -0.2 V will damage the

ADCs. There are several ways to protect the inputs, but

in the interest of keeping the circuits simple and free of
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parasitic effects, the following solution was chosen. Rail to

Rail operational amplifiers powered by a single regulated

3.3 V DC voltage were used in the signal conditioning

stages. Thus, the outputs of the Op-Amps cannot be higher

than the 3.3 V supply voltage. The chosen Op-Amp, the TI

LME49721, can operate from a single supply up to 5.5 V and

is capable of producing output voltages within 30 mV of the

positive or negative supply. It is a low-noise low-distortion

audio Op-Amp that is unity gain stable.

DAC

The on-board DAC is only 12 bits and does not meet

our needs. We therefore use an external 16 bit DAC, the

PmodDA3, available on the market for 35 EUR. The

PmodDA3 communicates with the Teensy board via an SPI

(Serial Peripheral Interface) protocol. The 16-bit unsigned

integer values of the data samples are first split into two 8-bit

values. These values are then loaded into a buffer to be sent

via SPI. The rest of the SPI transfer is configured as in the

data sheet recommendations.

Figure 5 – DAC PmodDA3 board.

4.2 Software
Once the signal has reached the ADC, it is also a matter of

ensuring a regular and precise timing of the conversion. This

timing is provided by the programmable delay block (PDB).

At a basic level, the PDB is set to a specific frequency, in this

case the sample rate. The PDB is used to initiate a conversion

in the ADCs. Once the conversion is complete, a flag is raised

and the values are read and used in the algorithm. To get

the samples from the ADCs, we use a free ADC library [3]

(provided by Pedro Villanueva) that makes setting up and

using the ADCs incredibly simple. Full code for Teensyduino

is available in the appendix and on github : [2].

4.3 Characteristics
This section summarizes the measured characteristics of

the Teensy 3.6 card with internal ADCs and an external 16 bit

DAC. All measurements provided in this section are for the

96 kHz sample rate. As the Pedvide ADC library allows to

modify the ADC sampling speed, we test two configurations

with different parameters of ADC_SAMPLING_SPEED :

LOW_SPEED and HIGH_SPEED. Fig. 6. The measured latency,

THD and THD+N are summarized below. Fig. 6 then shows

the output power spectrum when excited by a 1 kHz sine

wave with an amplitude of 0.5 Vrms.

ADC_SAMPLING_SPEED LOW_SPEED HIGH_SPEED

Latency [μs] 12 9.6

THD [dB] -76 -67

THD+N [dB] -63 -61
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Figure 6 – Output Power Spectrum of the Tennsy 3.6 with

internal ADC and external DAC excited with a 1 kHz sine

wave with 0.5 Vrms amplitude. Tha ADC sampling speed is

set to LOW_SPEED.

5 Conclusion
In this paper we compare two solutions with the

Teensy 3.6 board used for real-time audio signal processing

in research projects. The solution based on the Audio

Adaptor Board is much simpler to use than the solution with

internal ADCs and external DACs for which an external

board with components for signal conditioning was used.

When comparing the THD, the Audio Adaptor Board shows

lower distortion than the ADC/DAC solution. However, the

latency of the ADC/DAC solution is about 10 μs (micro

seconds) whereas the latency of the Audio Adaptor Board

solution is several milliseconds depending on the buffer size.

We therefore keep both solutions for real-time processing in

our research and even student projects. When low latency is

not required, we recommend using the Audio Adaptor Board

for its simplicity. For projects requiring very low latency, we

use the board with internal ADCs and external DACs.
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Appendix A : codes for I2S
teensy_i2s_IO_processor.ino

#include <Audio.h>
#include "audio_processor.h"

// --- connections
AudioInputI2S i2s1;
AudioOutputI2S i2s2;

AudioProcessor proc;

AudioConnection patchCord1(i2s1, 0, proc, 0);
AudioConnection patchCord2(i2s1, 1, proc, 1);
AudioConnection patchCord3(proc, 0, i2s2, 0);
AudioConnection patchCord4(proc, 1, i2s2, 1);

AudioControlSGTL5000 sgtl5000_1;

void setup() {
AudioMemory(12);

// Enable the audio shield with LineIn
sgtl5000_1.enable();
sgtl5000_1.inputSelect(AUDIO_INPUT_LINEIN);

// set volume level of lineIn
sgtl5000_1.lineInLevel(0);
// set volume level of linOut
sgtl5000_1.lineOutLevel(13);

}

void loop() {
}

audio_processor.h

#ifndef audio_processor_h_
#define audio_processor_h_

#include "AudioStream.h"

class AudioProcessor : public AudioStream
{
public:
AudioProcessor(void) : AudioStream(2, inputQueueArray) {}
virtual void update(void);

const int resolutionDAC = 16;
const int resolutionADC = 16;
const float conversionADC = 1.0f/((1<<resolutionADC)-1);
const float conversionDAC = (1<<resolutionDAC)-1;

private:
audio_block_t *inputQueueArray[2];

};

#endif

audio_processor.cpp

#include "audio_processor.h"

void AudioProcessor::update(void)
{
audio_block_t *blockL, *blockR;
float inL, inR, outL, outR;
unsigned int i;

blockL = receiveWritable(0);
if (!blockL) return;
blockR = receiveWritable(1);
if (!blockR) return;

for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
// read the input signal
inL = blockL->data[i] * conversionADC;
inR = blockR->data[i] * conversionADC;

// processing
outL = inL;
outR = inR;

// write the output signal
blockL->data[i] = outL * conversionDAC;
blockR->data[i] = outR * conversionDAC;

}

transmit(blockL ,0);
transmit(blockR ,1);
release(blockL);
release(blockR);

}

for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
// read the input signal
inL = blockL->data[i] * conversionADC;
inR = blockR->data[i] * conversionADC;

// processing
outL = inL;
outR = inR;

// write the output signal
blockL->data[i] = outL * conversionDAC;
blockR->data[i] = outR * conversionDAC;

}
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Appendix B: codes for ADC and DAC

#include <ADC.h>
#include <ADC_util.h>
#include <SPI.h>

//Input (ADC) initialisation
const int readPin1 = A0;
const int readPin2 = A2;
const float VrefADC = 3.3;
const int ADCAverages = 1;
volatile uint16_t valADC0 = 0, valADC1 = 0;
volatile uint8_t VALADC0Ready = false, VALADC1Ready = false;
volatile float input1 = 0.0, input2 = 0.0;
const int resolutionADC = 16;
const float conversionConstADC = VrefADC/((1<<resolutionADC)-1);

//Output (DAC) signal initialisation
const int slaveSelectPin = 25;
const int DIO = 2;
const int LDAC = 24;
const float VrefDAC = 2.5;
volatile uint16_t valDAC = 0;
volatile float val4DACOut = 0.0;
const int resolutionDAC = 16;
const float conversionConstDAC = ((1<<resolutionDAC)-1)/VrefDAC;

// Timing
const float sampleRateHz = 48000.0;
const int PmodDA3SPIMHz = 50;
const long PmodDA3SPIHz = PmodDA3SPIMHz*1000*1000;

// Using the Pedvide ADC Library on Github
ADC *adc = new ADC(); // adc object

void setup(void)
{
// Declare needed pins as inputs or outputs
pinMode(readPin1 , INPUT);
pinMode(readPin2 , INPUT);
pinMode (slaveSelectPin , OUTPUT);
pinMode(DIO, OUTPUT);
pinMode (LDAC, OUTPUT);

// When using the Pedvide ADC library we can set more options
adc->adc0->setAveraging(ADCAverages); // set number of averages
adc->adc0->setResolution(resolutionADC); // set bits of resolution
adc->adc0->setReference(ADC_REFERENCE::REF_3V3); // Set voltage reference for ADC.
adc->adc0->setSamplingSpeed(ADC_SAMPLING_SPEED::LOW_SPEED); // change the sampling speed
adc->adc0->setConversionSpeed(ADC_CONVERSION_SPEED::MED_SPEED); // change the conversion speed

adc->adc0->stopPDB();
adc->adc0->startSingleRead(readPin1);
adc->adc0->enableInterrupts(adc0_isr);
adc->adc0->startPDB(sampleRateHz); //frequency in Hz

adc->adc1->setAveraging(ADCAverages); // set number of averages
adc->adc1->setResolution(resolutionADC); // set bits of resolution
adc->adc1->setReference(ADC_REFERENCE::REF_3V3); // Set voltage reference for ADC.
adc->adc1->setSamplingSpeed(ADC_SAMPLING_SPEED::LOW_SPEED); // change the sampling speed
adc->adc1->setConversionSpeed(ADC_CONVERSION_SPEED::MED_SPEED); // change the conversion speed
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adc->adc1->stopPDB();
adc->adc1->startSingleRead(readPin2);
adc->adc1->enableInterrupts(adc1_isr);
adc->adc1->startPDB(sampleRateHz); //frequency in Hz

NVIC_SET_PRIORITY(IRQ_USBOTG , 200);
// initialise the SPI channel
SPI.begin();
SPI.beginTransaction(SPISettings(PmodDA3SPIHz , MSBFIRST , SPI_MODE0));

}

void Operations(void)
{
// read ADC Value and convert to voltage
input1 = (valADC0 * conversionConstADC - 1.625);
input2 = (valADC1 * conversionConstADC - 1.625);

// do the Signal Processing (example: mean value of both inputs)
val4DACOut = input1*0.5 + input2*0.5;

// convert the output value for DAC
valDAC = ((val4DACOut+1.25)*conversionConstDAC);

// send the value using the SPI
uint8_t SPIBuff[2] = {0};
SPIBuff[0] = valDAC >> 8;
SPIBuff[1] = valDAC & 0xFF;

digitalWrite(LDAC,HIGH);
// take the SS pin low to select the chip:
digitalWrite(slaveSelectPin ,LOW);
// send in the address and value via SPI:
SPI.transfer(SPIBuff, 2);
// take the SS pin high to de-select the chip:
digitalWrite(slaveSelectPin ,HIGH);
digitalWrite(LDAC,LOW);

}

void loop(void)
{
if (VALADC0Ready && VALADC1Ready){
Operations();
VALADC0Ready = false;
VALADC1Ready = false;

}
}

void adc0_isr() {
valADC0 = (uint16_t)adc->adc0->readSingle();
VALADC0Ready = true;

}

void adc1_isr() {
valADC1 = (uint16_t)adc->adc1->readSingle();
VALADC1Ready = true;

}

void Operations(void)
{
// read ADC Value and convert to voltage
input1 = (valADC0 * conversionConstADC - 1.625);
input2 = (valADC1 * conversionConstADC - 1.625);

// do the Signal Processing (example: mean value of both inputs)
val4DACOut = input1*0.5 + input2*0.5;

// convert the output value for DAC
valDAC = ((val4DACOut+1.25)*conversionConstDAC);

// send the value using the SPI
uint8_t SPIBuff[2] = {0};
SPIBuff[0] = valDAC >> 8;
SPIBuff[1] = valDAC & 0xFF;

digitalWrite(LDAC,HIGH);
// take the SS pin low to select the chip:
digitalWrite(slaveSelectPin ,LOW);
// send in the address and value via SPI:
SPI.transfer(SPIBuff, 2);
// take the SS pin high to de-select the chip:
digitalWrite(slaveSelectPin ,HIGH);
digitalWrite(LDAC,LOW);

}
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