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Learning Local Depth Regression from Defocus Blur by Soft-Assignment Encoding

We present a novel patch-based approach for depth regression from defocus blur. Most state-of-the-art methods for Depth from Defocus (DFD) use a patch classification approach among a set of potential defocus blurs related to a depth, which induces errors due to the continuous variation of the depth. Here, we propose to adapt a simple classification model using a soft-assignment encoding of the true depth into a membership probability vector during training and a regression scale to predict intermediate depth values. Our method uses no blur model, nor scene model, it only requires a training dataset of image patches (either RAW, grayscale or RGB) and their corresponding depth label. We show that our method outperforms both classification and direct regression, on simulated images from structured or natural texture datasets, and on RAW real data having optical aberrations from an active DFD experiment.

INTRODUCTION

Monocular depth estimation has been widely studied in the last years especially when 3D information is required within a constrained environment. Several methods are based on learning a deep neural network model from a single image, using a depth map or 3D point clouds regression thanks to context information extraction within the full image [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Lee | From Big to Small: Multi-scale local planar guidance for monocular depth estimation[END_REF][START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF][START_REF] Ranftl | Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer[END_REF][START_REF] Leroy | Pix2Point: Learning outdoor 3D using sparse point clouds and optimal transport[END_REF].

However, since the input image is resized according to the neural network architecture, it affects the image's sensor blur, particularly the defocus blur which provides depth information.

Other works aim to benefit from defocus cues for depth map prediction using deep learning [START_REF] Carvalho | Deep Depth from Defocus: How can defocus blur improve 3D estimation using dense neural networks?[END_REF][START_REF] Lee | Deep defocus map estimation using domain adaptation[END_REF][START_REF] Shajkofci | Spatially-variant cnn-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy[END_REF][START_REF] Anwar | Deblur and deep depth from single defocus image[END_REF], even using unconventional optics such as phase mask or freeform lens to improve depth estimation [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF][START_REF] Chang | Deep optics for monocular depth estimation and 3D object detection[END_REF][START_REF] Wu | Phasecam3d -learning phase masks for passive single view depth estimation[END_REF]. Besides, several learning methods for blur type classification or deblurring also extract an intermediate relative defocus map during the image processing [START_REF] Zhang | Learning to understand image blur[END_REF][START_REF] Ma | Defocus image deblurring network with defocus map estimation as auxiliary task[END_REF]. These methods are effective to estimate a relative defocus or depth maps from an [START_REF] Pentland | A new sense for depth of field[END_REF]. In the single 31 image case, common patch-based approaches consist 32 of a selection of a blur within a finite set of poten-33 tial blurs, using a selection criterion derived from 34 maximum likelihood (ML) approaches [START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Zhu | Estimating spatially varying defocus blur from a single image[END_REF][START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. Re-35 cent supervised blur scale classification approaches 36 on patches using neural networks have also been
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proposed [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF]. These DFD methods proceed by clas-38 sification, while in practice real data involve continu-39 ous depth variation. Besides, these patch-based DFD Fig. 1. Graphical representation of the proposed method. A fully convolutional classifier estimates a logit vector from a blurred patch. A softmax operator is used to obtain the membership vector p. The regressed depth value is obtained by the linear combination of the membership vector p and a regression scale. The true depth is encoded into a target membership vector using soft-assignment. approaches do not consider the prior relationship between the classes that exist for depth prediction [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF].

Alternatively, methods for blur parameters or depth regression from an image patch have also been proposed in the literature. For instance, D'Andres et al., [START_REF] D'andrès | Non-436 parametric blur map regression for depth of field extension[END_REF] use the vector of likelihoods obtained using a scene prior and blur model parameters as an input of a regression tree to regress the blur parameter values. Yan and Shao [START_REF] Yan | Blind image blur estimation via deep learning[END_REF] use a general regression neural network on a prefiltered patch version, after a blur type identification step. Kashiwagi et al., [START_REF] Kashiwagi | Deep depth 441 from aberration map[END_REF] use patch localisation as an attention map to benefit from the lens aberrations to regress the depth. In the work of Shajkofci et al., [START_REF] Shajkofci | Spatially-variant cnn-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy[END_REF], a Resnet is used directly to regress blur parameters using a relatively large patch size (typically 128 × 128). Direct depth regression from a small defocused patch, without any preprocessing, nor additional information is not trivial, especially due to the regression to the mean problem, as discussed in [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF].

We present here a novel method for patch-based DFD regression that overcomes the aforementioned limitations of the classification approaches for DFD. on real data from an active DFD experiment [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] 84 (Section B). In each case, we compare the estimation 85 results using the proposed soft-encoding with direct 86 regression and hard-encoding-based methods. Bayesian framework [START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Zhu | Estimating spatially varying defocus blur from a single image[END_REF][START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. This likelihood is de-92 fined using either simple statistical models of the 93 scene gradients and PSF models [START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Zhu | Estimating spatially varying defocus blur from a single image[END_REF] or learned 94 image covariance for each potential depth [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. Deep 

METHOD

We propose a depth regression network based on a simple blur classification model, as this model shows good training stability and performances in blur estimation [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF][START_REF] Sun | Learning a convolutional neural 444 network for non-uniform motion blur removal[END_REF]. Figure 1 illustrates the proposed method and architecture. A fully convolutional neural network (CNN) operates as the classifier network used in [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF] and returns a logit vector ỹ, then a membership vector p = { pi } N i=1 is obtained by a softmax operator, N being the number of classes. To obtain regressed depth values, a linear layer, referred to as regression scale, is parameterised by z = {z i } N i=1 and is applied to p to yield our estimated value z. In the following we describe several approaches for training this architecture, and in particular the proposed soft-assignment encoding.

A. Output Space Regression

Supervised Deep Learning models for regression are usually trained by minimising a data fidelity term on the output of the network. A first attempt to regress the depth is to learn the model parameters and the regression scale minimising a L 2 loss directly on the true depth values expressed as

L out = ( pT z + b -z) 2 + λ r ∥ ỹ∥ 1 (1) 
where z and b are learned parameters. In this setting, L out is invariant by permutations of p and z indices, generating multiple local minima and complicating the learning phase.

B. Latent Space Regression

Another approach is to consider a data fidelity term over a latent space variable instead. The data fidelity term for classification approaches is usually a crossentropy term over the softmax logit vector p, defined as 146

L CE = -∑ i p i log pi (2) 
This raises the question of the encoding, i.e., the 147 assignment of a target membership vector p to the 148 true depth. signed using a kernel K with the classical rule [START_REF] Liu | In defense of soft-assignment coding[END_REF] 173

p i = K(z i , z) ∑ j K(z j , z) (4) 
For a lossless decomposition, we use B-spline kernel 174 of order 1 such as: 180

K(z i , z) = [δ -|z i -z|] + ,
Table 1 shows a summary of the loss function regression to mean issue in [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF].
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In comparison, assuming the ordinality of depths 240 as in [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF] leads to significantly better performances.
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The classification approach highly improves the for all, our approach performs better than both hard-260 assignment and classification approaches. Misclassi-261 fications at the lower edge (resp. higher) make the Table 3. RMSE and MAE, absolute and relative for classification (subpart of [START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF]), the proposed softassignment approach and Buat et al., [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] approach trained on R-RB dataset, near the optical center. , [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF], our proposed method, and the reference depth map obtained with a telemeter and known 3D object profile.

Figure 7 shows depth map estimation using the method of Buat et al., [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] and ours on large RAW images for two 3D printed objects. In order to take into account optical aberrations, we consider image subdivisions as [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. Here we use respectively 4× 4

and 5×5 overlapping grids. The covariance matrices learned for the method of Buat et al., [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] and the proposed architecture are trained separately using 32 × 32 patches for each subdivision , so 41 different models are trained. Hence as each image patch belongs to two subdivisions, we compute the mean of the two depth regressions obtained using the corresponding trained models. To produce the depth map, we process patches with overlapping of 50%.

The first object is a set of steps that is characterised by depth discontinuities, the second object is a cone that is characterised by a linear spatial variation of depth. A reference depth map is provided for each object. It consists of a 3D printing specification of the models completed with a single reference depth

value measured with a telemeter on a characteristic point of the model [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. Estimated depth maps are very similar to the reference depth maps on the whole image for both methods. 

21 image

 21 having a spatially varying defocus blur size 22 but the spatial variation of the Point Spread Func-23 tion (PSF) due to optical aberrations is not taken into 24 account. Besides, complex networks are involved, 25 requiring a relatively large input. A local depth pre-26 diction method hence seems to be more suited, espe-27 cially for low-cost sensors having uncorrected optical 28 aberrations. Local Depth from Defocus (DFD) methods 29 have been proposed in the literature, starting with 30 the pioneering work of A. Pentland

  Classification networks output a probability membership vector corresponding to each potential class. Training of such networks usually relies on hardassignment encoding of the true depth, i.e., the corresponding target membership vector has a non-zero probability value only for the depth class closest to the true depth. Hence many depth values can be assigned to the same class. To avoid the many-to-one mapping, we propose to use a soft-assignment encod-72 ing of the true depth, which provides a unique dis-73 patch of the membership weights on adjacent depth 74 classes. In the estimation stage, regression of depth 75 values is obtained using a linear combination of the 76 predicted membership vector with a regression scale. 77 Our method, described in Section 3, solely requires 78 a training set of patch/value pairs, without any blur 79 nor scene analytical model, or additional information. 80 Besides, it handles any image format, RAW, grayscale 81 or RGB. Our method is validated on synthetic data 82 for structured and natural scenes (Section A) and 83
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  Most local single image DFD methods use patch clas-89 sification within a finite set of potential blur with 90 a selection criterion that is derived from a ML in a 91
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  learning methods have also been developed for local 96 blur parameter classification, either for motion blur 97 removal by Sun et al.,[START_REF] Sun | Learning a convolutional neural 444 network for non-uniform motion blur removal[END_REF] or for monocular depth 98 estimation using an unconventional lens by Haim 99 et al.,[START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF]. In the latter work, a depth classification 100 network is trained using patches only, then a regres-sion layer is trained on a global scale to convert the discrete depth values to continuous depth values.In our opinion, blur classification is not suited to real-depth data whose labels belong to a continuous domain and introduces a systematic estimation error due to the quantisation step. Reducing this step increases the computational cost for ML methods and reduces the number of examples for each class, implying convergence issues for learning methods with a given database. Finally, these classification approaches omit the existing neighbourhood relationship between depth classes[START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF].

where δ 175 is the distance between two consecutive landmarks. 176 Figure 2

 1751762 Figure 2 depicts the corresponding membership

181 and the estimation method for each of the above 182 approaches. 183 C. Network Architecture 184 ForFig. 2 .

 1831842 Fig. 2. Illustration of hard-assignment (top) and soft-assignment encoding (bottom) for a true depth value z (blue) on 7 classes. The corresponding hardassignment code will result in a probability of 1 for the closest depth landmark, i.e., z 4 . Whereas the soft-assignment coding will dispatch the weights on adjacent depth landmarks, i.e., z 3 and z 4 .

197Fig. 3 .

 3 Fig. 3. (a) Image patches from the S-RB (top) and DTD (bottom) datasets, and corresponding blur standard deviation σ: (b) 0.4, (c) 1.0, (d) 2.0, and (e) 3.0 pixels.

1 Fig. 4 .

 14 Fig. 4. Mean predicted blur value σ (a), bias (b) and confidence interval for classification, hard-assignment and soft-assignment approaches trained on the S-RB (top) or DTD (bottom) datasets.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Top view of the R-RB dataset acquisition setup[START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF]. On the right, the camera is mounted with a chromatic add-on, next to the pattern projector. On the left, the fronto-parallel screen that can translate along the optical axis and on which the RB pattern is projected.

Figure 6 Fig. 7 .

 67 Figure6shows the bias, standard deviation of esti-
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  The method of Buat et al., produces granular depth maps with visible borders of training subdivisions, especially on the cone example. On the contrary, the depth map produced by our method is smoother and sharper at the edges of each step, while circular depth levels are clearly visible on the cone depth map.These results highlight the efficacy of the proposed method, and its robustness in particular to patches 346 showing either continuous or discontinuous depths We proposed a novel approach to depth regression 350 on patches having defocus blur. Our method lever-351 ages on a simple classification architecture, with a 352 training guided by soft-assignment encoding of the 353 ground truth depth value on a membership vec-354 tor predicted by the network. Depth regression 355 is obtained with a linear combination of the pre-356 dicted membership vector and a regression scale. 357 Our method is simple, requires no image prior nor 358 PSF model, and can be applied to any image/value 359 matching data. Our approach performs well on sim-360 ulated and experimental data, on both planar scenes 361 and real 3D objects. It was also shown to cope with 362 PSF spatial variations due to optical aberrations. Fur-363 ther works will follow including the analysis of var-364 ious experimental settings, such as the number of 365 classes for the soft-assignment, the robustness to dif-366 ferent noise levels and the patch size. Lastly, we will 367 explore a way to process full-resolution images ex-368 hibiting spatially variant blur caused by aberrations 369 by injecting the patch location into the network as 370 in [21].

  = 1 and p i̸ =j = 0, 154 as depicted in Figure 2. An estimate of z is obtained 155 with the arg max operator: z = z arg max i ( pi ) . This
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	150	
		Hard-Assignment With this encoding, a true
	156	
	157	coding scheme corresponds to usual classification
	158	approaches. A way to mitigate the arg max classifi-
	159	cation results, including the misclassification error
	160	sensitivity, and obtain continuous depth values, is to
	161	use the soft-argmax operator defined as
		z =
	172	

151 depth value z is assigned to only one class j = 152 arg min i |zz i |, or equivalently to a Dirac member-153 ship probability vector p with p j N ∑ i=1 pi • z i = pT z (3) Soft-Assignment Another approach is to guide 162 the estimations using prior class relationships, as 163 in the work of Proencca et al., [23], where a soft-164 assignment encoding is used for pose estimation. 165 Soft-assignment encodes a given depth value into 166 a multi-class membership probability vector p. This 167 probability vector will be used as a weighting to en-168 able precise decoding of intermediate values, hence 169 a continuous estimation. We consider z i as a depth 170 landmark associated to class i. Then class member-171 ship probability of a given sample at depth z is as-

Table 1 .

 1 Summary of respective encoding, loss functions and estimation rules for each considered approach.

	Method	Coding	Loss function	Estimation
	Output Reg.			

None ( zz) 2 + λ r ∥ ỹ∥ 1 z = pT z + b Classif. Hard L CE ( p, p) z = z argmax( p)

Hard-Assign. Hard z = pT z Soft-Assign. Soft z = pT z designed to take a 32×32 image patch as input and 187 to predict a scalar output, see figure 1. It consists 188 of 7 convolution layers with respectively 9 × 9 × 64, 189 5 × 5 × 64, 5×5×64, 5×5×64, 5×5×64 and 1×1×N, 190 1×1×1 kernel size, and stride size of 2. In our ex-191 periments, we first consider small N < 20, resulting 192 in a network with a relatively small number of pa-193 rameters ≈ 416, 000. The optimisation is done at a 194 learning rate γ = 1e -3 using Adam with β 1 = 0.9 195 and β 1 = 0.999.

Table 2

 2 

	229	shows performance metrics for the best
	230	model of the methods described in Table 1, trained
	231	on both datasets. We also test the use of the ordinal
	232	loss [3]. It only implies increasing the size of the
	233	membership vector by 2, as this loss characterises the
	234	probability for the depth to lie between two ordered
	235	depth classes. The output space regression approach
	236	seems to be ill-conditioned and leads to a model
		that predicts the expectation of the blur value over

237

the training set, this phenomenon is referred to as 238

Table 2 .

 2 Absolute and relative errors (RMSE and MAE) results on S-RB and DTD datasets for several state-of-the-art methods and the proposed softassignment method. * indicates that only the local scale classification architecture of[START_REF] Haim | Depth estimation from a single image using deep learned phase coded mask[END_REF] is considered. All methods are trained using N = 7 classes.

		Method	RMSE MAE RMSE MAE
		S-RB dataset	(in pix)	relative (in %)
		Output Reg.	0.76	0.65	8.9	58.2
		Ordinal	0.35	0.19	6.9	24.9
		Classif. *[10]	0.13	0.11	1.1	8.3
		Hard-Assign.	0.12	0.10	1.1	7.9
		Soft-Assign.	0.01	0.01	0.01	0.6
		DTD dataset			
		Output Reg.	0.76	0.65	8.9	58.2
		Ordinal	0.34	0.24	4.4	20.8
		Classif. *[10]	0.3	0.23	2.47	17.12
		Hard-Assign.	0.26	0.19	2.1	14.41
		Soft-Assign.	0.23	0.18	1.94	13.1
	243	depth estimation score, with another slight improve-
		ment by adding a soft-argmax operation. Finally, our
	251	and our method using soft-assignment. For the S-RB
	252	dataset, a quantisation of the estimation is clearly
	253	visible for both classification and hard-assignment
	254	approaches as well as a dispersion of the estimations
	255	near the borders of representation classes. Whereas
	256	our approach fits closely the identity line. In compar-
	257	ison, the greater diversity in texture and the potential
	258	native blur in DTD images cause greater dispersion
	259	in the estimations. While the overall error is greater

Data availability. Data underlying the results on natural texture presented in Sec. A are available in the Describable Texture Dataset, Ref. [START_REF] Cimpoi | De-451 scribing textures in the wild[END_REF]. Experimental data underlying the results on structured binary pattern presented in B are not publicly available but may be obtained from the authors upon request.