A Quantized Tensor Train Method for High-Frequency Scattering Problems Involving Heterogeneous Dielectric Layers Matthias Baray, David Levadoux, Jean-René Poirier

Abstract-We present a new numerical scheme to solve efficiently scattering problems involving an elongated and flat heterogeneous dielectric material assumed to be invariant along a direction of space. The technique consists in compressing the integral operators of an integrodifferential formulation with a so-called quantized tensor-train algorithm whose use is rather original in this context. We show that it allows to compute and store operators with a notably small memory footprint while having at the same time a fast matrix-vector product leading to a competitive method compared to the more classical H-matrix approach.

Index Terms-QTT decomposition, integrodifferential equations, boundary integral equations, electromagnetic scatteringtransmission problems, FEM-BEM coupling.

I. INTRODUCTION

W E are interested in the interaction between an incident electromagnetic field and a penetrable material as encountered in some applications using high-frequency or optical properties of complex thin layers. For instance, asymptotic ray-tracing codes, used to predict the radar cross-section of some metallic structure coated with a thin layer of material, need backscattering coefficients that can be evaluated with an exact two-dimensional code. In this paper, we present a method to compute the scattered and transmitted fields of an electromagnetic plane wave impinging, in a TM mode, a twodimensional layer made of a long and thin piece of a dielectric inlaid with a stochastic seedling of small metallic square inclusions (see Figure 8). Such a problem is usually cast in an integrodifferential formulation leading, after discretization, to a linear system coupling a Finite Element Method (FEM) with a Boundary Element Method (BEM).

It is well-known that the BEM part makes the solution very accurate compared to a regular FEM using a perfectly matched layer instead of the exact boundary operators. However, a painful drawback is that BEM matrices are dense and need to be compressed. The Fast Multipole Method (FMM) [START_REF] Song | Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[END_REF] and the H-matrix [START_REF] Hackbusch | A sparse matrix arithmetic based on H-Matrices. part I: Introduction to H-Matrices[END_REF] have made significant inroads into this topic and are now widely used. Nevertheless, their developments and uses are touchy, making attractive some newer and more robust compression algorithms. Among these are undoubtedly the tensor methods whose popularity in a wide range of domains does not cease to grow since some ten years ago [START_REF] Kolda | Tensor decompositions and applications[END_REF].

Initially designed to break the "Curse of the dimension" (exponential growth of the storage with the dimension of an array), tensor methods, especially the Quantized Tensor Train (QTT) decomposition [START_REF] Oseledets | Tensor-train decomposition[END_REF], are now able to tackle some difficult problems of computational physics such as the solution of very big linear systems [START_REF]Approximation of 2 d ×2 d matrices using tensor decomposition[END_REF]. Despite this promising surge, it is worth noting that the QTT format is still not widely used in the field of boundary integral equations, for instance, we can cite [START_REF] Corona | A tensor-train accelerated for integral equations in complex geometries[END_REF]- [START_REF] Giannakopoulos | Compression of volume-surface integral equation matrices via Tucker decomposition for magnetic resonance applications[END_REF]. The technique we investigate is a contribution in this field and consists of treating the FEM part of our linear system classically and compressing the BEM parts with a QTT algorithm. At last, we will see that the main advantage of this approach is to drastically reduce the building time and the storage of BEM matrices.

The outline of the paper is as follows. Section II presents the boundary/transmission value problem we want to solve and its translation in a FEM-BEM coupling. Section III is a brief introduction to the QTT theory, essentially aiming to explain how to compress a matrix into a sparse highdimensional tensor and how the associated fast matrix-vector product works. In section IV, we give some comparative results between the QTT and H-matrix techniques related to the BEM matrices of section II. Finally, in section V, we apply our numerical scheme to a big scattering-transmission problem involving a dielectric with stochastic inclusions, as mentioned hereinbefore.

II. SCATTERING-TRANSMISSION PROBLEM

Given a plane wave u i impinging a material Ω -with boundary Γ, we seek two fields u s and u defined resp. on Ω + := R 2 \Ω -and Ω -, satisfying the following transmission problem:

       ∆u + k 2 -u = 0, in Ω - ∆u s + k 2 + u s = 0, in Ω + u = u s + u i , on Γ ∂ n u = ∂ n u s + ∂ n u i , on Γ (1)
where k + , k -are wavenumbers (k + being constant), and ∂ n is the outer normal derivative on Γ. In addition, the scattered field u s has to satisfy the Sommerfeld radiation condition:

lim r→∞ √ r ∂u s ∂r -ik + u s = 0 . (2)
It is well-known [START_REF] Hiptmair | Stabilized Fem-Bem Coupling for Helmholtz Transmission Problems[END_REF] that a weak integrodifferential formulation of (1)-(2) involving the boundary integral operators [START_REF] Nédélec | Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems[END_REF]: is the Hankel function of the first kind), consists of finding u N = -∂ n u and u |Γ such that for any fields ϕ and ψ defined resp. on Γ and Ω -, one has:

Sp(x) = Γ G(x,
     ⟨Su N , ϕ⟩ + ⟨(D + 1 2)u |Γ , ϕ⟩ = ⟨u i |Γ , ϕ⟩ ⟨(D t + 1 2)u N , ψ |Γ ⟩ + H(u, ψ) + ⟨N u |Γ , ψ |Γ ⟩ = ⟨∂ n u i , ψ |Γ ⟩ (3)
where ⟨•, •⟩ are the L 2 scalar products on Γ or Ω -and H(u, ψ) = ⟨∇u, ∇ψ⟩ -⟨k 2 -u, ψ⟩. Volumic and surfacic interactions are discretized with nodal finite elements of order 1 (P 1 approximation). The numbering of unknowns starts with Neumann surfacic basis functions ϕ i (i ∈ S), followed by volumic basis functions in touch with Γ ψ i (i ∈ V Γ), and ends with pure volumic basis functions ψ i (i ∈ V) (S, V Γ , V being contiguous intervals of N). The numerical approximation of u N and u in (3) is given resp. by i∈S X i ϕ i and i∈V Γ ∪V X i ψ i where X ∈ C N is solution of the linear system M X = B where:

M =   S D + I 2 0 D t + I 2 N + H 1 H 2 0 H 3 H 4   (4)
with

S = (S ij), S ij = ⟨Sϕ i , ϕ j ⟩ ∀(i, j) ∈ S 2 D = (D ij), D ij = ⟨Dϕ i , ψ j ⟩ ∀(i, j) ∈ S × V Γ D t = (D t ij), D t ij = ⟨D t ψ i , ϕ j ⟩ ∀(i, j) ∈ V Γ × S N = (N ij), N ij = ⟨N ψ i , ψ j ⟩ ∀(i, j) ∈ V 2 Γ H 1 = (H 1ij), H 1ij = H(ψ i , ψ j) ∀(i, j) ∈ V 2 Γ H 2 = (H 2ij), H 2ij = H(ψ i , ψ j) ∀(i, j) ∈ V Γ × V H 3 = (H 3ij), H 3ij = H(ψ i , ψ j) ∀(i, j) ∈ V × V Γ H 4 = (H 4ij), H 4ij = H(ψ i , ψ j) ∀(i, j) ∈ V 2 I = (I ij), I ij = ⟨ψ i , ϕ j ⟩ ∀(i, j) ∈ V Γ × S and B = B 1 B 2 0 with B 1 = (B 1i), B 1i = ⟨u i |Γ , ϕ i ⟩ ∀i ∈ S B 2 = (B 2i), B 2i = ⟨∂ n u i , ψ i|Γ ⟩ ∀i ∈ V Γ .
III. QUANTIZED TENSOR TRAIN DECOMPOSITION We present now a brief overview of tensor techniques we will use to compress BEM matrices (S, D, N) involved in the linear system [START_REF] Oseledets | Tensor-train decomposition[END_REF]. Recall that a simple multi-dimensional array A ∈ C m1ו••×m d is named a tensor of dimension d with mode sizes m k . Therefore, to use tensor machinery, we first have to convert matrices into high-dimensional tensors. This transformation is called quantization [START_REF]Approximation of 2 d ×2 d matrices using tensor decomposition[END_REF], [START_REF] Khoromskij | O(dlog n)-quantics approximation of n -d tensors in high-dimensional numerical modeling[END_REF]. As FMM or H-matrix methods, the starting point is to give a hierarchical structure over the set of unknowns, meaning that we have to give us a bijective application linking any primal index to the corresponding multi-index (d-tuple) in the hierarchy:

T g : [[N]] → [[n 1]] × • • • × [[n d]] ; i → î with [[N]] = [[1; d i=1 n i]], [[n k]] = [[1; n k]] and î := (i 1 , . . . , i d).
This application is equivalent to a group cluster tree (classical structure of H-matrix) that allows dealing with clusters of unknowns of different sizes. For example, a cluster of unknowns of level k can be read as (i 1 , . . . , i k , :, . . . , :). In the sequel, we will only use a binary tree

(n k = 2 ∀ k ∈ [[d]]
) whose inverse application is:

T -1 g (î) = d k=1 2 d-k (i k -1) + 1, i k ∈ [[2]] . (5)
Given a group cluster tree, we can build canonically another hierarchical structure on the set of the matrix indices, the socalled block cluster tree:

T b : [[2 d]] 2 → ([[2]] × • • • × [[2]]) 2 ; (i, j) → (T g (i), T g (j)) .
This structure recursively splits the matrix into four equal parts (we have to face a quadtree), and each entry (i, j) of the matrix is identified with a couple of multi-indices (î, ĵ). To create the tensor related to the matrix, we just have to pair i k and j k and treat them as a single index:

i k j k ∈ [[4]] with i k j k = i k + 2(j k -1). (6)
Therefore, we can associate to any matrix

A ∈ C 2 d ×2 d a d- dimensional tensor A ∈ C 4ו••×4 defined by: A(i 1 j 1 , . . . , i d j d) = A(T -1 b (î, ĵ)) . (7)
This last step ends the quantization process, but the question of the matrix storage is not yet answered. To this end, several formats are possible [START_REF] Kolda | Tensor decompositions and applications[END_REF] among these is the Tensor-Train (TT) decomposition [START_REF] Oseledets | Tensor-train decomposition[END_REF], [START_REF]Approximation of 2 d ×2 d matrices using tensor decomposition[END_REF]. Such a format can be viewed as a generalization of the well-known separation of variables in the theory of functions. Indeed, a tensor A ∈ C m1ו••×m d is subject to a TT decomposition if:

A(i 1 , . . . , i d) = G 1 (i 1) . . . G d (i d) (8)
where the so-called cores i k → G k (i k) ∈ C r k-1 ×r k are matrix-valued functions and products between cores, matrixmatrix products (see Figure 1 for an illustration). The dimen-sions of the cores, i.e., the r k , are called TT-ranks. Tensor elements being scalars, it follows r 0 = r d = 1.

Applied to a tensor resulting from the quantization of a matrix [START_REF] Poirier | Fast BEM Solution for 2-D Scattering Problems Using Quantized Tensor-Train Format[END_REF] the TT decomposition becomes:

A(i 1 j 1 , . . . , i d j d) = G 1 (i 1 j 1) . . . G d (i d j d) (9)
The quantization followed by a TT-formatting is called Quantized Tensor Train (QTT) decomposition, and the QTT decomposition of a matrix is called a TT-matrix. An interesting example is the TT-matrix related to the full matrix A ∈ C 2 d ×2 d :

A ij = e ik(xi-xj) , ∀i, j ∈ [[2 d]] with k ∈ R, x i = (i -1)h and h = 1 2 d -1 .
With the binary tree (5) we have

x i -x j = h d l=1 2 d-l (i l -j l) .
Applying the exponential and using (6) we obtain the TT-matrix A of A:

A(i 1 j 1 , . . . , i d j d) = e ik2 d-1 h(i1-j1) • • • e ikh(i d -j d) = G 1 (i 1 j 1) • • • G d (i d j d) with G l (i l j l) = e ik2 d-l h(i l -j l) , l ∈ [[d]].
As in this decomposition, all TT-ranks are equal to 1, the storage of the TT-matrix (i.e. cores G l) is 4d instead of 2 d × 2 d . Nevertheless, for an arbitrary TT-matrix (structured with a quadtree), the storage is just bounded by 4dr 2 with r = max(r k), showing that it is crucial to deal with a class of low-rank (r ≪ N) tensors. The situation is even more critical in practice, where there is no chance to have a finite decomposition due to the complexity of our oscillating kernel functions. Therefore we have to build approximations of them with a small rank r, which is done by some algorithms. Among these, we choose the very attractive so-called TT-cross working only on sparse sampling of the matrix (similar to H-matrix). We refer to [START_REF] Oseledets | TT-cross approximation for multidimensional arrays[END_REF] for details of this technical algorithm.

As we plan to iteratively solve the linear system governed by (4), let us now examine the Matrix-Vector Product (MVP). A QTT-compression applied to the whole matrix (4) is, a priori, not possible due to the unstructured parts (FEM blocks). A simple solution is to use a "mixed" TT-MVP [START_REF]Approximation of 2 d ×2 d matrices using tensor decomposition[END_REF] that involves a TT-matrix with a vector in regular format (decimal numbering). Although there exists a "pure" TT-MVP [START_REF] Oseledets | Tensor-train decomposition[END_REF] (matrix and vector in QTT-format), it would imply to change the format of the vector (regular vs. QTT) at each iteration. Besides, the "mixed" product (simply named TT-MVP hereafter) is very easy both to understand and implement. Indeed, if

A ∈ C 2 d ×2 d and x ∈ C 2 d
, the regular MVP reads as:

y i = 2 d j=1 A ij x j , ∀i ∈ [[2 d]] . (10)
Replacing in [START_REF] Nédélec | Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems[END_REF] native entries of A and x with their tensorial counterparts A (TT-matrix (9)) and X (quantization (5)) we obtain:

y(T -1 g (î)) = j1,...,j d A(i 1 j 1 , . . . , i d j d)X (j 1 , . . . , j d) = j1,...,j d G 1 (i 1 j 1) • • • G d (i d j d)X (j 1 , . . . , j d) .

Algorithm 1 TT-MVP

In : A TT-matrix A of A with cores G k , a vector x.

Out : y = Ax 1: Y = x 2: for k = 1 to d do 3: Y = reshape(Y, [2r k-1 , numel(Y) 2r k-1]) 4: Y = G k • Y 5: Y = reshape(Y, [2, numel(Y)
G k := reshape(G k , [r k-1 , 2, 2, r k]) G k := permute(G k , [2, 4, 1, 3]) G k := reshape(G k , [2r k , 2r k-1]) .
Therefore, the TT-MVP algorithm simply consists in performing d successive small matrix-matrix products, and its complexity is O(r 2 N log(N)) where r is the higher rank of the TT-matrix. Concerning the storage, the intermediate arrays Y count r k-1 N (line 3) and r k N (lines 4-6) entries leading to a complexity of O(rN).

IV. PERFORMANCE ANALYSIS OF QTT-FORMAT FOR INTEGRAL OPERATORS

Through some numerical experiments and comparisons with H-matrix methods, this section aims to evaluate the performance rates of the CPU building time, storage, and MVP speed related to BEM matrices in QTT-format. We use two open-source toolboxes, the Python package ttpy [START_REF] Oseledets | ttpy[END_REF] for QTTformat and the Matlab toolbox Gypsilab [START_REF] Aussal | Gypsilab[END_REF] for H-matrix. The precision parameter (error of compression) related to each method is fixed to 10 -4 for QTT and 10 -3 for H-matrix. This choice is purely pragmatic, the H-matrix one is conventional and the QTT one results from experimental tests ensuring approximately the same precision.

The BEM operators under test are defined on the boundary Γ of the layer used in section V: a long and thin rectangular contour of size 1 × 3.10 -4 . The mesh is regular and the unknowns are ordered according to the curvilinear coordinates. CPU building times, CPU MVP times and storage ratings (resp. named CPU build , CPU mvp , MEM build) are evaluated by summing each score related to S, D, and N matrices. The notation for the slope of a performance plot is p T T in the case of the QTT method and p H for the H-matrix. All computations are performed sequentially on a laptop with a 2.8 GHz Intel Core i5 processor and 8 GB of RAM.

A. Building time and storage

Firstly, we are interested in the building times for a frequency sweeping. The mesh of Γ carries 131 072 unknowns and the wavelength λ ranges from 20h to 20 480h (h being the edge size). n λ = 1/λ is the radioelectric size of Γ. The Figure 2 shows that building a BEM matrix with TTcross is very competitive compared to the H-matrix, around 60 times faster (mind that the building time for the Hmatrix method is measured in minutes). This performance is correlated to a spectacular compression rate as shown in Figure 3, saving 3 orders of magnitude in memory with QTT (the storage for the H-matrix method is measured in gigabytes). Moreover, all these good results are stable from the highfrequency (with an optimal mesh λ/h = 20) to the lowfrequency regime (without remeshing).

After a frequency sweeping with a constant mesh, it is interesting to examine what happens when the frequency and the number of unknowns increase in a correlated manner with a fixed λ/h = 20. We use now a frequency sweeping that corresponds to radioelectric sizes ranging from 819λ to 26 206λ (from 0.1λ to 8λ in the thickness).

The Figure 4 shows that the QTT integral operators are still quicker to build than with H-matrix, almost again sixty times faster. Besides, the QTT method can build the matrices with more than one million unknowns in less than 5 minutes while it can not be done in a reasonable amount of time with H-matrix.

About the memory consumption, Figure 5 confirms the previous results of Figure 3 showing that even exploring the high-frequency regime we always save 3 orders of magnitude compared to H-matrix techniques. Moreover, the memory consumption falls down with QTT to a sub-linear law, contrary to H-matrix which theoretically reaches O(n log n) and in practice here reaches a little over-linear law.

B. Matrix-vector product

We evaluate now the cost of the TT-MVP compared to the H-matrix product. We use a random vector because it does not impact the efficiency of the methods (well-known for Hmatrix and obvious for QTT in view of Algorithm 1).

First, let us check the storage of the intermediate arrays Y (Alg. 1) which can reach rN entries and be too large if r is not small enough. Fortunately, this is not the case in our applications. Indeed, the largest storage is given by the single layer operator at the highest frequency (n λ = 26 206, N = 1 048 576) and amounts to 1.4 GB (with r = 83). This storage is not prohibitive, being around a third of the H-matrix one.

Let us now examine the CPU time of the TT-MVP. Whatever the kind of the frequency sweeping (with a fixed or adaptive mesh, see the former part A), Figures 6 and7 show that the two MVPs are comparable in complexity, but the Hmatrix product is twice as fast.

These results are disappointing regarding the spectacular compression of the QTT format. However, they do not call into question the use of TT-MVP in an iterative solver for our application. Furthermore, it is worth noting that the small memory footprint of the TT-matrices would allow to implement a simple and efficient MPI parallelization of the TT-MVP (copying of the TT-matrix to each processor being not an issue). Finally, let us mention that to our knowledge, generalization of such results to 3D applications is still an issue mainly because of the drastic increase of the TT-ranks. For instance, the first results we made on a thin square plate with an EFIE operator show that despite saving again two orders in magnitude for memory compared to H-matrix, we lose one order of magnitude for the CPU mvp .

V. A QTT-BASED SOLVER FOR A TRANSMISSION PROBLEM WITH A HETEROGENEOUS DIELECTRIC LAYER

In this section, we focus on the resolution of the problem [START_REF] Song | Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[END_REF] where Ω -is a rectangular stochastic material (cf. Figure 8) of permittivity 2+i and radioelectric size 2200λ + × 0.67λ + = 3275.8λ -× 1λ -. We point out that Ω -is an absorbing material as our radiation condition (2) goes with a e -iωt time behavior. To generate the seedling, we use 4 random variables: δ x , δ y ∼ U(-l 20 , l 20), γ ∼ U(0, l 5) and θ ∼ U(0, π 2), U being the uniform distribution and l the material thickness. Each of the 3088 metallic squares are characterized by their center

(x i +δ x , y i +δ y) (x i = l √ 2 2 +l(i-1) 3 √ 2 4 , y i = l 4 , i ∈ [[3088
]]), edge size l 2 -γ and rotation angle θ. We compare the QTT and H-matrix methods using the precision and cluster trees used in section IV. Ω -is meshed with 1 366 895 unknowns and the rectangular boundary Γ with 131 072 unknowns (leading to #S = 131 072, #V Γ = 131 072, and #V = 1 235 823). The material is horizontally elongated and illuminated from below by a plane wave making an incidence angle with the x-axis equal to 26.57 • .

We use the GMRES-like solver described in [START_REF] Soudais | Iterative solution of a 3-d scattering problem from arbitrary shaped multidielectric and multiconducting bodies[END_REF] with a stopping residue of 10 -3 . The native linear system (4) is preconditioned with a Schur complement technique. Precisely, the matrix of the linear system (4) be written as:

M = M 1 M 2 M 3 M 4 with M 1 = S D + I 2 D t + I 2 N + H 1 , M 2 = 0 H 2 , M 3 = 0 H 3 , M 4 = H 4 .
The Schur complement related to the block M 4 is defined as

M 1 -M 2 H -1 4 M 3 .
Before the iterative solution, we factorize H 4 with an LU decomposition. At each iteration, we compute H -1 4 with a forward and backward substitution. Figure 9 is an overview of the entire simulation cost (CPU and memory) to solve the scattering-transmission problem. The left side shows that the QTT method drastically reduces the CPU building times. For both methods, the solver converges in 35 iterations. Nevertheless, the QTT method does not improve the solution time because the TT-MVP is a little less effective than the H-matrix product (actually 1.5 times H-MVP as shown in Figure 7). However, solution times are almost the same because the 1.5 GB required to store H matrices nearly fill the remaining memory of our computer. Moreover, in agreement with the results of the section IV, the memory cost (right side) of the TT-matrices is quite negligible (note the log scale) compared to H-matrix. Tables I and II give details of the CPU building times for BEM matrices and their storage.

The relative error between the QTT and H-matrix solutions (resp. u QTT and u H) gives: We see that replacing H-matrix compression by QTT method is safe from an engineering point of view. For instance, Figure 10 shows that the two bistatic radar cross-sections (from 0 • to 360 • by turning counterclockwise) are superimposed.

∥u QTT -u H ∥ 2 ∥u H ∥ 2 = 1.239 × 10 -3 .
In light of these rather good results, we can guess what happens if the shape of the tested material is not exactly linear but slightly curved or undulated. The answer is given in Figure 11, where we used sine shape profiles: a half-sine (curved) and a 4-sines train (undulated) whose amplitudes range from -4λ -to +4λ -(in order to see the different shapes, the drawings in the figure are not to scale). We see that the QTT method remains globally efficient even if results are a little disappointing compared to [START_REF] Poirier | Fast BEM Solution for 2-D Scattering Problems Using Quantized Tensor-Train Format[END_REF] or [START_REF] Corona | A tensor-train accelerated for integral equations in complex geometries[END_REF] where rough surfaces or irregular lattices were treated spectacularly. Actually, it appears that applying tensor methods in the context of high-frequency regime is still challenging, and our results probably call to experiment other tensor formats, more suited to these special situations (as perhaps the Tucker format successfully used in [START_REF] Giannakopoulos | Compression of volume-surface integral equation matrices via Tucker decomposition for magnetic resonance applications[END_REF]).

 y)p(y)dy + ∥x -y∥) (where x, y ∈ Γ and H(1) 0

Fig. 1 :

 1 Fig. 1: TT decomposition of a 5-dimensional tensor. A(1, 2, 4, 3, 3) is obtained by the product of the darkened matrices.

 end for 8: y = reshape(Y, [numel(Y), 1]) This last expression gives the Algorithm 1 where the cores G k are reshaped in G k by the well-known Matlab functions:

Fig. 2 :

 2 Fig. 2: CPU build as a function of the radioelectric size.

Fig. 3 :

 3 Fig. 3: MEM build as a function of the radioelectric size.

Fig. 4 :Fig. 5 :

 45 Fig.4: CPU build as a function of the number of unknowns.

Fig. 6 :

 6 Fig. 6: CPU mvp as a function of the radioelectric size.

Fig. 7 :

 7 Fig. 7: CPU mvp as a function of the number of unknowns.

Fig. 8 :

 8 Fig. 8: Test case.

Fig. 9 :

 9 Fig. 9: Overview of the computation times (s) and the storage.

Fig. 10 :

 10 Fig. 10: Bistatic radar cross-sections.

Fig. 11 :

 11 Fig. 11: Overview of the computation times (s) and the storage for different shapes of material.

TABLE I :

 I Integral operators building time (s)

	Format	S	D	N
	QTT	11.902	11.669	10.595
	H-matrix 258.587 684.674 552.472

TABLE II :

 II Integral operators storage (MB)

	Format	S	D	N
	QTT	0.97	0.59	0.30
	H-matrix 548.34 525.55 641.38

ACKNOWLEDGMENT

We would like to thank the Agence Innovation Défense (AID) and the ONERA for funding this work. We are also grateful to Bastiaan Michielsen and Vincent Mouysset for their critical reading and providing valuable feedback.