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1 Introduction

Ornstein-Uhlenbeck (OU) processes are often used in various fields such as finance
[22, 26], temperature modelling [2, 10, 12, 13], medicine [24], physics [27], neuro-
science [19]. Estimation comes together with simulation and modelling, as models
need to be calibrated. Estimators of discretely observed diffusions are presented in
[1]. In [19], the authors propose an estimation based on observations of first hitting
times.
We consider a stationary OU process (Xt)t≥0 solution of dXt = (µ− λXt)dt+

√
βdBt,

X0 ∼ N
(
µ
λ
, β2λ

)
,

(1.1)

with parameter θ = (µ, λ, β) ∈ R × R?
+ × R?

+, and (Bt)t≥0 a Brownian motion
independent of X0. In this paper, we focus on the parameter estimation of (Xt)t≥0
when we observe (S1, · · · , SN), N ∈ N? a set of supremum observations taken over
a single trajectory.
This approach has already been proposed in [7], using an estimator constructed by
the least squares method. Few statistical results have been proved on this estimator
and it is computationally expensive to deal with. Our goal is to provide a new
estimator with good statistical properties and less computational cost.
Even if the observations (S1, · · · , SN) are dependent, the sequence has some mixing
properties that imply asymptotic independence. So we estimate the parameter θ
using a pseudo-likelihood method introduced in the early 70’s in [4]. Our estimator
is then the maximal argument of the pseudo-likelihood function:

L(θ) =
N∏
i=1

fSi(Si, θ),

where fSi is the probability density function associated to the random variable Si.
The estimator requires an expression of the density fSi . One contribution of this work
is to propose an explicit expression based on the Parabolic cylinder function which
is numerically inexpensive. Moreover with this expression we obtain the consistency
and asymptotic normality properties of the estimator.
Outline: In Section 2 we present some properties of the supremum observations
sequence of an OU process, then we derive the probability density function of the
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supremum. The estimation method and statistical properties of the estimator are
presented in Section 3. In Section 4, some numerical experiments on simulated data
are performed. We also present an application of our procedure to a dataset of daily
temperature extreme values from Paris [17]. Proofs are collected in Section 5 and
some auxiliary results in Appendix.

2 Some results related to the supremum of an OU
process

Let (Xt)t≥0 an OU process defined by (1.1), ∆ ∈ R?
+ and (tn)n≥0 a sequence of time

such that t0 = 0 and ti− ti−1 = ∆, i ≥ 1. We denote (Si,0)i≥1 the following sequence
of suprema observations on time windows of size ∆:

Si,0 = sup
s∈[ti−1,ti]

Xs.

2.1 Properties of the supremum sequence (Si,0)i≥1

In order to present the estimation method, we give some properties of the sequence
(Si,0)i≥1. As the sequence of observations are dependent, some weak dependence
notions as mixing properties (see [9, 14] e.g.) are required to get statistical results
on the estimator.

Proposition 2.1. The sequence (Si,0)i≥1 is stationary i.e for all measurable function
f and for all p ∈ N,i ∈ N?:

E
[
f
(
S1,0, · · · , Si,0

)]
= E

[
f
(
Si+p,0, · · · , S2i+p−1,0

)]
. (2.1)

Proof. As the process (Xt)t≥0 is markovian, on the one hand we have:

E
[
f
(
S1,0, · · · , Si,0

)]
= E

[
E
[
f
(
S1,0, · · · , Si,0

)
|X0

]]
.

On the other hand we get:

E
[
f
(
Si+p,0, · · · , S2i+p−1,0

)]
= E

[
E
[
f
(
Si+p,0, · · · , S2i+p−1,0

)
|Xti+p

]]
.
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According to the stationarity of (Xt)t≥0, the random variables X0 and Xti+p follow
the same law. Observations from supremum are made on disjoint time windows of
the same size, so, by the Markov and the stationarity properties, (2.1) is verified and
the conclusion holds, proving that the sequence (Si,0)i≥1 is stationary.

The sequence (Si,0)i≥1 is also identically distributed. Mixing properties will be de-
duced from the following inequality on the OU process, as proved in [15]:

Proposition 2.2. For all 0 ≤ s ≤ t, for all functions f̃ : C0([0, s],R) → R, g̃ :
C0([t,+∞],R) → R such that f̃ and g̃ are square integrable with respect to the law
of X0, we have:
∣∣∣Cov [f̃ ((Xu)u≤s) , g̃ ((Xv)v≥t)

]∣∣∣ ≤ e−λ(t−s)
√
Var

[
f̃ ((Xu)u≤s)

]
Var [g̃ ((Xv)v≥t)].

Therefore, the process (Xt)t≥0 is exponentially ρ-mixing and ergodic.

Using Proposition 2.2, we can prove that the sequence (Si,0)i≥1 admit some weak
dependency property.

Proposition 2.3. The sequence (Si,0)i≥1 is exponentially ρ-mixing and ergodic.

Proof. According to the definition given in [9], for p ∈ N, the sequence (Si,0)i≥1 is
ρ-mixing if it verifies:

ρ(p) = sup
n≥1

sup
f∈L2(Fn0 ),g∈L2(F+∞

n+p)
|Corr(f, g)| −−−−→

p→+∞
0, (2.2)

with Fn0 = σ(Si,0, 1 ≤ i ≤ n) et F+∞
n+p = σ(Si,0, i ≥ n+ p).

However, the following inclusions are verified:

σ(Si,0, 1 ≤ i ≤ n) ⊂ σ(Xt, 0 ≤ t ≤ tn) and σ(Si,0, i ≥ n+ p) ⊂ σ(Xt, t ≥ tn+p).

Then, the exponentially ρ-mixing property of (Si,0)i≥1 is induced by Proposition 2.2,
proving that the sequence is ergodic.
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2.2 Supremum law

In this section, we give some results on the law of S1,0. Since S1,0 = sups∈[0,∆] Xs,
we can use the existing results on supremum of an OU process. The cumulative
distribution function has already been introduced in [7]. The authors used the Bessel
formulation (see [3] e.g.) which is numerically expensive. Using Proposition 3 in
[6], we give a new expression which is less expensive. Moreover, we compute the
probability density of the supremum.

Proposition 2.4. Let (Xt)t≥0 be an OU process solution of (1.1), with parameter
θ = (µ, λ, β). For ∆ ∈ R?

+ and m ∈ R, the cumulative distribution function of the
supremum S1,0 is given by

P(S1,0 < m) = −e
−(m−µ

λ
)2 λ
β

√
2π

∑
n≥1

e−λνn,m,θ∆
Dνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
νn,m,θ∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

) , (2.3)

with νn,m,θ the positive (ordered) zeros of the function ν 7→ Dν

(
−(m− µ

λ
)
√

2λ
β

)
and

Dν(.) the Parabolic cylinder function (see Appendix).

Proof. In [6], the authors give the supremum cumulative distribution of the non-
stationary OU with parameter θ = (0, λ, 1). For x0,m ∈ R such that m > x0 and
∆ ∈ R?

+, by replacing m, x0, ∆ and λ respectively by m− µ
λ
, x0 − µ

λ
, β∆ and λ

β
, we

get the cumulative distribution of the supremum for the non-stationary OU process
with parameter θ = (µ, λ, β):

P(S1,0 < m|X0 = x0) = −e
λ
2β [(x0−µλ )2−(m−µ

λ
)2)] ∑

n≥1
e−λνn,m,θ∆

Dνn,m,θ

(
−(x0 − µ

λ
)
√

2λ
β

)
νn,m,θ∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

) ,
with νn,m,θ the positive (ordered) zeros of the function ν 7→ Dν

(
−(m− µ

λ
)
√

2λ
β

)
.

Integration with respect to the invariant measure X0 ∼ N
(
µ
λ
, β2λ

)
and Formula (6.1)

gives the cumulative distribution function of S1,0 for the stationary OU process.

Remark 2.5. For ∆ ∈ R?
+, the support of the random variable S1,0 is R.

Using Proposition 6.1, the series (2.3) is differentiable. We easily get the probability
density of the random variable S1,0.
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Proposition 2.6. For ∆ ∈ R?
+ and m ∈ R, the probability density of the supremum

S1,0 of the OU process (Xt)t≥0 solution of (1.1), with parameter θ = (µ, λ, β) ∈
R× R?

+ × R?
+ is given by

f∆(m, θ) =−
√
λ

βπ
e−

λ
β (m−µβ )2 ∑

n≥1
e−λνn,m,θ∆

−∆λ
D2
νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)2

+ 2
Dνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)2

−
D2
νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∂ν2Dνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)
∂νDνn,m,θ

(
−(m− µ

λ
)
√

2λ
β

)3

 . (2.4)

3 Estimation problem

In this section, we introduce the estimation method of a stationary OU process pa-
rameters. As the sample of observations are weak dependent, the basic idea is to
use a pseudo-likelihood approach. The computation of the likelihood is simplified by
approximating the joint probabilities of all data by the product of marginal proba-
bilities.
The data (Si,0)i≥1 are collected on disjoint but consecutive time windows. Proposi-
tion 2.3 suggests to sample the initial set of observations by keeping one observation
over k to obtain a sequence of data with less dependence between each over. Let
k ≥ 1 and r = (k−1)∆, then the set of observations used in the estimation procedure
is given by

Si,r = sup
s∈[ti−1+(i−1)r,ti+(i−1)r]

Xs.

The choice k = 1 is equivalent to deal with the initial data (Si,0)i≥1.

Remark 3.1. For all r ∈ R+, the sequence (Si,r)i≥1 has the same properties as
(Si,0)i≥1.

We consider a stationary OU process with parameter θ0 = (µ0, λ0, β0) and θ0 ∈ Θ, a
compact subset of R× R?

+ × R?
+. We denote Pθ0 the probability measure associated

to one variable from the sequence (Si,r)i≥1.
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Let N ∈ N? and (S1,r, · · · , SN,r) a sample from the sequence (Si,r)i≥1. The pseudo-
likelihood LrN associated to the sub-sequence is given by:

LrN(θ) =
N∏
i=1

f∆(Si,r, θ). (3.1)

The OU parameter θ0 = (µ0, λ0, β0) are estimated by:

θ̂N = (µ̂N , λ̂N , β̂N) = Argmax
θ∈Θ

LrN(θ). (3.2)

The results on the sequence (Si,r)i≥1 allow to get statistical properties on the esti-
mator. A basic but necessary result is the identifiability of the statistical model:

Proposition 3.2. The statistical model P = {Pθ, θ ∈ Θ} is identifiable.

The following results state the statistical properties of the estimator.

Theorem 3.3. Consider an OU process solution of (1.1), with parameter θ0 =
(µ0, λ0, β0). Assume that θ0 belongs to Θ a compact subset of R×R?

+×R?
+. For any

N ∈ N?, the estimator θ̂N defined by (3.2) is consistent:

θ̂N
Pθ0−−−−→

N→+∞
θ0.

Using Central Limit Theorem on ρ-mixing sequence of random variable, the asymp-
totic normality of the estimator follows.

Theorem 3.4. For any N ∈ N? and r > ln( 5
3)

λ0
, the following convergence is satisfied:

√
N(θ̂N − θ0) law−−−−→

N→+∞
N3(0, I−1

θ0 ), (3.3)

where I−1
θ0 is the inverse of the Fisher information matrix.

Proofs of Proposition 3.2, Theorems 3.3 and 3.4 are postponed in Section 5.
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4 Numerical experiment

In this section, we discuss on the existence of an optimal gap r used in the estimation
procedure. Then, we apply our estimation method to a simulated data set and a real
data set. A part of this section is dedicated to the comparaison between our method
and the one proposed in [7].

4.1 Trade off between the number of observations and the
gap r

For N ∈ N? and r ∈ R+, an important aspect of this study is the choice of the
sample as we take the set of observations from the sequence (Si,r)1≤i≤dN/ke rather
than (Si,0)1≤i≤N . The right choice of the gap r between supremum observations is
given by controlling the upper bound of an appropriate inequality. Indeed for a
fixed data set, creating a gap between the observations of the supremum removes a
quantity of observations in the sample used. For r = (k − 1)∆, we have:

E

( 1
dN/ke

logLrdN/ke −
1

dN/ke
E
[
logLrdN/ke

])2
 ≤

Var(log(f∆(S1
r , θ)))

 1
dN/ke

+ 2
dN/ke2

∑
1≤i<j≤dN/ke

Cov(log(f∆(Si,r, θ), log(f∆(Sj,r, θ))
 .

(4.1)

The inequality (4.1) bounds the variance of the pseudo-likelihood. As (Si,r)i≥1 is
identically distributed, the quantity 1

dN/keE
[
logLrdN/ke

]
does not depend on k and

N . For N ∈ N? observations and a time window of size ∆, there exists an r∗ which
minimizes the upper bound of this inequality.

Proposition 4.1. Consider an OU process solution of (1.1) with parameter θ0 =
(µ0, λ0, β0). The optimal upper bound for (4.1) is reached for r∗ = (k∗ − 1)∆ where

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0),

with

g(∆, N, k, θ0) = C

(
1

dN/ke
+ 2
dN/ke2

eλ0∆(1−k)

1− e−λ0k∆

[
dN/ke − eλ0∆k

(
e−λ0∆N − 1
1− eλ0∆k

)])
,

and C a strictly positive constant.
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Proof. Using inequality (4.1) and the ρ-mixing property on the sequence (log(f∆(Si,r, θ)))1≤i≤dN/ke,
we obtain the following inequality:

E

( 1
dN/ke

logLrdN/ke −
1

dN/ke
E
[
logLrdN/ke

])2
 ≤ g(∆, N, k, θ0).

To obtain the optimal r = (k − 1)∆, it is enough to minimize the function g:

k∗ = Argmin
1≤k≤N

g(∆, N, k, θ0).

The appropriate gap for the estimation is r?.

Remark 4.2. When we deals with a real dataset we do not know the value of the
parameter θ0. To find r?, we first need to compute some bounds see an example in
[7].

4.2 Numerical simulation

Numerical issues emerge from the ν-zeros of Dν(m) involved in the probability den-
sity. For large values of |m|, the ν-zeros are no longer computable through dichotomy.
We use the asymptotic expansions (6.3) and (6.4) to evaluate the density for large
values of |m|. In the pseudo-likelihood minimization, a multi-start method with 10
repeats is also used to reduce the instability.

• Simulated data:

We simulate a stationary OU with parameter θ1
0 = (µ1

0, λ
1
0, β

1
0) = (0, 1, 1) using an

Euler scheme with T = 103 and dt = 10−3. We denote (N, r), the set of numerical
parameters, with N the number of suprema observations and r the gap between this
observations. We apply our estimation method for ∆ = 1. Repeating this operation
100 times, we obtain a sample of our estimator. We also performed the estimation
method for the parameter θ2

0 = (µ2
0, λ

2
0, β

2
0) = (20.9, 0.95, 47.5). From Proposition

4.1, for θ1
0 and θ1

0 with N = 1000, we have r? = 1. Simulation will be carried out
for three different set of numerical parameters, (1000, 0), (500, 1) and (250, 3). Each
estimation will be compare using the relative root-mean-square error (RMSE) and
the mean-error (ME).
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(a) (b) (c)

(d) (e) (f)

Figure 1: Boxplots of the estimated parameters: (a), (b), (c)
θ1

0 = (µ1
0, λ

1
0, β

1
0) = (0, 1, 1); (e), (f), (g) θ2

0 = (µ2
0, λ

2
0), β2

0) = (20.9, 0.95, 47.5). The
red line corresponds to the theoretical value of the parameters.
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Numerical parameters Relative RMSE ME

(250,3) (0.0436, 0.0855, 0.0731) (0.0240,0.0114,0.0201)

(500,1) (0.0265, 0.0472, 0.0572) (0.0081,-0.0048,0.0198)

(1000,0) (0.0279, 0.0507, 0.0473) (0.0033,0.0044,0.0032)

Table 1: Table of the relative RMSE and ME for the estimator of
θ1

0 = (µ1
0, λ

1
0, β

1
0) = (0, 1, 1) with different numerical parameters.

Numerical parameters Relative RMSE ME

(250,3) (0.0752, 0.0602, 0.131) (-0.1072,-0.0063,-0.6946)

(500,1) (0.0623, 0.0518, 0.109) (-0.0538,-0.0096,-1.0821)

(1000,0) (0.0617, 0.0502, 0.102) (-0.0482,-0.0074,-1.0693)

Table 2: Table of the relative RMSE and ME for the estimator of
θ2

0 = (µ2
0, λ

2
0, β

2
0) = (20.9, 0.95, 47.5) with different numerical parameters.

Relative RMSE are small enough and validate the results on the trade off between
the number of observations and the time gap r.
The overestimation/bias on the β estimator comes from the decrease of β 7→ LrN(µ, λ, β).
As β becomes greater than λ, the pseudo-likelihood function becomes flat in β. Con-
sequently, the β estimator will have a big variation which slowly decreases as the
number of observations increases. Better results can be obtain by fixing β and per-
forming the estimation method on parameters µ and λ (2D-estimation).
Using Theorem 3.3 in [23], we look at the probability that θ1

0 and θ2
0, fall in the 95%

confidence ellispoïd for the set of numerical parameters (500, 1).
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(a) βλ plane (b) βµ plane

(c) λµ plane

Figure 2: Cut planes of the 95% confidence ellispoïd associate to the estimator of
θ1

0 = (0, 1, 1) and the set of numerical parameters (N, r) = (500, 1).

As a consequence of a small variance and a relatively high bias on the β estimator,
the parameters θ1

0 and θ2
0 fall infrequently in the 95% confidence ellispoïd. For the

2D-estimation problem (β fixed), both parameters fall in the 95% confidence ellipse
with a ≈ 93% probability for the same set of numerical parameters.

• Weather data:

In [16], we can find the daily temperatures of Paris. This dataset is one of the
longest we can find, as it started in 1900. In this data we find the daily maximum
and minimum temperature measurements as well as the daily average temperature.
We choose to focus this study on the maximum temperatures from 15th of June to
the 14th of August from 1950 to 1984 (2135 days), using a gap of one day between
each daily extreme value.
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A multi-start method is also used for the estimation. We obtain the following esti-
mates: (µ, λ, β) = (18.0866, 36.0201, 0.9510).
We use the same approches as [7], to compare the two different methods. The first
validating method is the prediction. We take the mean temperature of 14/06/1985
as the starting point for the simulation of our 10-day process and we make confi-
dence intervals on 1000 simulations of the maximum temperatures for each of these
days and compare them with the true temperature values (between 15/06/1985 and
24/06/1985). The second method is to compare the theoretical quantiles with the
empirical quantiles.

Figure 3: Quantile-Quantile Graph and 95% confidence interval for daily extreme
temperatures between 15/06/1985 and 24/06/1985.

The results are slightly better as [7] for the QQ-plot and the prediction method.
Our method is more efficient in computation time and in accuracy. In [7], the evalu-
ation of the cumulative distribution function required a very expensive Monte Carlo
method. Their estimation procedure took a week for the computation of the estima-
tor, our method takes only a few minutes on the same machine.

5 Proofs

This section is dedicated to the proofs of Proposition 3.2, Theorem 3.3 and Theorem
3.4.
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5.1 Proof of Proposition 3.2

Identifiability of the statistical model P depends on the injectivity of the supremum
law. For the sake of proof, we denote (Xθ

t )t≥0 a stationary OU process with parameter
θ = (µ, λ, β) and Sθt = sups≤tXθ

s . Using (6.2), Formula (2.3) can be rewrite:

P(Sθt < m) = 1
2
√
π
e−(m−µ

λ
)2 λ
β

∑
n≥1

e−λνn,m,θt
D2
νn,m,θ−1

(
−(m− µ

λ
)
√

2λ
β

)
∫ (m−µ

λ
)
√

λ
β

−∞ D2
νn,m,θ

(
−x
√

2
)
dx

. (5.1)

We prove the injectivity of the measure Pθ associated with the random variable Sθt for
t fixed. We suppose by absurd that there exists θ1 = (µ1, λ1, β1) and θ2 = (µ2, λ2, β2)
such that Pθ1 = Pθ2 i.e.:

∀m ∈ R, P(Sθ1t < m) = P(Sθ2t < m). (5.2)

In particular the equality is satisfied for m → ∞. Using the asymptotic expansion
(6.8), we get:

1− e
−(m−µ1

λ1
)2 λ1
β1

2
√
π
(
m− µ1

λ1

)√
λ1
β1

(1 + o(m−2+δ)) = 1− e
−(m−µ2

λ2
)2 λ2
β2

2
√
π
(
m− µ2

λ2

)√
λ2
β2

(1 + o(m−2+δ)),

with 0 < δ < 2. Therefore(
m− µ2

λ2

)√
λ2
β2(

m− µ1
λ1

)√
λ1
β1

e
−(m−µ1

λ1
)2 λ1
β1

+(m−µ2
λ2

)2 λ2
β2 = 1 + o(m−2+δ)

⇐⇒ lim
m→+∞

m2−δ


(
m− µ2

λ2

)√
λ2
β2(

m− µ1
λ1

)√
λ1
β1

e
−m2

(
λ1
β1
−λ2
β2

)
+2m

(
µ1
β1
−µ2
β2

)
+

µ2
1

λ1β1
−

µ2
2

λ2β2 − 1
 = 0.

We deduce that λ1
β1

= λ2
β2

= λ
β
and µ1

β1
= µ2

β2
= µ

β
and thus νn,m,θ1 = νn,m,θ2 = νn,m.

Making use of (5.2) and (5.1), we have:

∑
n≥1

(
e−λ1νn,mt − e−λ2νn,mt

) D2
νn,m−1

(
−(m− µ

λ
)
√

2λ
β

)
∫ (m−µ

λ
)
√

λ
β

−∞ D2
νn,m

(
−x
√

2
)
dx

= 0.
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Since
D2
νn,m−1

(
−(m−µ

λ
)
√

2λ
β

)
∫ (m−µ

λ
)
√

λ
β

−∞ D2
νn,m(−x√2)dx

> 0, then the previous sum is strictly positive if λ1 < λ2

(resp. strictly negative if λ1 > λ2) because all the terms are strictly positive (resp.
strictly negative). We deduce λ1 = λ2, so β1 = β2 and µ1 = µ2.
Therefore the measure Pθ associated with the variable Sθt is identifiable.

5.2 Proof of Theorem 3.3

Thereafter, without loss of generality, we suppose θ = (0, λ, 1). So in the following we
write λ instead of θ and Θ is then a compact subset of R?

+. To prove the consistency
of the estimator θ̂N , we adapt the proof of Corollary 3.2.9 in [11]. We first prove
some regularity properties on the density f∆ with respect to the parameter λ.

Lemma 5.1. For a stationary OU process with parameter λ0 ∈ Θ, the following
conditions are satisfied:

1. For all m ∈ R, λ 7→ log(f∆(m,λ)) is continuous on Θ.

2. For all λ ∈ Θ, there exists a neighborhood V of λ and G ∈ L1(Pλ0) such that:

sup
η∈V
| log(f∆(., η)| ≤ G, (5.3)

with f∆, the probability density function of the supremum.

Proof. 1. Continuity of λ 7→ log(f∆(m,λ)) for all m ∈ R is proved using Proposi-
tion 6.1 in Appendix.

2. Using Corollary 6.4.1 and Corollary 6.7.1, there exists M > 0, G1 ∈ L1(Pλ0)
and G2 ∈ L1(Pλ0) such that:

∀m ≤ −M, |log(f∆(., η))| ≤ G1(m),

∀m ≥M, |log(f∆(., η))| ≤ G2(m).

As (m,λ) 7→ log(f∆(x, λ)) is continuous on R×R?
+, there exists a neighborhood

V of λ such that:

∀(m,λ) ∈ [−M,M ]× V, |log(f∆(., η))| ≤ K,
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with K > 0. Then, for all λ ∈ V :

sup
η∈V
| log(f∆(., η)| ≤ G1(m)1]−∞,−M [(m) +K1[−M,M ](m) +G2(m)1]M,+∞[(m)︸ ︷︷ ︸

G(m)

.

We easily prove that G ∈ L1(Pλ0), and the conclusion holds.

Combining the results of the previous lemma with Proposition 3.2 and the Ergodic
Theorem (see [5] e.g.), we can prove Theorem 3.3. More precisely for a sample
(S1,r, · · · , SN,r) with N ∈ N?, the maximum pseudo-likelihood estimator is the max-
imum argument of the function:

MN(λ) = 1
N

N∑
i=1

log
(
f∆(Si,r, λ)
f∆(Si,r, λ0)

)
.

For all λ ∈ Θ, the strict concavity of the logarithm function and Jensen’s inequality,
give:

Eλ0

[
log

(
f∆(Si,r, λ)
f∆(Si,r, λ0)

)]
< 0. (5.4)

According to the Ergodic Theorem, the following convergence holds:

MN(λ)
Pλ0 -p.s.
−−−−→
N→+∞

M(λ) = Eλ0 log
(
f∆(., λ)
f∆(., λ0)

)
. (5.5)

Using Lemma 5.1, we prove that the convergence (5.5) is uniform, by showing the
stochastic equicontinuity of λ 7→MN(λ).
To conclude, M(λ) is the Kullback-Leibler divergence and according to Proposition
3.2, it reaches its maximum for λ = λ0, proving that the estimator is consistent.

5.3 Proof of Theorem 3.4

Asymptotic normality is a basic property used in statistics. Details on the classical
asymptotic normality proof can be found in [25]. We mainly use the ρ-mixing prop-
erty to obtain the asymptotic normality of the estimator. As in the previous section,
we consider only the case θ = (0, λ, 1). We introduce the following notations:

lλ(x) = ∂λ log(f∆(x, λ)) , l̇λ(x) = ∂2
λ log(f∆(x, λ)) and l̈λ(x) = ∂3

λ log(f∆(x, λ)),
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ψN(λ) = 1
N

N∑
i=1

lλ(Si,r) , ψ̇N(λ) = 1
N

N∑
i=1

l̇λ(Si,r) and ψ̈N(λ) = 1
N

N∑
i=1

l̈λ(Si,r).

To obtain the asymptotic normality the first step is to perform a Taylor expansion
of the function ψ(λ̂N) around λ0:

√
N(λ̂N − λ0) = −

√
NψN(λ0)

ψ̇N(λ0) + 1
2(λ̂N − λ0)2ψ̈N(λ̄N)

, (5.6)

with λ̄N a point located between λ̂N and λ0.

Lemma 5.2. For r > ln( 5
3)

λ0
, the following convergence is satisfied:

√
NψN(λ0) law−−−−→

N→+∞
N
(
0,Eλ0

(
lλ0(.)2

))
.

Proof. Convergence is obtained using a Central Limit Theorem for ρ-mixing sequence
[14, Theorem 2]. Three conditions need to be checked to apply this theorem. The
first condition is a direct consequence of the ρ-mixing property of (Si,r)i≥1. The
second one is satisfied from the asymptotic expansions and the smoothness of the
cumulative distribution given in Appendix 6.2.
Concerning the last condition, it is necessary to check that limN→+∞V

(∑N
i=1 lλ0(Si,r)

)
=

+∞. We notice that, by inclusion of the sigma-fields, the sequence (lλ0(Si,r))i≥1 is ρ-
mixing. Moreover, according to Lemma 5.3 below, for any i ≥ 1 the random variable
lλ0(Si,r) is centered. Using Proposition 1.5.1 in [14], we have:

V
(

N∑
i=1

lλ0(Si,r)
)

= Nσ̃2 +O(1), (5.7)

with σ̃2 = E[lλ0(Si,r)2] + 2∑+∞
i=1 E[lλ0(S1,r)lλ0(Si,r)].

Using the ρ-mixing property, σ̃2 ≥ E[lλ0(Si,r)2]3−5e−λ0r

1−e−λ0r . By assumption r >
ln( 5

3)
λ0

,
then σ̃2 > 0. So, according to (5.7):

lim
N→+∞

V
(

N∑
i=1

lλ0(Si,r)
)

= +∞.

Since all the conditions are satisfied, we can apply Theorem 2 in [14] and we obtain:
√
NψN(λ0) law−−−−→

N→+∞
N
(
0,Eλ0

(
lλ0(.)2

))
.
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The required conditions on the other quantities involved in the Taylor expansion are
listed in the following lemma:

Lemma 5.3. For all λ ∈ Θ, the function λ 7→ lλ(x) is twice continuously derivable
for all x ∈ R. Moreover, EPλ0

|lλ0(.)| < ∞ and EPλ0

∣∣∣l̇λ0(.)
∣∣∣ exists and is non-zero.

The functions lλ0 and l̈λ0 are respectively dominated by G(x) and F (x) in L1(Pλ0)
for all λ in a neighborhood of λ0.

Proof. Integrability and differentiability conditions are satisfied using the asymptotic
expansions and the smoothness of the cumulative distribution in Appendix. Dom-
inance conditions are verified using the same reasoning as the one in the proof of
Lemma 5.1, laborious calculations give the result.

Combining Lemmas 5.2, 5.3 and Theorem 3.3, we have the following convergence:
√
N(λ̂N − λ0) law−−−−→

N→+∞
N (0, I−1

λ0 ), (5.8)

where Iλ0 is the Fisher information.

6 Appendix

6.1 Parabolic cylinder function

We recall the definition and some auxiliary results about the Parabolic cylinder
function. Some of these results can be found in [6, 8, 18].
For all x, ν ∈ R, the Parabolic cylinder function Dν (x) is a solution of the differential
equation:

y′′ (x) +
(
ν + 1

2 −
1
4x

2
)
y (x) = 0.

Moreover for ν ∈ C with Re(ν) > 0 and z ∈ C, the function (ν, z) 7→ Dν(z) is a
holomorphic function ([18], chapter 10).
The Parabolic cylinder function satisfies the following relation:

∂xDν(x) = νDν−1(x)− x

2Dν(x),
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and for all ν, a ∈ R,

∫ a

−∞
e−

x2
2 Dν(−x

√
2)dx = e−

a2
2
√

2
Dν−1(−a

√
2). (6.1)

We remind now some properties of the zero of the Parabolic cylinder function. Let
n ∈ N∗, we denote νn,m, the positive (ordered) zeros of the function ν 7→ Dν

(
−m
√

2
)
.

Then ∫ m

−∞
D2
νn,m(−x

√
2)dx = −νn,m√

2
Dνn,m−1(−m

√
2)∂νDνn,m(−m

√
2).

Furthermore, according to [8]:

ν ′n,m =
√

2∂xDνn,m(−m
√

2)
∂νDνn,m(−m

√
2)

= − 2
√
π
∫∞

0 e−(2νn,m+1)u+m2 tanh(u)erfc
(
−m

√
tanh (u)

)
du√

sinh(u) cosh(u)

. (6.2)

and the following asymptotic expansion are verified:

νn,m =
m→−∞

m2

4 −
1
2 − |m|

2
3 2− 2

3an +O
(
|m|−

2
3
)
, (6.3)

where an, n ∈ N? are the zeros of the Airy function of the first kind. Furthermore,
for large negative m:

νn,m −→
m→+∞

n− 1. (6.4)

Recall that the zeros an of the Airy function of the first kind are all real, negative
and satisfy the following inequality ([21] ), for n ≥ 1:

−
(3π

8 (4n− 1)
) 2

3

1 + 5
48
(

3π
8 (4n− 1)

)2

 < an ≤ −
(3π

8 (4n− 1)
) 2

3
. (6.5)

6.2 Smoothness of the cumulative distribution function

Some smoothness properties are needed to prove the set of derivations and continuity
of the functions presented in the proof of consistency and asymptotic normality. This
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property will be proved using results on holomorphic functions. We can rewrite the
cumulative distribution function:

P(S1,0 < m) = −e
−λm2

2
√
λπ

∑
n≥1

e−λνn,m,λ∆∂mνn,m,λ
ν2
n,m,λ

(6.6)

Proposition 6.1. The cumulative distribution function of the supremum verifies the
following properties:

1. (m,λ) 7→ P(S1,0 < m) is a smooth function on R× R?
+.

2. For any k, j ∈ N:

∂kλ∂
j
mP(S1,0 < m) =

∑
n≥1

∂kλ∂
j
mfn(∆,m, λ),

with:

fn(∆,m, λ) = −e
−m2λ−λνn,m,λ∆
√

2π
Dνn,m,λ−1

(
−m
√

2λ
)

νn,m,λ∂νDνn,m,λ

(
−m
√

2λ
) . (6.7)

Proof. We introduce the following notation, Cθ1≤arg≤θ2
M1≤|.|≤M2

= {z ∈ C s.t. θ1 ≤ arg(z) ≤
θ2 , M1 ≤ |z| ≤ M2}. According to the Implicit Function Theorem, the function
(z, λ) 7→ νn,z,λ is holomorphic. Then by composition of holomorphic functions, we
deduce that (6.7) is holomorphic. We denote (z, λ) 7→ F̃t(z, λ) the continuation of
the cumulative distribution function on C× C0<arg<π/2

|.|6=0 .

We can write F̃t as follows:

F̃t(z, λ) = G̃1(z, λ)1
C
π
2<arg<

3
2π

|.|>M ×C
0≤arg<π2
|.|>M

(z, λ) + G̃2(z, λ)1C|.|<M×C
0≤arg<π/2
0<|.|<M

(z, λ)

+ G̃3(z, λ)1
C
−π2<arg<

π
2

|.|>M ×C
0≤arg<π2
|.|>M

(z, λ),

with M large enough.
For G̃1 and G̃3, using the asymptotic expansion (6.3) and the limit (6.4), we easily
prove the normal convergence of the associate series.
For G̃2, the normal convergence can be obtained using the following equivalence from
[3]:

νn,z,λ =
n→+∞

2n− 1 + 4λz2

π2 − 2
√
λz2

π

√
4n− 1 + 4λz

2

π2 ,
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and

Dν(z) =
√

2
(
ν + 1

2

) ν
2
e
ν
2 + 1

4 cos
z
√
ν + 1

2 −
πν

2

(1 +O(ν− 1
2 )
)
.

From Theorem 3.2 in [20], the conclusion holds.

6.3 Asymptotic expansions

For the integrability conditions required in the Ergodic Theorem, some asymptotic
expansions on the cumulative distribution and the probability density are provided.
In the following proofs, without loss of generality we assume θ = (0, λ, 1). To return
to the three parameters case, we replace m, ∆, λ respectively by m− µ

λ
, β∆ and λ

β
.

6.3.1 For large positive m

Since the zeros νn,m,λ tends to positive integers when m goes to infinity, then we are
able to give an asymptotic expansion for (2.3).

Proposition 6.2. For large positive m, the cumulative distribution function of S1,0

has the following asymptotic expansion:

P(S1,0 < m) =
m→+∞

1− e−λm
2

2
√
πλm

(
1 + o(m−2+δ)

)
, (6.8)

with 0 < δ < 2.

Proof. From (6.4), the cumulative distribution function of S1,0 (5.1) can be written
as follows

P(S1,0 < m) =
m→+∞

1
2
√
π
e−λm

2

 D2
−1(−m

√
2λ)∫m√λ

−∞ D2
0(−x

√
2)dx

+
∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m√λ

−∞ D2
n(−x

√
2)dx

 .
According to Formula (10.5.4) in [18]:

e−λm
2

2
√
π

D2
−1(−m

√
2λ)∫m√λ

−∞ D2
0(−x

√
2)dx

= 1
2
(
1 + erf(m

√
λ)
)
,
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where erf(m) = 2√
π

∫m
0 e−t

2
dt is the Error function. Then applying Formulas (4.9.6)

and (4.13.4) in [18], we get:
∞∑
n=1

e−λn∆ D2
n−1(−m

√
2λ)∫m√λ

−∞ D2
n(−x

√
2λ)dx

=
m→+∞

e
−λm2 1−e−λ∆

1+e−λ∆O(1).

As we combine these two results, we get:

P(S1,0 < m) =
m→+∞

1
2
(
1 + erf(m

√
λ)
)

+ e
−λm2 1−e−λ∆

1+e−λ∆O(1).

Since 1− erf(m) =
m→+∞

e−m
2

√
πm

(1 +O(m−2)), the conclusion holds.

Proposition 6.3. For large positive m, the asymptotic expansion of the probability
density of S1,0 is given by:

f∆(m,λ) =
m→+∞

√
λ

π
e−λm

2
(

1 +me
−λm2 1−e−λ∆

1+e−λ∆O(1)
)
, (6.9)

with |O(1)| ≤ 4
√
λe−λ∆√

π(1−e−2λ∆)
.

Proof. Whenm goes to infinity, the derivative of the cumulative distribution function
(5.1), gives:

f∆(m,λ) =
m→+∞

√
λ

π
e−λm

2 + 1
2
√
π
∂m

e−λm2 ∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m√λ

−∞ D2
n(−x

√
2)dx

 .
Using Formulas (4.9.5) and (4.13.4) in [18], one can prove that:

∂m

e−λm2 ∑
n≥1

e−λn∆ D2
n−1(−m

√
2λ)∫m√λ

−∞ D2
n(−x

√
2)dx

 =
m→+∞

me
− 2λm2

1+e−λ∆O(1),

where |O(1)| ≤ 8λe−λ∆√
π(1−e−2λ∆)

.

Remark 6.4. As 2
1+e−λ∆ > 1, we have:

f∆(m,λ) =
m→+∞

e−λm
2

√
λ

π

(
1 + o(m−α)

)
,

with α > 0.
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Corollary 6.4.1. For large positive m, we have the following asymptotic expansion:

log (f∆(m,λ)) =
m→+∞

−λm2 + 1
2 log

(
λ

π

)
+me

−m2λ 1−e−∆λ

1+e−∆λO(1), (6.10)

with |O(1)| ≤ 16
√
λe−λ∆

3
√
π(1−e−2λ∆)

.

A similar reasoning as the one in the proof of Proposition 6.2 and Proprosition 6.3
may be applied to prove the following results:

Proposition 6.5. For large positive m, the following asymptotic expansion are sat-
isfied:

1. ∂λ log (f∆(m,λ)) =
m→+∞

−m2 + 1
2λ +m3e

−m2λ 1−e−λ∆

1+e−λ∆O(1).

2. ∂2
λ log (f∆(m,λ)) =

m→+∞
− 1

2λ2 +m5e
−m2λ 1−e−λ∆

1+e−λ∆O(1).

3. ∂3
λ log (f∆(m,λ)) =

m→+∞
1
λ3 +m7e

−m2λ 1−e−λ∆

1+e−λ∆O(1).

6.3.2 For large negative m

Using (6.2) and (6.3), we can give an asymptotic expansion for the cumulative dis-
tribution function of S1,0 for large negative m.

Proposition 6.6. For large negative m, the cumulative distribution function (2.3)
has the following asymptotic expansion:

P(S1,0 < m) = 2|m
√
λ|−3 e

−λm2−
(
m2λ

2 −
1
2

)
λ∆+|m|

2
3 λ

4
3 2−

1
3 a1∆

√
π

(1 + o(1)), (6.11)

where a1 is the first zero of the Airy function.

Proof. Formula (6.6) gives:

P
(
S1,0 < m

)
= −e

−λm2−λ∆ν1,m,λ

2
√
π

∂mν1,m,λ

ν2
1,m,λ

1 +
∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ)ν
2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

 .
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From the asymptotic expansion of ν-zeros for large negative m (6.3) and (6.2), it
follows that:

∂mν1,m,λ

ν2
1,m,λ

∼
m→−∞

−4|m
√
λ|−3,

ν2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

−→
m→−∞

1 if n < N(m,λ) = b2λm
2

3π + 1
4c+ 1,

ν2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

−→
m→−∞

0 if n > N(m,λ).

Remark that if n > N(m,λ), then |an| > |m|
4
3 . Therefore for all c > 1, there exists

M > 0 such that for all m < −M , we get:

∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ)ν
2
1,m,λ∂mνn,m,λ

ν2
n,m,λ∂mν1,m,λ

< c
∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ).

Using (6.5), we easily prove that for large negative m,∑
n≥2

e−λ∆(νn,m,λ−ν1,m,λ) = e−λ∆(ν2,m,λ−ν1,m,λ)O(1).

We then conclude the proof with (6.3).

A similar reasoning as that used in the previous proof may be used to prove the
following:

Proposition 6.7. For large negative m, the asymptotic expansion of the probability
density of the supremum (2.4) is given by:

f∆(m,λ) = 2|m|−2 e
−λm2−

(
m2λ

2 −
1
2

)
λ∆+|m|

2
3 λ

4
3 2−

1
3 a1∆

√
π

(2 + ∆λ)(1 + |m|−2O(1)), (6.12)

where O(1) −→
m→−∞

3
2λ+∆λ2 .

Corollary 6.7.1. For large negative m,

log f∆(m,λ) = −λm2 − λν1∆ + log 2(2 + ∆λ)√
π

− 2 log(|m|) + |m|−2O(1),

where O(1) −→
m→−∞

4
2λ+∆λ2 .
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A similar reasoning as the one in the proof of Proposition 6.6 may be applied to
prove the following:

Proposition 6.8. For large negative m, the following asymptotic expansion are sat-
isfied:

1. ∂λ log(f∆(m,λ)) = −m2 −∆
(
m2λ− 1

2 − |m|
2
3 2

2
3 λ−

2
3

3 a1

)
+ ∆

2+∆λ + |m|− 2
3O(1).

2. ∂2
λ log(f∆(m,λ)) = −∆

(
m2 + |m| 23 2

5
3 λ−

5
3

9 a1

)
− ∆2

(2+∆λ)2 + |m|− 2
3O(1).

3. ∂3
λ log(f∆(m,λ)) = ∆|m| 23 5

272 5
3λ−

8
3a1 + 2∆3

(2+∆λ)3 + |m|− 2
3O(1).
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