Supplementary Information

Magnetic and Mechanical Properties of Additively Manufactured Al_x(CoFeNi) Complex Concentrated Alloys

V. Chaudhary^a, M.S.K.K.Y. Nartu^{b,c}, S. Dasari^b, S.M. Varahabhatla^{b,c}, A. Sharma^b, M. Radhakrishnan^{b,c}, S.A. Mantri^{b,c}, S. Gorsse^d, N.B. Dahotre^{b,c}, R. V. Ramanujan^a and R. Banerjee^{b,c*}

^aSchool of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore

^bDepartment of Materials Science and Engineering, University of North Texas, Denton, TX, 76207, USA

^cCenter for Agile and Adaptive Manufacturing (CAAAM), University of North Texas, Denton, TX, 76207, USA

°CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
*Corresponding author: Raj.Banerjee@unt.edu

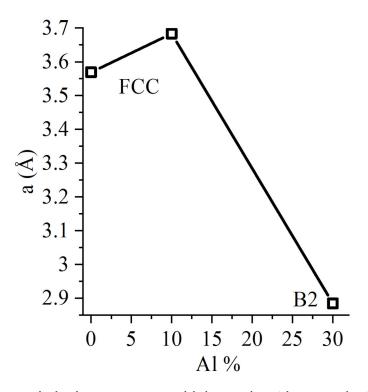


Figure S1. Change in lattice parameters with increasing Al content in Al_x(CoFeNi).

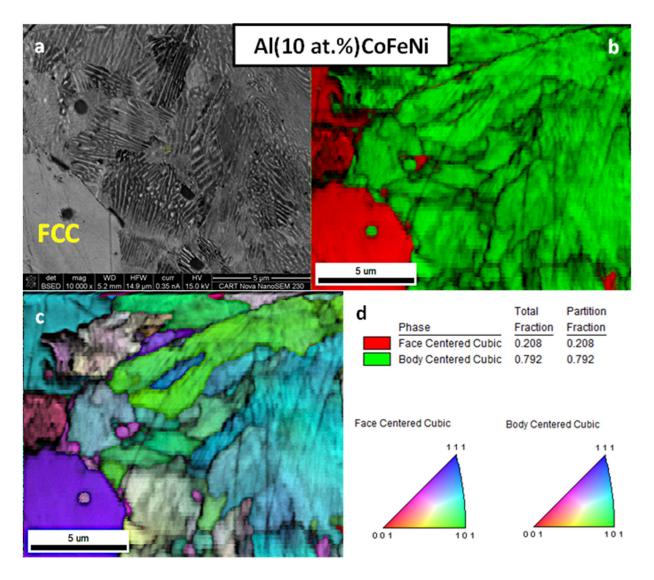


Figure S2. (a) The backscattered SEM image along with (b) Phase and (c) IPF maps obtained from the EBSD scans performed on the Al-10 condition after MT. Legend for phase and IPF maps are given in (d).

Phase compositions in the three alloys

No phase transformations occurred in CoFeNi and Al₃₀(CoFeNi) and thus, the composition of the FCC and B2 phases in CoFeNi, and Al₃₀(CoFeNi) respectively before and after M-T is the same. While a solid-state reaction occurred in Al₁₀(CoFeNi) during M-T, the composition of the phases post M-T can only be determined using Atom Probe Tomography (APT) due to their fine-scale. This is beyond the scope of the current study. But for qualitative comparison, the authors have included the following table which shows the composition of FCC, L1₂, BCC and

B2 phases after annealing the arc melted Al_{9.4}(CoFeNi) alloy at 600°C for 50hrs. This annealing treatment also produced a similar nano-lamellar microstructure with four phases, as described by Dasari et.al. [1].

Table S1: Composition of FCC, L1₂, BCC and B2 phases after annealing the arc melted Al_{9.4}(CoFeNi) alloy at 600°C for 50hrs

Composition		FCC	L12	BCC	B2
Al	at. %	5.83	22.90	4.03	30.36
	sigma %	0.14	0.28	0.10	0.25
Со	at. %	29.81	5.19	44.72	11.13
	sigma %	0.34	0.12	0.38	0.14
Fe	at. %	29.94	5.41	47.37	9.81
	sigma %	0.34	0.13	0.39	0.13
Ni	at. %	34.42	66.50	3.87	48.70
	sigma %	0.37	0.56	0.09	0.34

References:

[1] S. Dasari, B. Gwalani, A. Jagetia, V. Soni, S. Gorsse, R. Banerjee, Hierarchical Eutectoid Nano-lamellar Decomposition in an Al0.3CoFeNi Complex Concentrated Alloy, Sci. Rep. 10 (2020) 4836. https://doi.org/10.1038/s41598-020-61538-6.