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1 Introduction

Ornstein-Uhlenbeck (OU) processes are often used in various fields such as finance
[22, 27], temperature modelling [2, 10, 12, 13], medicine [25], physics [28], neuro-
science [19]. Estimation comes together with simulation and modelling, as models
need to be calibrated. Estimators of discretely observed diffusions are presented in
[1]. In [19], the authors propose an estimation based on observations of first hitting
times.
We consider a stationary OU process (Xt)t≥0 solution of dXt = (µ− λXt)dt+

√
βdBt,

X0 ∼ N
(

µ
λ
, β

2λ

)
,

(1.1)

with parameter θ = (µ, λ, β) ∈ R × R>0 × R>0, and (Bt)t≥0 a Brownian motion
independent of X0. In this paper, we focus on the parameter estimation of (Xt)t≥0
when we observe (S1, · · · , SN), N ∈ N̸=0 a set of suprema observations taken over a
single trajectory.
This approach has already been proposed in [7], using an estimator constructed by
the least squares method. Few statistical results have been proved on this estimator
and it is computationally expensive to deal with. Our goal is to provide a new
estimator with good statistical properties and less computational cost.
Even if the observations (S1, · · · , SN) are dependent, the sequence has some mixing
properties that imply asymptotic independence. So we estimate the parameter θ
using a pseudo-likelihood method introduced in the early 70’s in [4]. Our estimator
is then the maximal argument of the pseudo-likelihood function:

L(θ) =
N∏

i=1
fSi(Si, θ),

where fSi is the probability density function associated to the random variable Si.
The estimator requires an expression of the probability density fSi . One contribution
of this work is to propose an explicit expression of this density based on the Parabolic
cylinder function which is numerically inexpensive. Moreover with this expression
we obtain the consistency and asymptotic normality properties of the estimator.
Outline: In Section 2, we present some properties of the OU supremum sequence,
then we derive the probability density function of the supremum. The estimation
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method and the estimator statistical properties are presented in Section 3. In Section
4, some numerical experiments on simulated data are performed. We also present an
application of our procedure to a dataset of daily temperature extreme values from
Paris [17]. Proofs are collected in Section 5 and some auxiliary results in Appendix.

2 Some results related to the supremum of an OU
process

Let (Xt)t≥0 an OU process defined by (1.1), (tn)n≥0 a sequence of time such that
t0 = 0 and for i ≥ 1, ti − ti−1 = ∆, where ∆ > 0 is fixed. We denote (Si,0)i≥1 the
following sequence of suprema observations on time windows of size ∆:

Si,0 = sup
s∈[ti−1,ti]

Xs.

2.1 Properties of the suprema sequence (Si,0)i≥1

In order to present the estimation method, we give some properties of the sequence
(Si,0)i≥1. As the sequence of observations are dependent, some weak dependence
notions as mixing properties (see [9, 14] e.g.) are required to get statistical results
on the estimator.
The following result is induced by the properties of the stationary OU process.

Proposition 2.1. The sequence (Si,0)i≥1 is stationary, ergodic and exponentially
ρ-mixing.

Proof. Since the process (Xt)t≥0 is stationary and ergodic, then by Theorem 3.5.8 in
[24], the sequence (Si,0)i≥1 is also stationary and ergodic.
Using of the definition in [9], for p ∈ N̸=0, the sequence (Si,0)i≥1 is ρ-mixing if it
verifies:

ρ(p) = sup
n≥1

sup
f∈L2(Fn

0 ),g∈L2(F+∞
n+p)

|Corr(f, g)| −−−−→
p→+∞

0, (2.1)

with Fn
0 = σ(Si,0, 1 ≤ i ≤ n) and F+∞

n+p = σ(Si,0, i ≥ n+ p).
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From Theorem 2.1 in [15], for all 0 ≤ s ≤ t, for all functions f̃ : C0([0, s],R) → R,
g̃ : C0([t,+∞],R) → R such that f̃ and g̃ are square integrable with respect to the
law of X0, we have:∣∣∣Cov

[
f̃ ((Xu)u≤s) , g̃ ((Xv)v≥t)

]∣∣∣ ≤ e−λ(t−s)
√

Var
[
f̃ ((Xu)u≤s)

]
Var [g̃ ((Xv)v≥t)].

(2.2)
Therefore, the process (Xt)t≥0 is exponentially ρ-mixing.
However, the following inclusions are verified:
σ(Si,0, 1 ≤ i ≤ n) ⊂ σ(Xt, 0 ≤ t ≤ tn) and σ(Si,0, i ≥ n+ p) ⊂ σ(Xt, t ≥ tn+p−1).
Then, the exponentially ρ-mixing property of (Si,0)i≥1 is induced by (2.2).

2.2 Supremum law

In this section, we give some results on the law of S1,0. Since S1,0 = sups∈[0,∆] Xs,
we can use the existing results on supremum of an OU process. The cumulative
distribution function has already been introduced in [7]. The authors used the Bessel
formulation (see [3] e.g.) which is numerically expensive. In [6], the authors give the
supremum cumulative distribution of the non-stationary OU process with parameter
θ = (0, λ, 1) in term of Parabolic cylinder function. Using this result, we easily obtain
the cdf and the density of the supremum of a stationary OU process with parameter
θ = (µ, λ, β).
Proposition 2.2 (Probability density of the supremum). Let (Xt)t≥0 be an OU
process solution of (1.1), with parameter θ = (µ, λ, β) ∈ R × R>0 × R>0. For ∆ > 0
and m ∈ R, the probability density of the supremum S1,0 is given by

f∆(m, θ) = −
√
λ

βπ
e− λ

β (m− µ
β )2 ∑

n≥1
e−λνn,m,θ∆

−∆λ
D2

νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)2

+ 2
Dνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)2

−
D2

νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂2

νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)3

 , (2.3)

with νn,m,θ the positive (ordered) zeros of the function ν 7→ Dν

(
−(m− µ

λ
)
√

2λ
β

)
and

Dν(.) the Parabolic cylinder function (see Appendix).
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Proof. For x0,m ∈ R such that m > x0 and ∆ > 0, by replacing m, x0, ∆ and
λ respectively by m − µ

λ
, x0 − µ

λ
, β∆ and λ

β
in Proposition 3 in [6], we get the

cumulative distribution of the supremum for the non-stationary OU process with
parameter θ = (µ, λ, β).

Integration with respect to the invariant measure X0 ∼ N
(

µ
λ
, β

2λ

)
and Formula (A.1)

give the cumulative distribution function of S1,0 for the stationary OU process:

P(S1,0 < m) = −e−(m− µ
λ

)2 λ
β

√
2π

∑
n≥1

e−λνn,m,θ∆
Dνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
νn,m,θ∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

) . (2.4)

Then, making use of Proposition A.1, the series in Equation (2.4) is differentiable.
We easily get the probability density of the random variable S1,0.

The new cdf expression (2.4) is less expensive than the one in [7].

Remark 2.3. For ∆ > 0, the support of the random variable S1,0 is R.

3 Estimation problem

In this section, we introduce the estimation method of a stationary OU process pa-
rameters. As the sample of observations are weak dependent, the basic idea is to
use a pseudo-likelihood approach. The computation of the likelihood is simplified by
approximating the joint probabilities of all data by the product of marginal proba-
bilities.
The data (Si,0)i≥1 are collected on disjoint but consecutive time windows of constant
size ∆. Proposition 2.1 suggests to sample the initial set of observations by keeping
one observation over k to obtain a sequence of data with less dependence between
each over. Let k ∈ N̸=0 and r = (k − 1)∆, then the set of observations used in the
estimation procedure is given by

Si,r = sup
s∈[ti−1+(i−1)r,ti+(i−1)r]

Xs.

The choice k = 1 is equivalent to deal with the initial data (Si,0)i≥1.

Remark 3.1. For all r = (k − 1)∆ with k ∈ N̸=0, the sequence (Si,r)i≥1 has the
same properties as (Si,0)i≥1.
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We consider a stationary OU process with parameter θ0 = (µ0, λ0, β0) and θ0 ∈ Θ, a
compact subset of R×R>0 ×R>0. We denote Pθ0 the probability measure associated
to marginals from the sequence (Si,r)i≥1.
Let N ∈ N̸=0 and (S1,r, · · · , SN,r) a sample from the sequence (Si,r)i≥1. The pseudo-
likelihood Lr

N associated to the sub-sequence is given by:

Lr
N(θ) =

N∏
i=1

f∆(Si,r, θ). (3.1)

The OU process parameter θ0 = (µ0, λ0, β0) is estimated by:

θ̂N = (µ̂N , λ̂N , β̂N) = Argmax
θ∈Θ

Lr
N(θ). (3.2)

The results on the sequence (Si,r)i≥1 allow to get statistical properties on the esti-
mator. A basic but necessary result is the identifiability of the statistical model.

Proposition 3.2. The statistical model P = {Pθ, θ ∈ Θ} is identifiable.

The following results state the statistical properties of the estimator.

Theorem 3.3. Consider an OU process solution of (1.1), with parameter θ0 =
(µ0, λ0, β0). Assume that θ0 belongs to Θ a compact subset of R × R>0 × R>0. For
any N ∈ N̸=0, the estimator θ̂N defined by (3.2) is consistent:

θ̂N

Pθ0−−−−→
N→+∞

θ0.

Using Central Limit Theorem on ρ-mixing sequence of random variable, the asymp-
totic normality of the estimator follows.

Theorem 3.4. For any N ∈ N ̸=0 and r > ln( 5
3)

λ0
, the following convergence is satis-

fied: √
N(θ̂N − θ0) law−−−−→

N→+∞
N3(0, I−1

θ0 ), (3.3)

where Iθ0 is the Fisher information matrix given by

Iθ0 = Eθ0

[(
∇θ log f∆(., θ)|θ=θ0

) (
∇θ log f∆(., θ)|θ=θ0

)T
]
.

Proofs of Proposition 3.2, Theorems 3.3 and 3.4 are postponed in Section 5.
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4 Numerical experiment

In this section, we discuss on the existence of an optimal gap r used in the estimation
procedure. Then, we apply our estimation method to a simulated dataset and a real
dataset. A part of this section is dedicated to the comparaison between our method
and the one proposed in [7].

4.1 Trade off between the number of observations and the
gap r

For N ∈ N̸=0 and r = (k − 1)∆ with k ∈ N ̸=0, an important aspect of this study
is the choice of the sample as we take the set of observations from the sequence
(Si,r)1≤i≤⌈N/k⌉ rather than (Si,0)1≤i≤N , where ⌈.⌉ is the ceiling function. The right
choice of the gap r between supremum observations is given by controlling the upper
bound of an appropriate inequality. Indeed for a fixed dataset, creating a gap between
the observations of the supremum removes a quantity of observations in the sample
used. For r = (k − 1)∆ and k ∈ N ̸=0, we have:

E

( 1
⌈N/k⌉

log Lr
⌈N/k⌉ − 1

⌈N/k⌉
E
[
log Lr

⌈N/k⌉

])2
 ≤

Var(log(f∆(S1,r, θ)))
 1

⌈N/k⌉
+ 2

⌈N/k⌉2

∑
1≤i<j≤⌈N/k⌉

Cov(log(f∆(Si,r, θ), log(f∆(Sj,r, θ))
 .

(4.1)

The inequality (4.1) bounds the variance of the pseudo-likelihood. As (Si,r)i≥1 is
identically distributed, the quantity 1

⌈N/k⌉E
[
log Lr

⌈N/k⌉

]
does not depend on k and

N . For N ∈ N̸=0 observations and a time window of size ∆, there exists an r∗ which
minimizes the upper bound of this inequality.

Proposition 4.1. Consider an OU process solution of (1.1) with parameter θ0 =
(µ0, λ0, β0). The optimal upper bound of (4.1) is reached for r∗ = (k∗ − 1)∆ with

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0),

and

g(∆, N, k, θ0) = C

(
1

⌈N/k⌉
+ 2

⌈N/k⌉2
eλ0∆

eλ0k∆ − 1

[
⌈N/k⌉ + eλ0k∆

(
e−λ0k⌈N/k⌉∆ − 1
eλ0∆k − 1

)])
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and C a strictly positive constant.

Proof. Using inequality (4.1) and the ρ-mixing property on the sequence (log(f∆(Si,r, θ)))1≤i≤⌈N/k⌉,
we obtain the following inequality:

E

( 1
⌈N/k⌉

log Lr
⌈N/k⌉ − 1

⌈N/k⌉
E
[
log Lr

⌈N/k⌉

])2
 ≤ g(∆, N, k, θ0).

To obtain the optimal r = (k − 1)∆, it is enough to minimize the function g:

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0).

The appropriate gap for the estimation is r⋆ = (k⋆ − 1)∆.

Remark 4.2. In the case where the minimal argument is not unique, we choose the
largest one. As we will have less observations when k⋆ is larger, the minimisation
algorithm will be numerically less expensive. Moreover, the larger k⋆, the greater the
observations are decorrelated. Thus, the pseudo-likelihood will be more suitable for
our model.

Remark 4.3. When we deal with a real dataset we do not know the value of the
parameter θ0. To find r⋆, we first need to compute some bounds, see an example in
[7].

4.2 Numerical simulation

Numerical issues emerge from the ν-zeros of Dν(m) involved in the probability den-
sity. For large values of |m|, the ν-zeros are no longer computable through dichotomy.
We use the asymptotic expansions (A.5) and (A.6) to evaluate the density for large
values of |m|. In the pseudo-likelihood maximization, a multi-start method with 10
repeats is also used to reduce the instability.

• Simulated data:
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We simulate a stationary OU process with parameter θ0,1 = (µ0,1, λ0,1, β0,1) = (0, 1, 1)
using an Euler scheme with T = 103 and dt = 10−3. We denote (N, r), the set of
numerical parameters, with N the number of suprema observations and r the gap
between these observations. We apply our estimation method for ∆ = 1. Repeating
this process 100 times, we obtain a sample of our estimator. We also performed
the estimation method for the parameter θ0,2 = (µ0,2, λ0,2, β0,2) = (20.9, 0.95, 47.5).
From Proposition 4.1, for θ0,1 and θ0,2 with N = 1000, we have r⋆ = 1. Simulations
will be carried out for three different set of numerical parameters, (1000, 0), (500, 1)
and (250, 3). Each estimation will be compared using the relative root-mean-square
error (RMSE) and the mean-error (ME).
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(a) (b) (c)

(d) (e) (f)

Figure 1: Boxplots of the estimated parameters: (a), (b), (c)
θ0,1 = (µ0,1, λ0,1, β0,1) = (0, 1, 1); (e), (f), (g)

θ0,2 = (µ0,2, λ0,2, β0,2) = (20.9, 0.95, 47.5). The red line corresponds to the
theoretical value of the parameters.
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Numerical parameters Relative RMSE ME

(250,3) (0.0436, 0.0855, 0.0731) (0.0240,0.0114,0.0201)

(500,1) (0.0265, 0.0472, 0.0572) (0.0081,-0.0048,0.0198)

(1000,0) (0.0279, 0.0507, 0.0473) (0.0033,0.0044,0.0032)

Table 1: Table of the relative RMSE and ME for the estimator of
θ0,1 = (µ0,1, λ0,1, β0,1) = (0, 1, 1) with different numerical parameters.

Numerical parameters Relative RMSE ME

(250,3) ( 0.0154,0.0615 , 0.0701) (-0.1072,-0.0063,-0.6946)

(500,1) (0.0109,0.0351 , 0.0557) (-0.0538,-0.0096,-1.0821)

(1000,0) (0.0113,0.0348 ,0.0578) (-0.0482,-0.0074,-1.0693)

Table 2: Table of the relative RMSE and ME for the estimator of
θ0,2 = (µ0,2, λ0,2, β0,2) = (20.9, 0.95, 47.5) with different numerical parameters.

Relative RMSE are small enough and validate the results on the trade off between
the number of observations and the time gap r.
The overestimation/bias on the β estimator comes from the decrease of β 7→ Lr

N(µ, λ, β).
As β becomes greater than λ, the pseudo-likelihood function becomes flat in β. Con-
sequently, the β estimator will have a big variation which slowly decreases as the
number of observations increases. Better results can be obtain by fixing β and per-
forming the estimation method on parameters µ and λ (2D-estimation).
Using Theorem 3.3 in [23], we look at the probability that θ0,1 and θ0,2, fall in the
95% confidence ellispoïd for the set of numerical parameters (500, 1).
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(a) βλ plane (b) βµ plane

(c) λµ plane

Figure 2: Cut planes of the 95% confidence ellispoïd associate to the estimator of
θ0,1 = (0, 1, 1) and the set of numerical parameters (N, r) = (500, 1).

As a consequence of a small variance and a relatively high bias on the β estimator,
the parameters θ0,1 and θ0,2 fall infrequently in the 95% confidence ellispoïd. For the
2D-estimation problem (β fixed), both parameters fall in the 95% confidence ellipse
with a ≈ 93% probability for the same set of numerical parameters.

• Weather data:

In [16], we can find the daily temperatures of Paris. This dataset is one of the longest
we can find, as it started in 1900. In this dataset, we find the daily maximum and
minimum temperature measurements as well as the daily average temperature. We
choose to focus this study on the maximum temperatures from 15th of June to the
14th of August from 1950 to 1984 (2135 days), using a gap of one day between each
daily extreme values.
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A multi-start method is also used for the estimation. We obtain the following esti-
mates: (µ, λ, β) = (18.0866, 0.9510, 36.0201).
We use the same approches as [7], to compare the two different estimation methods.
The first validating method is the prediction. We take the mean temperature of
14/06/1985 as the starting point for the simulation of our 10-day process and we
make confidence intervals on 1000 simulations of the maximum temperatures for
each of these days and compare them with the true temperature values (between
15/06/1985 and 24/06/1985). The second method compare the theoretical quantiles
with the empirical quantiles.

Figure 3: 95% confidence interval for daily extreme temperatures between
15/06/1985 and 24/06/1985 and Quantile-Quantile Graph.

The results are slightly better as [7] for the QQ-plot and the prediction method.
Our method is more efficient in computation time and in accuracy. In [7], the evalu-
ation of the cumulative distribution function required a very expensive Monte Carlo
method. Their estimation procedure took a week for the computation of the estima-
tor, our method takes only a few minutes on the same machine.

5 Proofs

This section is dedicated to the proofs of Proposition 3.2, Theorem 3.3 and Theorem
3.4.
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5.1 Proof of Proposition 3.2

Identifiability of the statistical model P depends on the injectivity of the supremum
law. For the sake of proof, we denote (Xθ

t )t≥0 a stationary OU process with parameter
θ = (µ, λ, β) and Sθ

t = sups≤t X
θ
s . Using (A.2), the cdf of the supremum (2.4) can

be rewrite:

P(Sθ
t < m) = 1

2
√
π
e−(m− µ

λ
)2 λ

β

∑
n≥1

e−λνn,m,θt
D2

νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∫ (m− µ

λ
)
√

λ
β

−∞ D2
νn,m,θ

(
−x

√
2
)
dx

. (5.1)

We prove the injectivity of the measure Pθ associated with the random variable Sθ
t for

t fixed. We suppose by absurd that there exist θ1 = (µ1, λ1, β1) and θ2 = (µ2, λ2, β2)
such that Pθ1 = Pθ2 i.e.:

∀m ∈ R, P(Sθ1
t < m) = P(Sθ2

t < m). (5.2)

In particular the equality is satisfied for m → ∞. Using the asymptotic expansion
(A.10) with the three parameters variable change, we get:

1 − e
−(m− µ1

λ1
)2 λ1

β1

2
√
π
(
m− µ1

λ1

)√
λ1
β1

(1 + o(m−2+δ)) = 1 − e
−(m− µ2

λ2
)2 λ2

β2

2
√
π
(
m− µ2

λ2

)√
λ2
β2

(1 + o(m−2+δ)),

with 0 < δ < 2. Therefore(
m− µ2

λ2

)√
λ2
β2(

m− µ1
λ1

)√
λ1
β1

e
−(m− µ1

λ1
)2 λ1

β1
+(m− µ2

λ2
)2 λ2

β2 = 1 + o(m−2+δ)

⇐⇒ lim
m→+∞

m2−δ


(
m− µ2

λ2

)√
λ2
β2(

m− µ1
λ1

)√
λ1
β1

e
−m2

(
λ1
β1

− λ2
β2

)
+2m

(
µ1
β1

− µ2
β2

)
+

µ2
1

λ1β1
−

µ2
2

λ2β2 − 1
 = 0.

We deduce that λ1
β1

= λ2
β2

= λ
β

and µ1
β1

= µ2
β2

= µ
β

and thus νn,m,θ1 = νn,m,θ2 = νn,m.
Making use of (5.2) and (5.1), we have:

∑
n≥1

(
e−λ1νn,mt − e−λ2νn,mt

) D2
νn,m−1

(
−(m− µ

λ
)
√

2λ
β

)
∫ (m− µ

λ
)
√

λ
β

−∞ D2
νn,m

(
−x

√
2
)
dx

= 0.
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Since
D2

νn,m−1

(
−(m− µ

λ
)
√

2λ
β

)
∫ (m− µ

λ
)
√

λ
β

−∞ D2
νn,m(−x

√
2)dx

> 0, then the previous sum is strictly positive if λ1 < λ2

(resp. strictly negative if λ1 > λ2) because all the terms are strictly positive (resp.
strictly negative). We deduce that λ1 = λ2, so β1 = β2 and µ1 = µ2.
Therefore the measure Pθ associated with the variable Sθ

t is identifiable.

5.2 Proof of Theorem 3.3

Thereafter, without loss of generality, we suppose θ = (0, λ, 1). In the case of three
parameters, the arguments are the same. In the following we write λ instead of θ and
Θ is then a compact subset of R>0. To prove the consistency of the estimator θ̂N , we
adapt the proof of Corollary 3.2.9 in [11]. We first prove some regularity properties
on the density f∆ with respect to the parameter λ.

Lemma 5.1. Let (Xt)t≥0 be an OU process solution of (1.1), with parameter λ0 ∈ Θ,
the following conditions are satisfied:

1. For all m ∈ R, λ 7→ log(f∆(m,λ)) is continuous on Θ.

2. For all λ ∈ Θ, there exists a neighborhood V of λ and G ∈ L1(Pλ0) such that:

sup
η∈V

| log(f∆(., η)| ≤ G, (5.3)

with f∆ the probability density function of the supremum.

Proof. 1. Continuity of λ 7→ log(f∆(m,λ)) for all m ∈ R is proved using Proposi-
tion A.1 in Appendix.

2. Using Corollary A.4.1 and Corollary A.7.1, there exist M > 0, G1 ∈ L1(Pλ0)
and G2 ∈ L1(Pλ0) such that for all η in a neighborhood V of λ ∈ Θ:

∀m ≤ −M, |log(f∆(m, η))| ≤ G1(m),

∀m ≥ M, |log(f∆(m, η))| ≤ G2(m).

As (m,λ) 7→ log(f∆(m,λ)) is continuous on R × R>0, we have:

∀(m, η) ∈ [−M,M ] × V, |log(f∆(m, η))| ≤ K,
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with K > 0. Then, for all η ∈ V and m ∈ R:

sup
η∈V

| log(f∆(m, η)| ≤ G1(m)1]−∞,−M [(m) +K1[−M,M ](m) +G2(m)1]M,+∞[(m)︸ ︷︷ ︸
G(m)

.

We easily prove that G ∈ L1(Pλ0) and the conclusion holds.

Combining the results of the previous lemma with Proposition 3.2 and the Ergodic
Theorem (see [5] e.g.), we can prove Theorem 3.3. More precisely for a sample
(S1,r, · · · , SN,r) with N ∈ N ̸=0, the maximum pseudo-likelihood estimator is the
maximal argument of the function:

MN(λ) = 1
N

N∑
i=1

log
(
f∆(Si,r, λ)
f∆(Si,r, λ0)

)
.

For all λ ∈ Θ, the strict concavity of the logarithm function and Jensen’s inequality,
give:

Eλ0

[
log

(
f∆(Si,r, λ)
f∆(Si,r, λ0)

)]
< 0. (5.4)

According to the Ergodic Theorem, the following convergence holds:

MN(λ)
Pλ0 -p.s.

−−−−→
N→+∞

M(λ) = Eλ0

[
log

(
f∆(., λ)
f∆(., λ0)

)]
. (5.5)

Using Lemma 5.1, we prove that the convergence in Equation (5.5) is uniform.
To conclude, M(λ) is the Kullback-Leibler divergence and according to Proposition
3.2, it reaches its maximum for λ = λ0, proving that the estimator is consistent.

5.3 Proof of Theorem 3.4

Asymptotic normality is a basic property used in statistics, details on the classical
proof can be found in [26]. We mainly use the ρ-mixing property to obtain the
asymptotic normality of the estimator. As in the previous section, we consider only
the case θ = (0, λ, 1), the three parameters case is obtained by a similar reasoning.
We introduce the following notations:

lλ(m) = ∂λ log(f∆(m,λ)) , l̇λ(m) = ∂2
λ log(f∆(m,λ)) and l̈λ(m) = ∂3

λ log(f∆(m,λ)),
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ψN(λ) = 1
N

N∑
i=1

lλ(Si,r) , ψ̇N(λ) = 1
N

N∑
i=1

l̇λ(Si,r) and ψ̈N(λ) = 1
N

N∑
i=1

l̈λ(Si,r).

To obtain the asymptotic normality the first step is to perform a Taylor expansion
of the function ψ(λ̂N) around λ0:

√
N(λ̂N − λ0) = −

√
NψN(λ0)

ψ̇N(λ0) + 1
2(λ̂N − λ0)ψ̈N(λ̄N)

, (5.6)

with λ̄N a point located between λ̂N and λ0.

Lemma 5.2. For r > ln( 5
3)

λ0
, the following convergence is satisfied:

√
NψN(λ0) law−−−−→

N→+∞
N
(
0,Eλ0

(
lλ0(.)2

))
.

Proof. Convergence is obtained using a Central Limit Theorem for ρ-mixing sequence
[14, Theorem 2]. Three conditions need to be checked to apply this theorem. The
first condition is a direct consequence of the ρ-mixing property of (Si,r)i≥1. The
second one is satisfied from the asymptotic expansions and the smoothness of the
cumulative distribution given in Appendix A.2.
Concerning the last condition, it is necessary to check that lim

N→+∞
V
(∑N

i=1 lλ0(Si,r)
)

=
+∞. We notice that, by inclusion of the sigma-fields, the sequence (lλ0(Si,r))i≥1 is ρ-
mixing. Moreover, according to Lemma 5.4 below, for any i ≥ 1 the random variable
lλ0(Si,r) is centered. Using Proposition 1.5.1 in [14], we have:

V
(

N∑
i=1

lλ0(Si,r)
)

= Nσ̃2 +O(1), (5.7)

with σ̃2 = E[lλ0(S1,r)2] + 2∑+∞
i=1 E[lλ0(S1,r)lλ0(Si,r)].

Using the ρ-mixing property, σ̃2 ≥ E[lλ0(Si,r)2]3−5e−λ0r

1−e−λ0r . By assumption r >
ln( 5

3)
λ0

,
then σ̃2 > 0. So, according to (5.7):

lim
N→+∞

V
(

N∑
i=1

lλ0(Si,r)
)

= +∞.

Since all the conditions are satisfied, we can apply Theorem 2 in [14] and we obtain:
√
NψN(λ0) law−−−−→

N→+∞
N
(
0,Eλ0

(
lλ0(.)2

))
.
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Remark 5.3. The condition r >
ln( 5

3)
λ0

remains the same in the three parameters
case.

The required conditions on the other quantities involved in the Taylor expansion are
listed in the following lemma:

Lemma 5.4. For all λ ∈ Θ, the function λ 7→ lλ(m) is twice continuously derivable
for all m ∈ R. Moreover, EPλ0

|lλ0(.)| < ∞ and EPλ0

∣∣∣l̇λ0(.)
∣∣∣ exists and is non-zero.

The functions lλ0 and l̈λ0 are respectively dominated by G(.) and F (.) in L1(Pλ0) for
all λ in a neighborhood of λ0.

Proof. Integrability and differentiability conditions are satisfied using the asymptotic
expansions and the smoothness of the cumulative distribution in Appendix. Dom-
ination conditions are verified using the same reasoning as the one in the proof of
Lemma 5.1.

Combining Lemmas 5.2, 5.4 and Theorem 3.3, we have the following convergence:
√
N(λ̂N − λ0) law−−−−→

N→+∞
N (0, I−1

λ0 ), (5.8)

where Iλ0 is the Fisher information.

A Appendix

A.1 Parabolic cylinder function

We recall the definition and some auxiliary results about the Parabolic cylinder
function. Some of these results can be found in [6, 8, 18].
For all x, ν ∈ R, the Parabolic cylinder function Dν (x) is a solution of the differential
equation:

y′′ (x) +
(
ν + 1

2 − 1
4x

2
)
y (x) = 0.

Moreover for ν ∈ C with Re(ν) > 0 and z ∈ C, the function (z, ν) 7→ Dν(z) is a
holomorphic function ([18], Chapter 10).
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The Parabolic cylinder function satisfies the following relations:

∂xDν(x) = νDν−1(x) − x

2Dν(x),

and for all ν, a ∈ R,

∫ a

−∞
e− x2

2 Dν(−x
√

2)dx = e− a2
2

√
2
Dν−1(−a

√
2). (A.1)

We remind now some properties of the Parabolic cylinder function ν-zeros. Let n ∈
N̸=0, we denote νn,m, the positive (ordered) zeros of the function ν 7→ Dν

(
−m

√
2
)
.

Then ∫ m

−∞
D2

νn,m
(−x

√
2)dx = −νn,m√

2
Dνn,m−1(−m

√
2)∂νDνn,m(−m

√
2). (A.2)

Furthermore, according to [8]:

∂mνn,m =
√

2∂xDνn,m(−m
√

2)
∂νDνn,m(−m

√
2)

(A.3)

= − 2
√
π
∫∞

0 e−(2νn,m+1)u+m2 tanh(u)erfc
(
−m

√
tanh (u)

)
du√

sinh(u) cosh(u)

. (A.4)

The following asymptotic expansion is verified:

νn,m =
m→−∞

m2

2 − 1
2 − |m|

2
3 2− 1

3an +O
(
|m|−

2
3
)
, (A.5)

where an, n ∈ N̸=0 are the zeros of the first kind Airy function. Furthermore, the
following convergence is verified:

νn,m −→
m→+∞

n− 1. (A.6)

Recall that the zeros an of the first kind Airy function are all real, negative and
satisfy the following inequality ([21]), for n ≥ 1:

−
(3π

8 (4n− 1)
) 2

3

1 + 5
48
(

3π
8 (4n− 1)

)2

 < an ≤ −
(3π

8 (4n− 1)
) 2

3
. (A.7)
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A.2 Smoothness of the cumulative distribution function

Some smoothness properties are needed to prove the set of derivations and continu-
ities of the functions presented in the proof of consistency and asymptotic normality.
These properties will be proved using results on holomorphic functions. Making use
of (A.3), we can rewrite the cumulative distribution function as:

P(S1,0 < m) = −e−λm2

2
√
λπ

∑
n≥1

e−λνn,m,λ∆∂mνn,m,λ

ν2
n,m,λ

. (A.8)

Proposition A.1. The cumulative distribution function of the supremum verifies
the following properties:

1. (m,λ) 7→ P(S1,0 < m) is a smooth function on R × R>0.

2. For any k, j ∈ N̸=0:

∂k
λ∂

j
mP(S1,0 < m) =

∑
n≥1

∂k
λ∂

j
mfn(∆,m, λ),

with:

fn(∆,m, λ) = −e−m2λ−λνn,m,λ∆
√

2π
Dνn,m,λ−1

(
−m

√
2λ
)

νn,m,λ∂νDνn,m,λ

(
−m

√
2λ
) . (A.9)

Proof. We introduce the following notation, Cθ1≤arg≤θ2
M1≤|.|≤M2

= {z ∈ C s.t. θ1 ≤ arg(z) ≤
θ2 , M1 ≤ |z| ≤ M2}. We denote (z, λ) 7→ F̃∆(z, λ) the continuation of the cumu-
lative distribution function on C × C− π

2 <arg< π
2

|.|̸=0 . According to the Implicit Function
Theorem, the function (z, λ) 7→ νn,z,λ is holomorphic. Then by composition of holo-
morphic functions, we deduce that (A.9) is holomorphic.
We can write F̃∆ as follows:

F̃∆(z, λ) = G̃1(z, λ)1
C

π
2 <arg< 3

2π
|.|>M

×C
− π

2 ≤arg< π
2

|.|>M

(z, λ) + G̃2(z, λ)1
C|.|<M ×C

− π
2 ≤arg< π

2
0<|.|<M

(z, λ)

+ G̃3(z, λ)1
C

− π
2 <arg< π

2
|.|>M

×C
− π

2 ≤arg< π
2

|.|>M

(z, λ),

with M large enough.
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For G̃1 and G̃3, using the asymptotic expansion (A.5) and the limit (A.6), we easily
prove the normal convergence of the associate series.
For G̃2, the normal convergence can be obtained using the following equivalence from
[3]:

νn,z,λ ∼
n→+∞

2n− 1 + 4λz2

π2 − 2
√
λz2

π

√
4n− 1 + 4λz

2

π2

and

Dν(z) =
ν→+∞

√
2
(
ν + 1

2

) ν
2
e−( ν

2 + 1
4) cos

z
√
ν + 1

2 − πν

2

(1 +O(ν− 1
2 )
)
.

From Theorem 3.2 in [20], the conclusion holds.

A.3 Asymptotic expansions

For the integrability conditions required in the Ergodic Theorem, some asymptotic
expansions on the cumulative distribution and the probability density of the supre-
mum S1,0 are provided. In the following proofs, without loss of generality we assume
θ = (0, λ, 1). To return to the three parameters case, we replace m, ∆, λ respectively
by m− µ

λ
, β∆ and λ

β
.

A.3.1 For large positive m

Since the zeros νn,m,λ tend to positive integers when m goes to infinity, then we are
able to give an asymptotic expansion for (5.1).
Proposition A.2. For large positive m, the cumulative distribution function of S1,0

has the following asymptotic expansion:

P(S1,0 < m) =
m→+∞

1 − e−λm2

2
√
πλm

(
1 + o(m−2+δ)

)
, (A.10)

with 0 < δ < 2.

Proof. Recall that the cumulative distribution function is given by (5.1). Using
Formula (A.6), we obtain:

P(S1,0 < m) =
m→+∞

1
2
√
π
e−λm2

 D2
−1(−m

√
2λ)∫m

√
λ

−∞ D2
0(−x

√
2)dx

+
∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m

√
λ

−∞ D2
n(−x

√
2)dx

 .
(A.11)
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According to Formula (10.5.4) in [18]:

e−λm2

2
√
π

D2
−1(−m

√
2λ)∫m

√
λ

−∞ D2
0(−x

√
2)dx

= 1
2
(
1 + erf(m

√
λ)
)
,

where erf(m) = 2√
π

∫m
0 e−t2

dt is the Error function. Then applying Formulas (4.9.6)
and (4.13.4) in [18], we get:

∞∑
n=1

e−λn∆ D2
n−1(−m

√
2λ)∫m

√
λ

−∞ D2
n(−x

√
2λ)dx

=
m→+∞

e
−λm2 1−e−λ∆

1+e−λ∆O(1).

As we combine these two results, we get:

P(S1,0 < m) =
m→+∞

1
2
(
1 + erf(m

√
λ)
)

+ e
−λm2 1−e−λ∆

1+e−λ∆O(1).

Since 1 − erf(m) =
m→+∞

e−m2
√

πm
(1 +O(m−2)), the conclusion holds.

Proposition A.3. For large positive m, the asymptotic expansion of the probability
density of S1,0 is given by:

f∆(m,λ) =
m→+∞

√
λ

π
e−λm2

(
1 +me

−λm2 1−e−λ∆

1+e−λ∆O(1)
)
, (A.12)

with |O(1)| ≤ 4
√

λe−λ∆√
π(1−e−2λ∆)

.

Proof. When m goes to infinity, using (A.11) the derivative of the cumulative distri-
bution function satisfies:

f∆(m,λ) =
m→+∞

√
λ

π
e−λm2 + 1

2
√
π
∂m

e−λm2 ∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m

√
λ

−∞ D2
n(−x

√
2)dx

 .
Using Formulas (4.9.5) and (4.13.4) in [18], one can prove that:

∂m

e−λm2 ∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m

√
λ

−∞ D2
n(−x

√
2)dx

 =
m→+∞

me
− 2λm2

1+e−λ∆O(1),

with |O(1)| ≤ 8λe−λ∆√
π(1−e−2λ∆)

.
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Remark A.4. We have:

f∆(m,λ) =
m→+∞

e−λm2

√
λ

π

(
1 + o(m−α)

)
,

with α > 0.

Corollary A.4.1. For large positive m,

log (f∆(m,λ)) =
m→+∞

−λm2 + 1
2 log

(
λ

π

)
+me

−m2λ 1−e−∆λ

1+e−∆λO(1), (A.13)

with |O(1)| ≤ 16
√

λe−λ∆

3
√

π(1−e−2λ∆)
.

A similar reasoning as the one in the proof of Proposition A.2 and Proprosition A.3
may be applied to prove the following results:

Proposition A.5. For large positive m, the following asymptotic expansions are
satisfied:

1. ∂λ log (f∆(m,λ)) =
m→+∞

−m2 + 1
2λ

+m3e
−m2λ 1−e−λ∆

1+e−λ∆O(1).

2. ∂2
λ log (f∆(m,λ)) =

m→+∞
− 1

2λ2 +m5e
−m2λ 1−e−λ∆

1+e−λ∆O(1).

3. ∂3
λ log (f∆(m,λ)) =

m→+∞
1

λ3 +m7e
−m2λ 1−e−λ∆

1+e−λ∆O(1).

A.3.2 For large negative m

Using (A.4) and (A.5), we can give an asymptotic expansion for the cumulative
distribution function of S1,0 for large negative m.

Proposition A.6. For large negative m, the cumulative distribution function of S1,0

has the following asymptotic expansion:

P(S1,0 < m) = 2|m
√
λ|−3 e

−λm2−
(

m2λ
2 − 1

2

)
λ∆+|m|

2
3 λ

4
3 2− 1

3 a1∆

√
π

(1 + o(1)), (A.14)

where a1 is the first zero of the Airy function of the first kind.
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Sketch of the Proof. Formula (A.8) gives:

P
(
S1,0 < m

)
= −e−λm2−λ∆ν1,m,λ

2
√
π

∂mν1,m,λ√
λν2

1,m,λ

1 +
∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ)ν
2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

 .
From the asymptotic expansion of ν-zeros for large negative m (A.5) and (A.4), it
follows that:

∂mν1,m,λ√
λν2

1,m,λ

=
m→−∞

−4|m
√
λ|−3(1 + o(1)),

ν2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

−→
m→−∞

1 if n < N(m,λ) = ⌊2λm2

3π + 1
4⌋ + 1,

ν2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

−→
m→−∞,n→∞

0 if n > N(m,λ).

Therefore for all c > 1, there exists M > 0 such that for all m < −M , we get:

∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ)ν
2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

< c
∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ).

Using (A.7), we easily prove that for large negative m,∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ) = e−λ∆(ν2,m,λ−ν1,m,λ)O(1) = o(1).

We then conclude the proof with (A.5).

Using similar arguments, we can prove the following result:

Proposition A.7. For large negative m, the asymptotic expansion of the probability
density of S1,0 is given by:

f∆(m,λ) = 2|m|−2 e
−λm2−

(
m2λ

2 − 1
2

)
λ∆+|m|

2
3 λ

4
3 2− 1

3 a1∆

√
π

(2 + ∆λ)(1 +O(|m|−
2
3 )). (A.15)

Corollary A.7.1. For large negative m,

log f∆(m,λ) = −λm2−
(
m2λ

2 − 1
2

)
λ∆+|m|

2
3λ

4
3 2− 1

3a1∆+log 2(2 + ∆λ)√
π

−2 log(|m|)+O(|m|−
2
3 ).
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A similar reasoning as the one in the proof of Proposition A.6 may be applied to
prove the following:

Proposition A.8. For large negative m, the following asymptotic expansions are
satisfied:

1. ∂λ log(f∆(m,λ)) = −m2 − ∆
(
m2λ− 1

2 − |m| 2
3 2

2
3 λ− 2

3
3 a1

)
+ ∆

2+∆λ
+ |m|− 2

3O(1).

2. ∂2
λ log(f∆(m,λ)) = −∆

(
m2 + |m| 2

3 2
5
3 λ− 5

3
9 a1

)
− ∆2

(2+∆λ)2 + |m|− 2
3O(1).

3. ∂3
λ log(f∆(m,λ)) = ∆|m| 2

3 5
272 5

3λ− 8
3a1 + 2∆3

(2+∆λ)3 + |m|− 2
3O(1).
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