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Spark plasma sintering is being increasingly employed in
the field of sintering to increase the level of solid chemistry
reaction that induces a decrease in the sintering
temperature over a shorter duration by limiting grain
growth. Spark plasma synthesis focuses on a new
approach in advanced materials, such as the assembly of
various materials (multimaterials), the densification of
composites less than their melting temperatures, the
welding of metal alloys, electromigration, etc.

The application of high pressure in SPS—instead of
conventional pressure which is restricted to the use of
graphite molds—with other types of molds allows a new
high-pressure field in materials science for refractory
compositions, high-pressure phases (diamond, cubic
boron nitride, etc.), phase transitions, hydro(solvo)thermal,
etc., for innovative fields of application.

Combination of the spark plasma process using high-
pressure tools for material synthesis will be addressed in
this Special Issue.

To this end, we are pleased to invite you to submit a
manuscript to this Special Issue. Full articles, papers and
reviews are welcome.
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Abstract: The effect of adding molybdenum to the heavy tungsten alloy of W-Ni-Fe on its material
characteristics was examined in the current study. The elemental powders of tungsten, iron, nickel,
and molybdenum, with a composition analogous to W-3Fe-7Ni-xMo (x = 0, 22.5, 45, 67.5 wt.%), were
fabricated using the spark plasma sintering (SPS) technique at a sintering temperature of 1400 ◦C and
under pressure of 50 MPa. The sintered samples were subjected to microstructural characterization
and tested for mechanical strength. The smallest grain size of 9.99 microns was observed for the
45W-45Mo alloy. This alloy also gave the highest tensile and yield strengths of 1140 MPa and
763 MPa, respectively. The hardness increased with the increased addition of molybdenum. The high
level of hardness was observed for 67.5Mo with a 10.8% increase in the base alloy’s hardness. The
investigation resulted in the alloy of 45W-7Ni-3Fe-45Mo, observed to provide optimum mechanical
properties among all the analyzed samples.

Keywords: tungsten heavy alloys; powder metallurgy; spark plasma sintering; materials characteristics

1. Introduction

Traditional tungsten heavy alloys are two-phase composites with W-rich grains and
Ni-Fe or Ni-Cu binder phases. The alloy of W-Ni-Fe exhibits good mechanical properties
with a rare combination of strength and ductility [1,2]. The fabrication of these alloys is
generally achieved through the powder metallurgy technique, with the W phase being
dispersed into the Ni-Fe binder to form a matrix phase. While WHAs (tungsten heavy
alloys) possess a relatively high density (>17 g/cc), good strength, high-temperature
resistance, and thermal stability are also required. They are superior alternatives to other
alloys for traditional defense, space, and nuclear applications [3]. In military applications,
they are effectively used as kinetic energy penetrators in replacing depleted uranium [4].
They are also used as counterweights and radiation shields.

Alloying additions, such as rhenium, tantalum, cobalt, molybdenum, and oxide-
dispersed tungsten heavy alloys, have been explored in some studies [5–8]. The liquid-
phase sintered WHA with Re and Mo alloying displayed a suitable refinement of tungsten
grains by controlling the grain growth and providing adequate strength and hardness.
Cobalt alloying improves the strength of the W–matrix interface and provides solid-solution
strengthening. The strength of oxide-dispersed heavy alloys depends on the microstruc-
tural development [9]. Yttrium oxide, lanthanum oxide, and thorium oxide with WHAs
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show some improvement in alloy hardness [10]. The criterion for molybdenum addition
in tungsten heavy alloys controls the grain size by reducing tungsten dissolution in the
matrix phase [11]. In a traditional tungsten heavy alloy, the tungsten forms a solid solution
with nickel and iron, leading to particle rearrangement in the sintering process. Nickel
is a sound activation agent for tungsten. It improves the sintering kinetics by activating
the grain boundary diffusion of tungsten [12–14]. Molybdenum forms a eutectic liquid
with nickel in the liquid form of W with Ni prematurely, thereby restricting the tungsten’s
dissolution in the binder phase [15,16]. It provides grain growth inhibition and solid-
solution strengthening of the binder phase. The alloying and processing strategies need
to be optimized to attain a suitable performance alloy. Heavy tungsten alloys are usually
liquid-phase sintered, in which the low melting elements are melted and dispersed over
the matrix phase. The W-Ni-Fe alloys are sintered in the temperature range of 1450 ◦C
to 1500 ◦C with a dwell period of 2 to 5 h, depending on the sintering technique [17]. A
longer sintering time leads to a coarse grain microstructure and deterioration of the alloy’s
mechanical properties. Moreover, fabrication requires post-processing techniques, such as
aging and swaging, to improve the heavy alloy’s mechanical properties [18–20]. At low-
temperature solid-phase sintering, obtaining optimal mechanical properties is necessary to
obtain a better performance alloy in as-sintered conditions, thus avoiding post-processing
techniques. The spark plasma sintering (SPS) technique processes the heavy tungsten al-
loys [21]. Due to the rapid heating rate in the process, the powder elements are stimulated,
and the sintering process is completed in a significantly shorter time than other sintering
techniques. Using the SPS technique, the densification of pure tungsten can be achieved
at a lower temperature (1200–1450 ◦C) [22]. The present work focuses on the W-Ni-Fe
alloy’s performance with Mo additions using SPS processing at 1400 ◦C. Molybdenum
also possesses a very high melting temperature, good electrical conductivity, outstanding
thermal conductivity, corrosion resistance, and a low coefficient of thermal expansion and
high hardness [23]. The Mo addition reduces the tungsten composition in the matrix and
refines the grain size. The dissolution capacity of Mo in Ni and Fe is higher than that of
tungsten [24]. The Ni/Fe ratio in the alloy also affects the material properties by producing
different microstructures [25]. If the Ni/Fe ratio is greater than 7:3, the ductility of the
material increases, and if it is less, the mechanical characteristics decrease; therefore, a ratio
of 7:3 is used to give a stronger yield strength, as investigated by Bose and German. Hence,
in this research, the Ni/Fe ratio is maintained at 7:3, and Mo is varied at different ratios
with tungsten. Without tungsten, one alloy (90Mo-7Ni-3Fe) was produced and analyzed
to determine the difference between tungsten-added alloys and tungsten-less alloys and
whether molybdenum may replace tungsten without sacrificing mechanical characteristics.

2. Methods and Materials

Tungsten, molybdenum, nickel, and iron, as the received powders, have an average
particle size of 12 µm, <150 µm, <150 µm, and 9 µm, respectively. All of the powders were
purchased from Sigma Aldrich, India. Figure 1 shows the SEM morphology of tungsten’s
metal powders, molybdenum, nickel, and iron. The powder characteristics are listed in
Table 1. The Ni-Fe ratio is maintained at 7:3, and Mo content is varied as 0%, 22.5%,
45%, 67.5% and 90% (composition shown in Table 2). V-Mixer and Ball Mill (without
the ball) were used to blend the powders. The given compositions’ consolidation was
performed with using the SPS machine (model: DR. Sinter) (Fuji Electronic Industrial
Co. Ltd., Tsurugashima Saitama, Japan). Graphite dies with a 30 mm internal diameter
were used for the compaction process. A thin foil of graphite was used to distinguish
the powder and the punch from the die for the effortless removal of sintered compact.
Before sintering, a vacuum was generated in the furnace, which was then filled with argon
gas, and the process was repeated three times to achieve a final vacuum of 2 Pa. The
powder was sintered at 1400 ◦C under the uniaxial pressure of 50 MPa, using a heating
rate of 100 ◦C/min. The pressure was maintained over the powder compact during the
whole period of the SPS process. The sintering temperature of 1400 ◦C was maintained
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in the furnace for five minutes, after which the samples were allowed to cool down in the
furnace. The samples with a 30 mm diameter and 7 mm height were produced. The relative
sintered density of the samples was determined using the Archimedes principle. Sintered
alloys were polished using SiC emery sheets of different grit sizes ranging from 220 to
1200. Diamond paste (6 µm particles) was later used to achieve the sample’s surface mirror
finish. Murakami’s reagent (100 mL distilled water, 10 g K3Fe(C.N.)6, and 10 g KOH) was
applied over the polished samples for etching to highlight the grain boundaries. An optical
microscope (Zeiss, Oberkochen, Germany) was used to capture micrographs of sintered
samples. A scanning electron microscope (SEM, ZEISS EVO 180, Oberkochen, Germany)
was used to obtain micro-images with greater magnification.
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Table 1. Characteristics of W, Mo, Ni, and Fe metal powders.

Powder W Mo Ni Fe

Particle Size (µm) 12 ± 4 150 ± 5 150 ± 5 9 ± 6
Particle Shape Irregular Irregular Spherical Spherical

Purity % 99.9 99.9 99.9 99.9
Density (g/cm3) 19.28 10.3 8.91 7.86

Table 2. Compositions of samples and experimental parameters.

Set No. Composition W/Mo Ratio Compaction Pressure Heating Rate

1 90W-7Ni-3Fe 100:1 50 MPa 100 ◦C/min
2 67.5W-22.5Mo-7Ni-3Fe 75:25 50 MPa 100 ◦C/min
3 45W-45Mo-7Ni-3Fe 50:50 50 MPa 100 ◦C/min
4 22.5W-67.5Mo-7Ni-3Fe 25:75 50 MPa 100 ◦C/min
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Energy dispersive X-ray spectrometer (EDS) graphs were obtained simultaneously.
The elemental composition of the individual metals was studied using the elemental
mapping method. Measurement of the micro-hardness of the sintered samples was con-
ducted with a micro-Vickers hardness tester (Leco, micro-Vickers hardness tester LM248AT,
St. Joseph, MI, USA) with an indentation load (0.5 kgf) for a dwell period of ten seconds.
Ten readings were taken for each sample by creating indents on the surface at ten random
locations. The test result was achieved by calculating the mean of the ten readings. The
average grain size was measured using the SEM micrographs taken from the samples [26].
The contiguity (CWW) was calculated by measuring the number of W–W grain connec-
tions (NWW) and W-Ni-Fe-Mo interfaces (NWM) using the line-intercept method [27] as
given below:

CWW =
2NWW

2NWW + NWM
(1)

The mechanical properties of UTS (Ultimate Tensile Strength), % elongation, and
yield strength were measured using a tensile testing machine (INSTRON 8801, Norwood,
MA, USA) following MPIF specifications. The rate of strain used was 3.29 × 10−4 s−1

(cross-head speed 0.5 mm/min).

3. Results and Discussion
3.1. Densification Behavior of the Sintered Samples

The densification behavior showed an increase in the alloy’s relative density with an
increase in Mo content, as shown in Figure 2. The process comprised particle rearrangement,
dissolution, and precipitation over the binding and diffusion mechanisms at the boundary
dividing the matrix phase [28,29]. A maximum relative density of 89.26% was obtained for
the 90 wt.% addition of molybdenum. A 15% increase was observed compared to the base
alloy. The spark plasma sintering process also aided in improving the sintering kinetics by
activating the particles at a high heating rate. The density obtained is in accordance with
observations made in other studies on heavy tungsten alloys with molybdenum [30,31].
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3.2. Microstructure Analysis

Molybdenum’s addition to WHAs of W-Ni-Fe resulted in changes in the tungsten
dissolution in the matrix phase. The contents of the sample were verified in the EDS spec-
trum, as represented in Figure 3. The microstructure of the sintered samples obtained by
varying the proportion of molybdenum is shown in Figure 4. The SEM BSE (backscattered
electron) microstructures showed four distinct regions: white tungsten rich phase, light
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grey molybdenum rich phase, dark grey Ni-Fe rich phase, and pores represented as a thick
darker region [32]. The alloy of 90W-7Ni-3Fe showed lesser and non-uniform diffusion of
tungsten in the matrix phase with sharp undissolved boundaries visible in the structure.
With the addition of molybdenum, more spheroidization and refinement of tungsten grain
size were observed.

Mo-added microstructures with a small grain size are shown in Figure 4. The dissolu-
tion of tungsten and molybdenum in the Ni-Fe matrix phase evolved with the sintering
temperature and time. Molybdenum has very low solubility with tungsten, but it has a
greater nickel than W in Ni. At 1100 ◦C, the Mo solubility in Ni is 25 at.% and that of W in
Ni is 16.4 at.% [33]. Thus, the tungsten concentration in the matrix phase was reduced, the
microstructure was refined, and the Mo addition improved the solid-solution strengthening
of the binder phase.

In all of the alloys, micropores were observed. Porosity is the biggest issue in powder
metallurgy-processed components. In all of the alloys, pores are equally distributed
throughout the material due to equal heat distribution, but the fraction of porosity is
different. The shape of the pores is irregular. Pores act as stress raisers, and they deteriorate
the properties of materials.

The samples’ elemental mapping is shown in Figure 5a,b to verify the distribution
of different elemental contents. The variations in grain size, binder volume fraction, and
contiguity are all tabulated in Table 3. The grain size of molybdenum-added alloys was
observed to be lesser than the base alloy’s size without Mo addition. The smallest grain size
of 9.99 microns was obtained for the W-45Mo-7Ni-3Fe alloy. A higher value of 10.22 microns
was observed for the 67.5 wt.% Mo-added alloy. This increase is attributed to the change in
the matrix volume fraction and the variation in tungsten dissolution in the matrix phase [34].
The spark plasma sintering process also contributed to grain size control. The high heating
rate reduced the diffusion process’s total time in the conventional sintering technique and
minimized the grain coarsening effect. The contiguity of the W-Ni-Fe alloy was measured
to be 0.6093. For molybdenum-added heavy alloys, the contiguity varied from 0.43 to
0.59, which is smaller than the base alloy’s value. Generally, microstructures with minimal
contiguity are perceived to provide alloys with good strength and ductility [35]. A high
contiguity value represents higher W–W contacts, leading to the phases’ brittleness and
thereby reducing the alloy’s ductility. The obtained contiguity values are in accordance
with those in the literature on heavy tungsten alloys ranging from 0.4 to 0.6 [36,37]. The
matrix volume fraction for the molybdenum-added alloys showed a variation between 32%
and 47%. The volume fraction increased with an increase in Mo addition up to 45 wt.%,
and there was a corresponding decrease in the microstructure’s contiguity [37].
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Table 3. Relative sintered density, grain size, and contiguity of all sintered heavy alloys.

S. No. Specimen Composition (%) Relative Sintered Density (%) Grain Size (µm) Contiguity

1 90W-7Ni-3Fe 78 ± 2 11 ± 5 0.60 ± 0.06
2 67.5W-22.5Mo-7Ni-3Fe 82 ± 3 10. ± 2 0.59 ± 0.08
3 45W-45Mo-7Ni-3Fe 84 ± 3 10 ± 3 0.47 ± 0.1
4 22.5W-67.5Mo-7Ni-3Fe 87 ± 2 10 ± 4 0.43 ± 0.09
5 90Mo-7Ni-3Fe 89 ± 4 10 ± 2 0.57 ± 0.06
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3.3. Mechanical Properties

Heavy tungsten alloys can provide good mechanical properties with a Ni/Fe ratio of
7:3 [25]. The experimental results of tensile strength, yield strength, hardness, and % elon-
gation of the alloys are presented in Table 4. The molybdenum’s ultimate tensile strength
added to the tungsten heavy alloys was higher than the alloy without Mo addition. The
alloy W-45Mo-7Ni-3Fe exhibited the highest tensile strength of 1140 MPa and a correspond-
ing yield strength of 763 MPa. The sintering and microstructural parameters influence
the strength of alloys [38,39]. Rapid heating is followed in the SPS process, resulting in a
reduced coarsening of the grains [30]. The refined grain size also contributes to the alloy’s
good yield strength based on the Hall–Petch concept [40]. With a reduced grain size, the
possible movement of the dislocations created at the grain boundaries restricted the plastic
deformation [41]. The lower yield strengths of W-Ni-Fe and Mo-Ni-Fe can be attributed to
the corresponding larger grain size and contiguity factors.
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Table 4. Mechanical properties of all sintered alloys.

Sr. No Specimen Label UTS
(MPa)

Yield Strength
(MPa)

Elongation
(%)

Micro-Vickers
Hardness

(Hv0.5)

1 90W-7Ni-3Fe 702 ± 13 442 ± 26 0.17 ± 0.05 544 ± 24
2 67.5W-22.5Mo-7Ni-3Fe 1077 ± 33 722 ± 40 1.51 ± 0.06 595 ± 31
3 45W-45Mo-7Ni-3Fe 1140 ± 26 763 ± 38 0.89 ± 0.08 613 ± 26
4 22.5W-67.5Mo-7Ni-3Fe 815 ± 20 546 ± 40 0.55 ± 0.08 653 ± 19
5 90Mo-7Ni-3Fe 528 ± 54 492 ± 29 0.54 ± 0.04 560 ± 22

The hardness of sintered alloys reflects a growing pattern in the improvement in
molybdenum content in alloys. The heavy alloy of W-67.5Mo-7Ni-3Fe contributed to
the maximum hardness of 653 Hv, with a significant increase of 10.8% in the hardness
(544 Hv) of the heavy tungsten alloy without molybdenum. The Mo addition generally
provided a substantial solution strengthening of the binder and improved the cohesion
between the tungsten grains and the Ni-Fe-Mo matrix. The ductility of the alloys did not
indicate a significant difference with the inclusion of molybdenum. However, the ductility
of W-Mo-Ni-Fe alloys was higher than that of the W-Ni-Fe alloy, and a decreasing trend
was observed with an increase in molybdenum percentage. This trend is similar to the
observations made in other studies on tungsten heavy alloys with Mo addition [30,31]. Mo
was highly soluble in the matrix compared to W. As Mo content increased, the solubility
of Mo in the matrix increased, and the solubility of W in the matrix decreased, which
deteriorated the mechanical properties. When the content of Mo in the alloy was above
45 wt.%, the tensile strength decreased [42].

4. Conclusions

The effect of molybdenum alloying with the W-Ni-Fe tungsten heavy alloy was
investigated in this research. The results revealed that the yield and tensile strength of
W-Ni-Fe-Mo alloys showed a significant improvement compared to those of the W-Ni-Fe
alloy. The molybdenum addition provided grain growth inhibition and solid-solution
strengthening of the matrix phase, and restricted tungsten phase dissolution. Mo has a
higher solubility than that of W. The grain size of the W-Ni-Fe-Mo alloy decreased with an
increase in molybdenum content. The alloy W-45Mo-7Ni-3Fe exhibited the highest tensile
strength of 1140 MPa and corresponding yield strength of 763 MPa. It was also observed
that with the increase in molybdenum in the alloy, the degree of tungsten spheroidization
increased. The increase in Mo content also influenced the hardness property, showing a
corresponding increasing trend. The maximum hardness was observed for W-67.5Mo-7Ni-
3Fe with a 10.8% increase from the base alloy’s hardness. The ultimate tensile strength of
the 45% W and 45% Mo alloy was 62% more than that of the parent alloy.

Author Contributions: Conceptualization, A.M. and A.R.A.; methodology, A.R.A., A.M. and S.A.;
formal analysis, M.S.; investigation, A.R.A. and A.M.; resources, A.R.A. and C.-P.J.; data curation,
S.A. and A.K.; writing—original draft preparation, A.R.A., S.N., S.A. and A.K.; writing—review
and editing, A.M., A.R.A. and M.S.; supervision, A.M. and A.R.A.; project administration, A.R.A.
and C.-P.J.; funding acquisition, C.-P.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Ministry of Science and Technology of China (Taiwan), under
grant numbers MOST 109-2221-E-194-011-MY2 and MOST 109-2923-E-194-002-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2021, 14, 5756 9 of 10

References
1. Khalid, F.A.; Bhatti, M.R. Microstructure and Properties of Sintered Tungsten Heavy Alloys. J. Mater. Eng. Perform. 1999, 8, 46–50.

[CrossRef]
2. Sahin, Y. Recent Progress in Processing of Tungsten Heavy Alloys. J. Powder Technol. 2014, 2014, 764306.
3. Bose, A.; German, R.M. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys. Metall. Mater.

Trans. A 1990, 21, 1325–1327. [CrossRef]
4. Upadhyaya, A.; Tiwari, S.K.; Mishra, P. Microwave sintering of W-Ni–Fe alloy. Scr. Mater. 2007, 56, 5–8. [CrossRef]
5. Kiran, U.R.; Panchal, A.; Kumar, M.P.; Sankaranarayana, M.; Rao, G.N.; Nandy, T.K. Refractory metal alloying: A new method for

improving heavy tungsten alloys’ mechanical properties. J. Alloys Compd. 2017, 709, 609–619. [CrossRef]
6. Senthilnathan, N.; Annamalai, A.R.; Venkatachalam, G. Microstructure and mechanical properties of spark plasma sintered

tungsten heavy alloys. Mater. Sci. Eng. A 2018, 710, 66–73. [CrossRef]
7. Jing-Lian, F.; Tao, L.; Hui-Chao, C.; Deng-Long, W. Preparation of fine grain tungsten heavy alloy with high properties by

mechanical alloying and yttrium oxide addition. J. Mater. Process. Technol. 2008, 208, 463–469. [CrossRef]
8. Aguirre, M.; Martín, A.; Pastor, J.; Llorca, J.; Monge, M.; Pareja, R. Mechanical properties of tungsten alloys with Y2O3 and

titanium additions. J. Nucl. Mater. 2011, 417, 516–519. [CrossRef]
9. Lee, K.H.; Cha, S.I.; Ryu, H.J.; Hong, S.H. Effect of oxide dispersoids and mechanical properties of heavy tungsten alloy fabricated

by the mechanical alloying process. Mater. Sci. Eng. A 2007, 452, 55–60. [CrossRef]
10. AyyappaRaj, M.; Yadav, D.; Agrawal, D.K.; Rajan, R.A.A. Microstructure and mechanical properties of spark plasma-sintered

La2O3 dispersion-strengthened W–Ni–Fe alloy. Rare Met. 2020, 40, 2230–2236. [CrossRef]
11. Kemp, P.; German, R. Grain growth in liquid-phase-sintered W-Mo-Ni-Fe alloys. J. Less Common Met. 1991, 175, 353–368.

[CrossRef]
12. Gurwell, W.; Nelson, R.; Dudder, G.; Davis, N. Fabrication and Properties of Tungsten Heavy Metal Alloys Containing 30% to 90%

Tungsten; Pacific Northwest Lab.: Richland, WA, USA, 1984.
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Abstract: High-Pressure (HP) technology allows new possibilities of processing by Spark Plasma
Synthesis (SPS). This process is mainly involved in the sintering process and for bonding, growing
and reaction. High-Pressure tools combined with SPS is applied for processing polycrystalline
diamond without binder (binderless PCD) in this current work. Our described innovative Ultra
High Pressure Spark Plasma Sintering (UHP-SPS) equipment shows the combination of our high-
pressure apparatus (Belt-type) with conventional pulse electric current generator (Fuji). Our UHP-SPS
equipment allows the processing up to 6 GPa, higher pressure than HP-SPS equipment, based on
a conventional SPS equipment in which a non-graphite mold (metals, ceramics, composite and
hybrid) with better mechanical properties (capable of 1 GPa) than graphite. The equipment of
UHP-SPS and HP-SPS elements (pistons + die) conductivity of the non-graphite mold define a Hot-
Pressing process. This study presents the results showing the ability of sintering diamond powder
without additives at 4–5 GPa and 1300–1400 ◦C for duration between 5 and 30 min. Our described
UHP-SPS innovative cell design allows the consolidation of diamond particles validated by the
formation of grain boundaries on two different grain size powders, i.e., 0.75–1.25 µm and 8–12 µm.
The phenomena explanation is proposed by comparison with the High Pressure High Temperature
(HP-HT) (Belt, toroidal-Bridgman, multi-anvils (cubic)) process conventionally used for processing
binderless polycrystalline diamond (binderless PCD). It is shown that using UHP-SPS, binderless
diamond can be sintered at very unexpected P-T conditions, typically ~10 GPa and 500–1000 ◦C
lower in typical HP-HT setups. This makes UHP-SPS a promising tool for the sintering of other
high-pressure materials at non-equilibrium conditions and a potential industrial transfer with low
environmental fingerprints could be considered.

Keywords: high pressure; Spark Plasma Sintering; binderless diamonds

1. Introduction

Spark Plasma Sintering (SPS) is a well-known sintering technique born in Japan in the
60s that consists of using pulsed current injected into a powder to be sintered [1,2]. Since
then, a lot of development through different patents [3] has been made and a different gen-
eration of SPS succeeded to the current fifth generation of SPS that allows industrialization
of the process [3,4].

Conventional SPS (conv-SPS) is widely used in materials sciences [4] and is starting to
be used by experimental petrologists [5]. Typically, suitable materials for SPS are metals,
ceramics, composites and even organic materials. Basically, the principle of SPS is similar
to that of hot pressing (HPing), the main difference being the heating procedure of the
starting materials. Powder is loaded into a graphite die and enclosed by two graphite
punches (Figure 1). Rarely, powder is packed in WC/Co die and pistons for higher pressure
but lower temperature purposes (Figure 1). The assembly is then placed between two
electrodes that are used to apply pressure (typically up to 100 MPa) and to inject the current
through the graphite (WC/Co) mold and the powder. It is of note that graphite or WC/Co
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ensures hydrostaticity and acts as furnace. Heating occurs therefore by the Joule effect
and the injected current inside the powder has a significant effect that depends on the
materials. Typically, for non-conductive materials, the electric charge accumulates at the
surface particles, favoring surface diffusion, particles breakdown and formation of grain
boundaries [6–8]. As a consequence, densification occurs at a lower temperature.
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Figure 1. Drawing representing the different SPS assemblies and pathways of the injected current
(red arrows). Conv-SPS assemblies (left columns) showing the mold contents, the sample and the
furnace. These assemblies consist of mold mostly in graphite (Gr) to reach Pmax = 0.1 GPa and
Tmax ~ 2500 ◦C and for HP-SPS in WC/Co to reach Pmax = 1 GPa at low temperature (100–200 ◦C)
(higher temperature for lower pressure is also possible). HP-SPS special assemblies (middle columns)
in conventional equipment are more sophisticated and consist of double stage mold with an outer
shell (acting as furnace) and inner die in graphite with hard materials discs/pistons (SiC and or
binderless WC). In that case, Pmax = 1 GPa and Tmax = 1100 ◦C can be reached but the current pathway
depends on the composition of pistons and discs. Therefore, the SPS process does not necessarily
occur. In UHP-SPS setups (right column), assemblies are much more complicated to ensure good
hydrostaticity. Typically, a ceramic cell is used to receive a thin wall graphite furnace in which powder
is loaded. Powder is then packed between graphite punches inside the graphite tube furnace that
allow current injection inside the sample (SPS principle). Hence, Pmax = 6–8 GPa and Tmax = 2000 ◦C
can be achieved.

Pressure (P) is, like temperature (T), a fundamental driving force that can favor a lot
of different physical and chemical processes that can optimize properties of materials such
as mechanical, optical and thermal.

Indeed, a lot of different physical and chemical processes obey to a temperature
and/or pressure activation that can be described for example as an Arrhenius-type equation
(Figure 2):

A = A0 × e(−
Q+PV

RT ) (1)
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where A is the process, that can be for example, a diffusion coefficient, a grain growth
rate, a grain boundary formation rate, a reaction kinetic, etc. In this Equation (1), A0 is
pre-exponential term, P is the pressure (in Pa), T is the temperature (in K) and R the perfect
gas constant (R = 8.314 J mol−1 K−1). The most interesting terms here are the activation
energy (Q in J mol−1) and activation volume (V in m3 mol−1). Thus, high pressure can
start the activation of a given process A at several hundred degrees lower than at ambient
pressure (Figure 2).
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In particularly, pressure allows the synthesis of materials, even with different thermal
stabilities precursors [9]:

− to orientate the chemical reaction in the direction of synthesis leading to the densest
phase by the Le Chatelier principle (ex: synthesis of diamond to the detriment of
graphite), e.g., [10,11];

− to initiate a new finer microstructure by driving the phase transformation in polymor-
phic materials (ex: Al2O3: γ→ α), e.g., [12,13];

− to improve the chemical reactivity for refractory materials sintering (borides, nitrides,
carbides) to better densification compared to lower pressure processes, e.g., [14,15];

− to allow the sintering beyond the thermal decomposition temperature by the conden-
sation effect, i.e., pressure stabilizing structure (ex: MgB2), e.g., [16];

− to sinter the high-pressure stable phase in the high-pressure stability domain (ex: c-C,
c-BN), e.g., [17];

− to adjust the porosity, close to 0% (ex: transparent ceramics) or high porosity (p > 50%)
(ex: bone structure mimetic), e.g., [18];

− to increase the thermal stability of precursors by condensation effect by avoiding the
departure of OH−, H2O, others volatile elements) [19];

− to decrease the sintering/consolidation/densification temperature by its driving force
in order to avoid grain growth (which is always activated by high temperature),
e.g., [20];

− to favor the structural phase existing only at lower temperature (ex for amorphous
calcium phosphate), e.g., [21];
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− to allow the consolidation of thermally unstable materials such as organic materials
(ex: polymer) [22] and to allow the consolidation of composite constituted by materials
of different thermal stability (ex: polymer composites) [23].

In this study, we therefore focus on the combination of high pressure (HP) with SPS,
the technical developments and relevant results that have been made and obtained in the
last decade. We will develop in more details the very new Ultra-High-Pressure (UHP)—SPS
equipment and the promising results on the sintering of binderless polycrystalline diamond
(binderless PCD) at very unexpected conditions highlighting the very high potential of this
new technique compared to the classical PCD containing cobalt (Co-PCD) and their limited
properties (Section 4).

2. Development of High Pressure SPS (HP-SPS) Using Conventional Equipment

Effect of pressure using conventional 1-stage assembly (Figure 1) was already observed
despite the small range of pressure achievable with graphite mold (Figure 3) or higher
pressure with much lower temperature using WC/Co mold (Figures 1 and 3) [24,25].
Typically, pressure decreases sintering temperature and therefore limits grain growth.

Materials 2022, 15, x FOR PEER REVIEW 4 of 15 
 

 

− to allow the consolidation of thermally unstable materials such as organic materials 
(ex: polymer) [22] and to allow the consolidation of composite constituted by mate-
rials of different thermal stability (ex: polymer composites) [23]. 
In this study, we therefore focus on the combination of high pressure (HP) with SPS, 

the technical developments and relevant results that have been made and obtained in the 
last decade. We will develop in more details the very new Ultra-High-Pressure (UHP)—
SPS equipment and the promising results on the sintering of binderless polycrystalline 
diamond (binderless PCD) at very unexpected conditions highlighting the very high po-
tential of this new technique compared to the classical PCD containing cobalt (Co-PCD) 
and their limited properties (Section 4). 

2. Development of High Pressure SPS (HP-SPS) Using Conventional Equipment 
Effect of pressure using conventional 1-stage assembly (Figure 1) was already ob-

served despite the small range of pressure achievable with graphite mold (Figure 3) or 
higher pressure with much lower temperature using WC/Co mold (Figures 1 and 3) 
[24,25]. Typically, pressure decreases sintering temperature and therefore limits grain 
growth. 

In order to further inhibit grain growth during SPS process by reducing sintering 
temperature and therefore to keep a nano grains microstructure and enhance mechanical 
properties of materials due to Hall–Petch effect, some developments were made to per-
form high pressure experiments in conventional SPS equipment. 

 
Figure 3. Pressure–temperature diagram showing filed of applications of the different SPS setups. 
Conv-SPS and HP-SPS are both used in conventional equipment and never exceed 1 GPa. Maximum 
temperature depends a lot on materials constituting the mold, i.e., graphite, WC/Co, WC or SiC. In 
UHP-SPS equipment, a wide range of pressure–temperature conditions are covered offering the 
possibility to study sintering behavior of high-pressure phases such as c-C (red-curve) and c-BN 
(black curve) without any additions of binder. 

In 2006, the first double-stage SPS assembly was designed to perform experiments at 
pressure of up to 1 GPa and temperature to 930 °C [26] (Figure 3). Technical developments 
involved the use of an outer (1st stage) and inner (2nd stage) graphite stage (Figure 1). 
This outer graphite stage (heater shell) is used to ensure good heating rate. The other parts 

Figure 3. Pressure–temperature diagram showing filed of applications of the different SPS setups.
Conv-SPS and HP-SPS are both used in conventional equipment and never exceed 1 GPa. Maximum
temperature depends a lot on materials constituting the mold, i.e., graphite, WC/Co, WC or SiC.
In UHP-SPS equipment, a wide range of pressure–temperature conditions are covered offering the
possibility to study sintering behavior of high-pressure phases such as c-C (red-curve) and c-BN
(black curve) without any additions of binder.

In order to further inhibit grain growth during SPS process by reducing sintering
temperature and therefore to keep a nano grains microstructure and enhance mechanical
properties of materials due to Hall–Petch effect, some developments were made to perform
high pressure experiments in conventional SPS equipment.

In 2006, the first double-stage SPS assembly was designed to perform experiments at
pressure of up to 1 GPa and temperature to 930 ◦C [26] (Figure 3). Technical developments
involved the use of an outer (1st stage) and inner (2nd stage) graphite stage (Figure 1). This
outer graphite stage (heater shell) is used to ensure good heating rate. The other parts of the
second stage consist of hard material pieces such as homemade binderless WC spacers and
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SiC pistons. By using this double stage assembly, samples are very small, typically 5 mm
in diameter and 1 to 3 mm thick. With this setup, it was shown that 95% relative density
of fully stabilized zirconia is achieved at 900 ◦C at 1 GPa whereas 1400 ◦C is needed at
40 MPa. Therefore, this setup showed the efficiency of HP-SPS by keeping a microstructure
with 10 nm grains at 1 GPa, 900 ◦C, whereas they grow to 200 nm at 40 MPa and 1400 ◦C.
Similar setup was also used by replacing binderless WC protective discs by SiC ones [27]
or simply by removing binderless WC discs [28] (Figure 1). In both cases, P ~ 0.5 GPa and
temperature up to 1200 ◦C were reached (Figure 3), improving mechanical properties and
transparency of sintered nano zirconia [27] and nano α-Al2O3 (corundum) [28]. Finally,
other tests were performed by replacing inner graphite die by SiC ones [29–31]. With these
modifications, sample diameter can reach 10 mm and still few mm thick. Again, maximum
conditions are P ~ 1 GPa and 1000 ◦C whereas for lower pressure (0.4 GPa), temperature
can be increased to 1300 ◦C (Figure 3), conditions that are sufficient to sinter nano grain
transparent MgAl2O4 spinel [29,30] and α-Al2O3 [31].

Some other modifications of this pioneering double-stage assembly for HP-SPS in
conventional equipment were proposed. In more details, SiC pistons were replaced by
binderless WC ones [32–34] (Figure 1). Pressure and temperature conditions were not
necessarily enhanced by these modifications and typically, maximum conditions were
P ~ 0.5 GPa and 950–1000 ◦C even theoretically pressure of 1 GPa and temperature up to
1200 ◦C could be reached (Figure 3). In any of these studies, nano-grained transparent
materials are obtained.

However, by comparing these two types of pistons, the question about the heating and
current pathways aroused. It is of note that no information is given about the structure of
the SiC used (α vs. β) which asks the questions whether there are conductive or insulators
and that therefore if current passes through the powders (SPS principle)

Indeed, electrical resistivity of SiC is about 8–9 order of magnitude higher than that
of binderless WC, 102–103 Ω m and 2.0 × 107 Ω m, respectively [32]. This would imply
that using SiC pistons and/or discs, samples would be electrically isolated, that heating
would occur by resistive heating of the outer and inner graphite dies and that the spark
effect of the SPS process would not occur between grains. Sintering would therefore occur
by hot pressing (Figure 3). However, the use of binderless WC pistons and discs allows the
current to be injected inside the sample powder and the SPS process is effective. Moreover,
heating is not only ensured by the graphite dies but also by the pistons. Additionally, to
reach higher temperature at relatively high pressure, low-cost carbon fiber composite (CFC)
pistons were also developed and allow to reach 2000 ◦C at 0.4 GPa [34] (Figure 3).

To summarize, HP-SPS double stage assemblies using conventional equipment were
essentially developed in order to decrease sintering temperature and therefore keep a nano-
grain microstructure that enhance strengthening of materials due to the presence of high
density of grain boundaries, so called Hall–Petch effect. However, by using these double
stage assemblies with always an outer graphite die, pressure and temperature are limited
to 1 GPa and 1000 ◦C, respectively (Figure 3). Moreover, materials used as pistons asked the
question of real SPS process inside the samples (Figure 1). There is therefore a real lock to
overpass with the development new material molds with significant electrical conductivity
and also high mechanical properties that would allow to work at both high-pressure high
temperature and also under air conditions instead of vacuum. Finally, in order to consider
sintering by SPS of very hard materials such as diamond and c-BN, higher pressure and
temperature are mandatory and new equipment have to be developed (Section 3).

3. Recent Developments: UHP-SPS

Based on the respective advantages of high pressure and spark plasma sintering,
i.e., lowering temperature and faster conditions of sintering as well as the stabilization of
high-pressure phases, two experimental setups were recently designed to couple Ultra-
High-Pressure apparatus (UHP) and Spark plasma sintering (SPS), a process so-called
UHP-SPS that can reach up to 6 to 8 GPa and 2000 ◦C (Figure 3).
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Two different groups were coupled with ultra-high pressure (UHP) with SPS in the
past 5 years. In both groups, a large volume press was used with their typical assembly.
The main difference with conventional 1- or 2-stage SPS is that in large volume press
assembly, furnaces use thin wall graphite, metals or LaCO3, whereas the whole mold is the
furnace in conventional SPS equipment (1- and 2-stage) (Figure 1). Therefore, less energy
is needed to heat these thin wall furnaces compared to large molds. It is also of note that
no vacuum is needed by using these UHP-SPS setups contrary to conventional SPS and
HP-SPS in conventional equipment. Indeed, contrary to conventional SPS or even HP-SPS
using graphite dies, graphite furnace and spacers in UHP-SPS are never in contact with air
but enclosed in ceramic pressure transmitting medium and during the process no oxygen
is available

The first group, from the University of Krakow, Poland, coupled a Bridgman type
toroid large volume press and a homemade 50 Hz alternating or 1 kHz pulsed current
injected inside the sample thanks to an adapted designed assembly (Figure 1) [35–37].
Typically, assembly consists of a pressure transmitting medium (ceramic) in which a
graphite furnace is inserted in which sample (15 mm diameter and 5 mm thickness) is
loaded at the center. Sleeves and spacers are typically used to improve good hydrostaticity
and the specificity here is that graphite spacers are inserted at the top and bottom of
the sample and in contact with the furnace to allow the current to be injected in the
sample and therefore create and use the SPS process (Figure 1). Using this setup, very
refractory phases were sintered and the combine effect of pressure and SPS allows to
decrease sintering temperature and time, and therefore maintain a nano-grain structure with
enhanced mechanical properties [35,36]. Another study compared classic HP-HT (sample
electrically isolated) and UHP-SPS of diamond-TiB2 composite under similar conditions
of pressure and temperature [37]. Due to the advantages of SPS, diamond remains stable
whereas it destabilizes to graphite using classic HP-HT [37], making UHP-SPS a promising
tool to sinter high pressure phases even at metastable/unequilibrium conditions.

The second group, from the University of Bordeaux, France, associated a Belt-type
large volume press and a conventional electric pulsed current source from Fuji Electronic
Industrial (model SCM-3000) that can reach 3000 A for 10 V with a pulse duration of 3 ms.
Details on the press design and current source as well as calibration are available in [38].
Assembly is an external pressure transmitting medium in fired pyrophillite in which a
graphite furnace is inserted (Figure 1). Sample powder (maximum 17 mm diameter and
10 mm thickness) is loaded directly in contact with the furnace or surrounded by a sleeve,
mostly in h-BN (Figure 1). Powder is directly in contact with graphite punches to allow
the injection of current (Figure 1). By using this setup, is has been shown that the direct
conversion sintering of γ-Al2O3 to α-Al2O3 occurred at much lower temperature than is
classic HP-HT setup, for example at 500 ◦C and 800 ◦C at 1.5 GPa [12,38,39]. This setup
was also used for the joining/consolidation of drilling bits at high pressure temperature by
joining WC/Co substrate tables by polycrystalline diamond compact (PDC: Diamond/Co
and pure diamonds) [38]. In both cases, sintering occurred at lower temperature than in
classic HP-HT setups. Another example showed the sintering of MgB2 [16]. Here, the
increase in pressure (in the range 2 to 5 GPa) stabilized the phase above its decomposition
temperature and high temperature promoted the sintering up to relative density of 100%
with a fine-grain microstructure [16].

These two setups were compared with conventional SPS for the sintering of β-SiC [40].
No obvious difference was observed between the two UHP-SPS setups. However, it is clear
that the high pressure promotes the densification at lower temperature, therefore limiting
diffusion and associated grain growth that could occur in conventional SPS due to the very
high temperature of sintering (T ~ 1800 ◦C) [40].

A final attempt was to use cubic-type multi-anvil press with an adapted assembly to
allow an AC current to be injected inside the sample [41]. In this way, pure Mo sintering
was achieved up to 98.5% at 9 GPa, 1300 ◦C and for 1 min [41]. Pressure is the main
parameter to obtain highly dense materials and injection of current inside the samples has
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a benefit effect on hardness and bending strength, as well as on limited grain growth due
to the fast process [41].

4. Application to Binderless Diamond Sintering
4.1. Brief History of Binderless Diamond Sintering

Since the first synthesis of diamonds in the mid-50s, early 60s [10,11], a lot of setups
were developed to sinter diamonds and fabricate bulk objects. In the 70s, polycrystalline
diamond compacts (PDC) were processed with the help of a metallic binder [42]. Briefly, the
principle is to synthesis diamond particles from graphite that is mixed with a metallic cat-
alyzer (mostly Ni). At 4–5 GPa, 1300–1400 ◦C, graphite transforms to diamonds grains [43].
After recovery and different steps of leaching, these diamond grains are sintered at HP-HT
using a Cobalt binder to make these PCD that are typically mounted on WC/Co supports
to fabricate PDC [42]. Due to their good mechanical properties, these objects are used for
cutting and drilling tools. However, above 400 ◦C, these objects deteriorate quite easily due
to heating by friction [44].

In order to overcome this issue, to reach higher mechanical properties with higher
life duration tools and also to use other diamond aspects such as its optical or thermal
properties, binderless diamond sintering has been developed almost 20 years ago from the
pioneering work of Voronov (2000) and Irifune et al. (2003) [45,46].

A wide literature exists on binderless diamonds sintering and a recent review has also
been published [47]. Therefore, in the following, a brief summary is given concerning the
technical development, the physical process to sinter these objects and their associated
physical properties.

Typically, there are two methods to sinter binderless diamonds using High Pressure—
High Temperature (HP-HT) techniques. In both methods, quasi-hydrostatic pressure is
generated using a specific hydraulic press called a multi anvil apparatus (MAA) that can
generate very high pressure (several tens of GPa typically) on large samples (few mm3) due
to their multi-stage assemblies. Temperature is typically generated using resistive heating
furnaces in graphite or metals thanks to a high-power power supply. Finally, samples are
thermally isolated from the furnace using specific materials.

The first method was jointly developed in Japan by Geodynamics Research Center
(GRC) and Sumitomo Electric Industry (SEI), represented by Pr. T. Irifune and Dr. H. Sumiya,
respectively, and consists of Direct Conversion Sintering (DCS) of graphite [46,48–55] or
other pure carbon sources [49,51,56] to diamond objects. In order to obtain an object of
~1 cm3, dedicated Kawaï multi-anvil press was developed [57]. Typically, DCS occurs for
diamond at P > 15 GPa and 2000 ◦C < T < 2500 ◦C and final products are yellowish (due
to the presence of nitrogen) transparent Nano-Polycrystalline Diamond (NPD) compact.
According to the P-T conditions and carbon source, Lonsdaleite, another high-pressure
phase of carbon, and lamellae structures are more or less observed, that can modify physical
properties of the NPD [49,51]. Typically, NPD have exceptional mechanical properties
(Young’s modulus, hardness, wear rate . . . ) that highly exceed those of PDC and even
those of natural diamonds single crystal [50]. Optical and thermal properties are also
exceptional and similar to those of natural single crystal [58]. Therefore, NPD are the
perfect tools that can replace PDC and natural single crystal for cutting/drilling tools,
optical windows and thermal sink. However, the very high P-T conditions and very
specific equipment make the industrial transfer impossible and up to now, applications are
essentially dedicated to scientific areas [59].

The second method tries to decrease sintering conditions of binderless diamonds
using directly diamonds powders. This protocol was first trialed by Hall, 1970 [17] who
argued that diamond powders can be sintered at high pressure-high temperature. The
degree of sintering depends on P, T, t pathways as well as on starting grain size [17],
an idea that was developed later with the addition of the nature of precursors (natural,
HPHT and detonation diamonds) [45,60,61]. However, sintered objects were never fully
dense, and some back transformation occurred due to the limited P-T conditions reached in
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their respective apparatus (piston-cylinder and belt-type press). This method was further
developed by the University of Sichuan, China [62–66]. An optimized cubic hinge-type
apparatus was used to sinter objects up to 0.5 cm3 at pressure up to 16 GPa and temperature
to 2500 ◦C [62]. Fully dense diamond objects, called CF-PDC or MPD for Catalyst-free
Polycrystalline Diamonds compact or Microcrystalline Polycrystalline Diamond, can be
obtained at pressure and temperature down to 14 GPa and 1500 ◦C, respectively [63–66].
However, samples that present micro-cracks are black translucent, and TEM observations
revealed the presence of a very small amount of graphite at triple junctions [63–65]. Despite
these features, hardness of CF-PDC or MPD are similar to those of NPD and present a high
thermal stability, but the optical properties are not very useful [63–65].

4.2. UHP-SPS Setup with Belt-Type HP Apparatus for the Sintering of Diamond Powders

One of the main goals to couple UHP and SPS is to sinter high pressure phases at
unexpected conditions of pressure and temperature (Figure 3) without the use of any binder
to ensure exceptional physical properties (mechanical, optical, electrical and thermal). In
this aim, one can site the sintering of very hard materials such as c-BN and diamonds
(c-C) that are stable at pressure well above those achievable by conventional SPS and
2-stage HP-SPS, i.e., limited to maximum pressure of 1 GPa. As described above, these two
materials are sintered at minimum pressure of 8–9 GPa for c-BN and 12 GPa for diamonds
using multi-anvil devices and by resistive heating [52,67,68].

Here, sintering of binderless diamonds were performed using two different grain
sizes of commercial diamonds from the company Pureon. These powders are synthetic
diamonds produced by HP-HT techniques using metallic catalyst and purified by chemical
treatments (MSY grade, purity > 99%) and grain sizes were precisely controlled and are
0.75–1.25 µm and 8–12 µm with a narrow gain size distribution. XRD show only sharp
diamond peaks, typical of very well crystallized powders (Figure 4). SEM images show
automorph grains, and average grain sizes correspond to those provided by the supplier.
(Figure 5).
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Figure 4. XRD patterns of starting materials (black) and run products after experiments (red): (a) For
the experiments conducted with 0.75–1.25 µm grain size powder and (b) with 8–12 µm grain size
powder. The starting powders are very pure, and grains are well crystalized (sharp peaks). After
experiment, diamond is fully conserved with no evidence of graphite back transformation. It is of
note that diffraction peaks in experimental products are wider than in the starting powder.



Materials 2022, 15, 4804 9 of 15Materials 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. SEM images (SEI mode, 10 kV, WD = 10 mm) of the starting powders: (a) 0.75–1.25 μm grain 
size and (b) 8–12 μm grain size. 

For each run, about 0.5 g of diamond powder was packed in the UHP-SPS assembly. 
It is of note that for contamination/pollution purpose, powders were not packed directly 
in contact with the graphite furnace and papyex sheets. For this purpose, a sleeve of h-BN 
and two Mo discs are placed at the top and bottom of the powder (Figure 1). This reduces 
the sample size to 11 mm in diameter and 2–3 mm in thickness (Figures 1 and 6c,d). 

 
Figure 6. Macroscopic view of starting materials (a,b), with grain size 0.75–1.25 μm (a) and 8–12 μm 
(b), respectively. Starting powders are yellowish. Bottom row shows recovered samples after exper-
iments at HP-HT using our UHP-SPS setup and powders described above (c,d). Recovered samples 
are solid discs of 11 mm diameter and 2–3 mm thickness. 
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made on the variation of resistance of different pressure metal calibrant that experienced 
phase transition at a given pressure [38]. Then, temperature is increased to the target based 
on the previous calibration made on the melting point of temperature metals calibrant at 
4 GPa [38]. Heating rate is typically 100 °C/min, using a SPS pulsed current of 3.3 ms and 
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Figure 5. SEM images (SEI mode, 10 kV, WD = 10 mm) of the starting powders: (a) 0.75–1.25 µm grain
size and (b) 8–12 µm grain size.

For each run, about 0.5 g of diamond powder was packed in the UHP-SPS assembly.
It is of note that for contamination/pollution purpose, powders were not packed directly
in contact with the graphite furnace and papyex sheets. For this purpose, a sleeve of h-BN
and two Mo discs are placed at the top and bottom of the powder (Figure 1). This reduces
the sample size to 11 mm in diameter and 2–3 mm in thickness (Figures 1 and 6c,d).
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Figure 6. Macroscopic view of starting materials (a,b), with grain size 0.75–1.25 µm (a) and 8–12 µm
(b), respectively. Starting powders are yellowish. Bottom row shows recovered samples after
experiments at HP-HT using our UHP-SPS setup and powders described above (c,d). Recovered
samples are solid discs of 11 mm diameter and 2–3 mm thickness.

For each run, pressure is first increased to the target in 30 to 45 min using calibration
made on the variation of resistance of different pressure metal calibrant that experienced
phase transition at a given pressure [38]. Then, temperature is increased to the target based
on the previous calibration made on the melting point of temperature metals calibrant at
4 GPa [38]. Heating rate is typically 100 ◦C/min, using a SPS pulsed current of 3.3 ms and a
ON:OFF sequence of 12:2. Dwell times were varied from 1 to 30 min and decompression
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was also varied from 30 min to several hours (overnight) (Figure 7a). During the whole
process, anvil displacement is recorded first for follow powder densification and also to
ensure that there is no contact between anvils and WC/Co die (chamber, cylinder, ring)
(Figure 7b).
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during experiments and associated displacement in mm (b). During dwell, both load and power, i.e.,
pressure and temperature, are very stable. Most of the displacement occurs during cold compression
(few mm) whereas it is only of few tens to hundreds of microns during heating and dwell.

Two experiments are presented in the following. Run HP22-09-MS1 was performed
using 0.75–1.25 µm powder loaded at 5 GPa and heated to 1300 ◦C for 5 min and run
HP22-40-MS10 was carried out 8–12 µm powder at 4 GPa and 1400 ◦C for 30 min (Table 1,
Figures 4, 6, 8 and 9).

Table 1. Experimental conditions and main results.

Run # Grain Size
(µm)

Quantity
(g) P (GPa) T (◦C) Dwell

Time (min)

1 Density
(g cm−3)

XRD
Grain

Boundary
Formation

HP22-09-MS1 0.75–1.25 0.5 5 1300 5 3.05 c-C +++
HP22-40-MS10 8–12 0.5 4 1400 30 2.80 c-C ++

1 Density measured by Archimedes’ method.

After experiment bulk samples were recovered as solid discs of ~11 mm diameter and
2–3 mm thick (no mass loss and no color change was observed compared to the starting
powders (Figure 6)). Although experiments were performed at the limit or out of the
diamond stability field, for both recovered samples, XRD patterns show only diamond
peaks with no evidence of destabilization into graphite or more amorphous sp2 forms
(Figure 4). The only difference with XRD of the starting powders is that diffraction peaks
are wider after experiments (Figure 4). It is unlikely to be due to a grain size reduction
during experiments as shown on SEM images where no or little grain fracturation and
grounding are observed (Figures 8 and 9). Therefore, it is most likely to be due to residual
stress inside grains after experiments.

Sample density was measured using the Archimedes method. It is found that HP22-
09-MS1 has a density slightly higher than HP22-40-MS10 at 3.05 g cm−3 and 2.80 g cm−3,
respectively, corresponding to a relative density of 87 and 79% or a porosity of 13 and 21%.
This suggest that is easier to sinter small grain size powder of around 1 micron than a
bigger grain size around 10 microns. Despite this relative low density, samples are very
mechanically resistant. It is of note that density can be improved by mixing different sizes
of diamond powder and plays on the P, T, t pathway.

These compacts, which were not fully dense, were selected to show better images
of the neck formation between the grains. SEM observations using a JEOL-6360A (SEI
mode, 10–15 kV, WD = 10 mm) at low magnification (×2000) show different areas more
or less densified inside both samples (Figures 8a and 9a,b). Indeed, it is clearly visible
that some areas are “only” compacted powders whereas others show sintered structures.
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This suggests that there is a kind of heterogeneity inside the samples. This could be due
to local thermal/pressure gradient during the sintering process and/or that conditions of
duration are not optimized to fully densified samples. It is also observed that there are
more dense areas in samples sintering with 0.75–1.25 µm grains (Figure 8a) than in the
8–12 µm grains (Figure 9a,b), explaining the difference in the measured density (Table 1).
At higher magnification (×5000 and ×10,000), grains are more visible, no grain fracturation
is observed in both samples and 1-micron grains have still sharp edges compared to
starting powder, whereas those of 10-microns grains are smoother than in the starting
powder. Moreover, two different types of microstructures are clearly present in both
samples (Figure 8b,c and Figure 9c–e). On one hand, samples are composed of compacted
grains, i.e., as a green body. On the other hand, the denser areas in both samples show
the formation of grain boundaries between grains (Figure 8b,c and Figure 9c–e) at very
unexpected pressure-temperature conditions. These dense areas are more present and
in samples containing 1-micron grains (Figure 8b,c, HP22-09MS1) than in 10-microns
grain sample (Figure 9c–e, HP22-40-MS10). Indeed, in the former case (1-micron grains)
hundreds to thousands of grains could be sintered together forming these large dense
areas (Figure 8b) whereas in the latter case (10-micron grains), only few grains are sintered
together (Figure 9c–e). It of note that small powder grain sizes were sintered at higher
pressure (5 GPa) and lower temperature (1300 ◦C) and for shorter duration (5 min) than
the bigger powder grain size (4 GPa, 1400 ◦C, 30 min). This indicates that pressure is of
main importance in the sintering process and that smaller grain size diamond powder
are easier to sinter compared to bigger ones. It could therefore be very interesting to
sinter nanodiamonds at similar conditions to improve densification. However, as sintering
conditions are close or even out of the stability field of diamonds, there is subtle balance to
consider between powder grain size, its reactivity and P-T conditions.
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Figure 8. Microstructure of HP22-09-MS1 recovered sample observed in SEM (SEI, 15 kV,
WD = 10 mm) at different magnification ((a) ×2000, (b) ×5000 and (c) ×10,000). First, there is no
evidence for grain fracturation, nor the presence of other phases. There are two types of regions
inside the samples (a,b), typically more or less sintered suggesting that densification is heterogeneous
and not total (a–c). In more densified areas, a lot of grain boundaries are observed (b) whereas
grains are only packed in less densified areas with only few grains that can be sintered (center of (c)
for example).
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Figure 9. Microstructure of HP22-40-MS10 recovered sample observed in SEM (SEI, 10 kV, WD = 10 mm)
at different magnification ((a) ×2000, (b) ×2500, (c,d) ×5000 and (e) ×10,000). There is no evidence
for grain fracturation, nor the presence of other phases. Due to larger grain size, there are less areas
sintered (a,b). However, in these areas, it is evident that grains boundaries are formed or in the process
of formation (c–e).

These results show that, by combining high pressure apparatus and SPS, the sintering
of high-pressure phases such as binderless diamonds could be achieved at much lower
conditions than those previously conducted by conventional HP-HT apparatus. This opens
a new field in material sciences for the very hard materials sintering and the stabilization
of high-pressure phases.

5. Conclusions

Conventional SPS has been used for decades for the sintering of very different materials
such as metals, ceramics or composites. The main advantages of this technique are twofold.
The high temperature is reached quickly and the current injection inside the powder allows
a fast densification of samples. Thus, grain growth is inhibited, and grain size remains
relatively small, improving materials properties.

With the aim to further enhance these properties, HP-SPS setup has been developed to
be adapted in conventional equipment. Two-stage assemblies with hard materials pistons
(in SiC or pure WC) increase pressure conditions to 1 GPa but temperature cannot exceed
1000 ◦C and sample sizes are also limited to few mm in diameter and thickness. However,
the high pressure has the effect to reduce the sintering temperature and therefore samples
with nano-grains (few nm to few tens of nm) microstructure were obtained. Recovered
samples have typically better mechanical and optical properties than those sintered by
conventional SPS.

The recent developments of UHP-SPS equipment with dedicated large volume press
(Bridgman or Belt-type apparatus) allows reaching 6 to 8 GPa and up to 2000 ◦C. Such
high pressure still decreases sintering temperatures and coupling with SPS yields similar
results compared to classic HP-HT. Moreover, such high pressures allow to stabilize phases
with low temperature destabilization and also promote the densification of high pressure
phases such c-C without any binder at very unexpected conditions. Indeed, we have
shown that microcrystalline diamond powders (0.75–1.25 and 8–12 µm) could be sintered
at 4–5 GPa and temperature between 1300 and 1400 ◦C. Although samples are not fully
dense, observation of grain boundary formation highlight the sintering process at P-T
conditions out of diamond equilibrium. Some improvements can be made to obtain fully
dense materials such as dwell duration, heating, cooling and decompression rate, mixing
of different grain size powders and probably the on:off sequence. UHP-SPS is thus a
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promising tool that could be applied to a lot of different hard materials such as c-BN or
other borides, nitrides, carbides and even hard ceramics and composites.

Finally, environmental fingerprints are reduced by using these high pressure SPS
sintering because they consume less electrical energy and materials obtained have better
properties providing them a high life duration.
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