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GROUPING CHEMCAM TARGETS BY VISUAL CHARACTERISTICS IMPROVED BY AUTOMATIC 
PARTITIONING.  A. Essunfeld1 (aessunfeld@lanl.gov),  J. M. Comellas1,2, P. J. Gasda1, D. Oyen1,  N. Lanza1, O. 
Gasnault3, D. Delapp1, R. Wiens1, S. Clegg1, C. C. Bedford5,6, E. Dehouck7, B. Clark8, R. Anderson4, 1Los Alamos Nation-
al Laboratory, 2UH Mānoa, 3IRAP, Toulouse, France, 4USGS, 5LPI, USRA, 6NASA JSC, 7Univ. Lyon, 8SSI. 
 

Introduction:  NASA’s Curiosity rover has been 
traversing Gale crater, a lacustrine region chosen as the 
landing site of the rover due to its potential for past habit-
ability, since landing there in 2012 [1]. Curiosity spent the 
first ~760 martian solar days (sols) of the mission in the 
Bradbury formation, an ancient fluvio-lacustrine system 
[1, 2]. 

In the nine years since landing on Mars, Curiosity has 
observed a wide variety of rock types, and several classi-
fication methods have been developed with the aim of 
sorting these rocks into process-oriented facies [e.g., 3-5]. 
But accurate classification of rocks can be challenging 
when information is limited to images and chemical com-
position, meaning process-oriented classifications risk 
introducing bias. [6] addressed this issue by developing  a 
classification system based only on simple visual attrib-
utes. This system involved three phases: first, (1) the 
manual process of reviewing each target’s RMI and en-
coding its visual attributes as a 17-digit binary number; 
then (2) an initial algorithmic grouping of the targets; and 
finally (3) a manual review, which refined the algorithm-
generated groupings [6]. The second phase generated ten 
graph components with varying connectivity, and the 
relatively weakly connected components seemed to corre-
late with worse target image association [6]. In this work, 
we attempt to automate the third phase by automatically 
partitioning the components with weak connectivity. 

Methods:  Curiosity’s ChemCam instrument uses La-
ser-Induced Breakdown Spectroscopy (LIBS) to obtain 
chemical information about rock targets [7, 8]. With each 
LIBS analysis, high-resolution images of the target are 
taken with the Remote Micro Imager (RMI) [7, 8]. In this 
work, we use the same dataset studied by [6, 9]. This da-
taset includes the visual attribute documentation de-
scribed in [6]: a 17-digit binary number for each target, 
encoding its visual attributes. 

To examine the graph components that had weaker 
connectivity and partition them into two or more subcom-
ponents, we needed to define a threshold for “weak con-
nectivity” in this context. “Connectivity” alone refers to 
the minimum number of nodes that need to be removed to 
render a graph disconnected [13]. But connectivity does 
not allow us to distinguish between strongly connected 
graphs with leaves, and dumbbell-like graphs. For in-
stance, an otherwise strongly connected graph could have 
connectivity = 1 because it has a single leaf (e.g., Fig. 1, 
brown).  This is the same connectivity value as dumbbell-
like graph, which has two or more separate, strongly con-
nected components that are only connected to each other 
(bridged) by a single node (e.g., Fig. 1, blue graph). But 
only the dumbbell-like graph is a worthy candidate for 

partitioning. By removing edges to the bridge node (Fig. 
1, red arrow), we could gain two new graphs, each with 
stronger connectivity than the original blue graph. 

 
Figure 1: Two graph components from the original classification 
by [6]. ChemCam targets are represented as nodes, and similar-
ity between targets as edges between nodes [6]. The brown 
graph is strongly connected, except for one leaf (added for clari-
ty). The blue graph is weakly connected. The red arrow points to 
a “bridge” node. The simple connectivity of the two components 
is the same, but the non-trivial connectivity (NTC) differs. 
 

The inability of simple connectivity to distinguish be-
tween these two different characters of graphs motivated 
our definition of “non-trivial connectivity” (NTC). To 
determine a graph’s NTC, we first remove (or prune) the 
leaves, then compute the simple connectivity of what is 
left behind. As seen in Fig. 1, this process reveals that the 
brown graph has significantly higher NTC than the blue 
graph. Thus the metric of NTC, unlike simple connectivi-
ty, allows us to distinguish between these two different 
characters of graphs. 

We used the following two conditions to identify 
components worth partitioning: A component was con-
sidered to have “weak connectivity” (and thus worth par-
titioning) if it (A) had NTC ≤ 1 , and (B) had more nodes 
than the median component size generated by the original 
algorithmic grouping in [6]. We partitioned the compo-
nents that passed this query using the Kernighan-Lin Bi-
section algorithm (KL) as implemented in the python 
library NetworkX [10]. This algorithm finds a fast, ap-
proximate solution to the balanced graph cut problem 
[14]. KL works by initializing a pseudo-random partition 
and then swapping nodes between the sides of the parti-
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tion, rewarding final partitions that require the fewest 
edges to be removed from the original graph [14]. To 
mitigate the influence of randomness, we bootstrapped 
KL with 1000 repetitions and 1000 maximum iterations 
per repetition, and picked the mode partition. 

Results:  The original classification graph generated 
10 components with a median component size of 12 
nodes [6]. Of the five components with size greater than 
or equal to the median, two had NTC ≤ 1. These had sizes 
of 37 and 53, and constituted the weakly connected com-
ponents that were partitioned with KL. After partitioning, 
these two components with median size 45 (both NTC = 
1) became five components with median size 18 (mean 
17) and median NTC = 3 (mean 6), along with three new 
miscellaneous targets (no edges). The process of parti-
tioning the size-53 component is illustrated in Fig. 2. The 
size-37 component’s process was similar, resulting in two 
new groups and the three new miscellaneous targets. 

Discussion:  [6] obtained 10 groups in phase two, and 
then manually refined these groups up to 16 in phase 
three. By identifying and partitioning the two weakly 
connected components from phase two as described, we 
subdivided those two groups into five new groups, bring-
ing the total number of groups up to 13 (10 original – 2 
weak + 5 new = 13 total). In the process, we also added 3 
miscellaneous targets to the collection of 13 already pre-
sent from phase two of [6]. As seen in Fig. 3, weakly 
connected components had associated some targets that 
bore little visual similarity. But after partitioning, such 
targets were separated into new groups with stronger im-
age association. 

When KL finds a partition on a graph, the induced 
subgraphs in each partition are not guaranteed to be con-
nected. This is why we can obtain > 2n new groups (new 

 

 
Figure 2: The weakly connected component of size 53 from the 
original classification graph by [6]. Left: the original compo-
nent, uncolored. Middle: coloring applied by performing KL and 
obtaining partitions A (red) and B (light blue). Right: further 
coloring on disjoint connected components of partition B. (Parti-
tion A happened to be connected.) 

connected components) when partitioning n weakly con-
nected components (e.g., Fig. 2 B-1 & B-2, disjoint con-
nected components of Partition B). 

None of the five new groups qualify as weakly con-
nected, as they all have NTC ≥ 2. However, with a slight-
ly different dataset, partitioning could result in new weak-
ly connected (albeit smaller) components. Iteratively par-
titioning such components could increase the total number 
of groups further and likely improve image association 
within groups. This approach may also increase the geo-
logic usefulness of the classification, as the higher num-
ber of groups would be closer to that of the classification 
obtained in phase three of [6], used for interpretations by 
[e.g., 9, 11, 12]. 

Conclusions:  Automatic partitioning of weakly con-
nected components is an effective method for improving 
ChemCam target grouping by increasing the number of 
groups and the target-image association within groups, 
given a graph-based classification, such as [6]. Iteratively 
identifying and partitioning weakly connected compo-
nents may help to match the quality of image-association 
within groups achieved in the manual third phase of [6]. 
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Figure 3: RMI mosaics of two ChemCam targets from the weak-
ly connected component of size 37 [6]. Despite differences in 
texture and tonality, these targets were originally sorted into the 
same dumbbell-like group [6]. Because they were on opposite 
sides of this dumbbell-like component, they were separated into 
new groups by partitioning. 
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