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1   |   INTRODUCTION

The introduction of automation technology in our every-
day life has profoundly modified our interactions with the 

world surrounding us, by having operators performing 
higher order cognitive tasks whereas the automated sys-
tems take over the lower order ones (Berberian, Somon, 
et al., 2017). Whether in our car, at work or at home, we are 
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Abstract
Supervision of automated systems is an ubiquitous aspect of most of our everyday 
life activities which is even more necessary in high risk industries (aeronautics, 
power plants, etc.). Performance monitoring related to our own error making has 
been widely studied. Here we propose to assess the neurofunctional correlates of 
system error detection. We used an aviation-based conflict avoidance simulator 
with a 40% error-rate and recorded the electroencephalographic activity of par-
ticipants while they were supervising it. Neural dynamics related to the supervi-
sion of system's correct and erroneous responses were assessed in the time and 
time-frequency domains to address the dynamics of the error detection process 
in this environment. Two levels of perceptual difficulty were introduced to as-
sess their effect on system's error detection-related evoked activity. Using a robust 
cluster-based permutation test, we observed a lower widespread evoked activity 
in the time domain for errors compared to correct responses detection, as well as 
a higher theta-band activity in the time-frequency domain dissociating the detec-
tion of erroneous from that of correct system responses. We also showed a signifi-
cant effect of difficulty on time-domain evoked activity, and of the phase of the 
experiment on spectral activity: a decrease in early theta and alpha at the end of 
the experiment, as well as interaction effects in theta and alpha frequency bands. 
These results improve our understanding of the brain dynamics of performance 
monitoring activity in closer-to-real-life settings and are a promising avenue for 
the detection of error-related components in ecological and dynamic tasks.

K E Y W O R D S

automated system, cluster-based permutation test, EEG, ERP, performance monitoring, time-
frequency analyses
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now accustomed to interacting with automated systems 
on a daily basis. It is especially the case for people work-
ing in high-risk domains such as the aeronautics or the 
nuclear fields, where most processes are highly automated 
and highly reliable. In this context, operators have moved 
from “operating”, per se, to supervising these automated 
systems. Already, in 1983, Bainbridge mentioned: “There 
are two general categories of task left for an operator in 
an automated system […] to monitor […] or to take over.” 
(Bainbridge, 1983) Several consequences of this change in 
operators' function have been described in the literature. 
Consequences include a decreased attention and vigi-
lance, a loss of situation awareness, and a decreased motor 
ability, amongst others (Berberian, Gouraud, et al., 2017; 
Berberian, Somon, et al.,  2017). More particularly, these 
changes often result in a reduced ability to detect system 
errors when they occur and to take over when necessary 
(Endsley & Kiris, 1995). These issues, coined the Out-Of-
The-Loop performance problem, have resulted in critical 
incidents which have had dramatic consequences in terms 
of casualties and infrastructure costs (e.g., the Three Mile 
Island power plant accident or the Rio-Paris flight AF-447 
ending up in the death of its 228 occupants).

Understanding the neurofunctional correlates of sys-
tem supervision and error monitoring could help prevent 
these fatalities. In the field of cognitive neurosciences, 
several studies have tried to elucidate how our brain de-
tects errors and how it corrects them. The error detection 
process, also called performance monitoring, has raised 
a lot of attention since the fundamental contribution by 
Rabbitt (1966) about reaction times related to error detec-
tion and correction processes. At the neurophysiological 
level, performance monitoring has been characterized by 
a set of early frontocentral and late centroparietal poten-
tials which have been observed in various contexts: (i) after 
error commission (i.e., the frontocentral negative ERN 
and centroparietal positive Pe – Falkenstein et al.,  1991; 
Overbeek et al., 2005), and (ii) after feedback observation 
of an error (i.e., the frontocentral negative FRN and cen-
troparietal positive P300 or RewP – Hajcak et al., 2005; Luu 
et al., 2003; Proudfit, 2015). The aforementioned compo-
nents have distinct features. Notably, some of them have 
been associated specifically to the valence of the outcome 
(e.g., RewP in reward responsiveness paradigms, where a 
monetary reward is at stake; Proudfit, 2015), while others 
not. On the other hand, several authors have suggested a 
closed link between the ERN-Pe, FRN-P300 and N2-P3 
complexes. More precisely they might reflect the perfor-
mance monitoring process, at different timescales depend-
ing on the response selection and execution processes 
involved (Cavanagh & Frank,  2014; Ullsperger, Fischer, 
et al., 2014). The role of the valence of the event for the 
elicitation of these components is still a matter of debate, 

but many studies settle on a valence-free expectedness-
based activation of error-related components (Alexander 
& Brown, 2011; Pezzetta et al., 2018).

Regarding spectral data, performance monitoring 
activity has also been linked to specific frequencies: 
notably frontal midline theta oscillations (FMT) in-
crease associated with cognitive control and evoked by 
response-related (Cavanagh & Frank,  2014) as well as 
feedback-related (Novikov et al.,  2017) mechanisms; 
but also post-error alpha suppression in posterior areas 
(Carp & Compton,  2009; van Driel et al.,  2012) associ-
ated to attentional adjustments, or attentional enhance-
ment during feedback expectation (Pornpattananangkul 
& Nusslock, 2016). This post-error alpha suppression has 
been demonstrated to vary according to several task pa-
rameters such as motivation (Compton et al., 2014) or the 
type of error (van Driel et al., 2012), but is generally at-
tributed to attentional “reorienting”.

Recent electrophysiological studies have tried to assess 
error detection during system and human agent supervi-
sion (for a review, see Somon et al., 2017). They revealed 
the emergence of the same kind of event-related poten-
tials triggered by observing another agent's (human or 
system) error, taking the shape of an early frontocentral 
oERN and later centroparietal oPe or an N2 followed by 
a P3 (Chavarriaga et al., 2014; Somon et al., 2019b; Weller 
et al.,  2018). However, these studies also showed a de-
crease of the P300 when the observed error is performed 
by a system in comparison to a human agent (Somon 
et al.,  2019b). Based on the literature, this result can be 
related to the role of psychosocial parameters (interper-
sonal similarity – Carp et al.,  2009 – empathy – Cracco 
et al., 2016 – intentionality – Desmet & Brass, 2015 – etc.). 
Notably, complacency towards automated systems can 
lead to a lower supervision activity when interacting with 
them (Parasuraman et al., 1993), which is reflected by a 
decrease of the P300 activity related to information pro-
cessing. Complacency is a well-known precursor of su-
pervision or monitoring decrements. Studying the brain 
activity related to error detection during everyday-life-like 
automated system supervision would help understand 
how monitoring difficulties manifest themselves at the 
neurophysiological level. Nevertheless, most studies about 
the neurophysiological correlates of performance moni-
toring are performed in very standardized lab conditions 
with lab-oriented protocols and stimuli thus preventing 
most supervision difficulties to emerge.

In an attempt to decipher the effect of response proba-
bility from response type on the performance monitoring 
brain response during system supervision, and thus deter-
mine the role of surprise in the theoretical frame of action 
observation (Desmet & Brass, 2015), Pezzetta et al. (2018) 
performed a first-person perspective virtual reality-based 
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error monitoring study where the error rate of the av-
atar's action was 70%. They performed a dynamic task, 
leading them to study not only ERPs associated to cor-
rect and erroneous responses, but also spectral power and 
time-frequency measures. Their analyses focused on the 
FCz and POz electrodes but showed an early FCz-located 
greater theta power and alpha power for errors, as well as 
POz-located alpha suppression for correct responses com-
pared to avatar errors. Interestingly, they demonstrated 
that these activities were not related, or at least not solely, 
to the novelty and surprise triggered by infrequent trials, 
but confirm the role of theta power in intended goal vio-
lation even for continuous dynamic conditions, and alpha 
power in reorientation of attention. This result is in line 
with previous literature showing that alpha desynchroni-
zation translates the recruitment of attentional resources 
for task-relevant events (Klimesch, 2012). However, other 
studies have also suggested that low-band (<10 Hz) alpha 
desynchronization could reflect general task demand and 
attention as a non-task specific and widespread brain ac-
tivity (Gevins et al., 1997; Klimesch, 1999).

The aim of the present study is to determine the neuro-
functional correlates of automated system supervision in 
a more dynamic and applied scenario and verify whether 
the correlates observed in lab tasks (i.e., an early oERN fol-
lowed by an oPe, or a more general N2 followed by a P3 in 
flanker tasks for example) can be observed in this type of 
more complex situations. A second objective aims at char-
acterizing the evolution of this cerebral activity over time, 
more precisely the differences in supervision activity that 
can be observed between the beginning and the end of the 
supervision task. Indeed, in long-lasting tasks with repet-
itive trials and stimuli, participants often bear behavioral 
performances decrements (Smallwood & Schooler, 2015). 
It is even more pronounced in supervision tasks. Notably, 
it has been demonstrated that mind-wandering (i.e., “…the 
mind's tendency to engage in thoughts unrelated to the 
here and now.”; Gouraud et al., 2018) frequency increases 
after only 20 min spent on an automated system supervi-
sion task, and is associated with decreased performances 
in terms of reaction times (higher and more variable) and 
accuracy (Bastian & Sackur, 2013; Kam et al., 2012; Lorist 
et al., 2000). During system supervision, these difficulties 
usually manifest through a decrease in error detection, but 
also at the electrophysiological level through decreases of 
the amplitude of several event-related potentials (Lorist 
et al.,  2000; Smallwood et al.,  2008) and an increase 
in parieto-occipital alpha frequency power (Borghini 
et al., 2014; Campagne et al., 2004; van Driel et al., 2012). 
Finally, it has been proposed a role of alpha frequency in 
general attention processes (whether through idling as was 
initially thought – Klimesch, 1997 – or as more recently 
hypothesized through inhibition – Klimesch et al., 2007), 

especially the widespread lower alpha sub-band ([8-10]
Hz; Gevins et al., 1997).

Here, we recorded electroencephalograms and be-
havioral data on 18 participants who were asked to su-
pervise a home-made conflict avoidance simulator (the 
LIPS – Laboratoire d'intéraction pilote système; Gouraud 
et al., 2018; Le Goff et al., 2018). Two levels of difficulty 
were considered to determine how task complexity may 
impact system monitoring. Likewise, to investigate how 
this decision-making process emerges within trials but also 
can vary during long-term supervision and across-time, 
we looked at the effect of time on task, by comparing the 
error monitoring activity in the time and time-frequency 
domains at the beginning and at the end of the exper-
iment for both errors and correct responses detection. 
Concerning the overall performance monitoring activity, 
we hypothesized that the event-related activity linked to 
the detection of a system error would be higher in abso-
lute amplitude than the one related to correct response 
observation in accordance with what is observed during 
system supervision tasks using more basic and classical 
stimuli. Specifically, we expected to observe a greater fron-
tocentral negative ERP (oERN or N2; Pezzetta et al., 2018) 
– given its theoretical role in the detection of divergence 
from the intended goal – but also a greater centroparietal 
positive potential (oPe or P300) – given its role in atten-
tion reorienting and information extraction – during the 
detection of system errors compared to correct system re-
sponses (Somon et al., 2019b; Weller et al., 2018). In the 
frequency domain, performance monitoring should take 
the form of a mid-frontal theta activity increase for errors, 
most likely non-phase-locked and unlinked to the oERN 
(Cavanagh & Frank, 2014; Pezzetta et al., 2018; Ullsperger, 
et al., 2014). In addition, an alpha band activity is expected 
which may manifest either through: (i) fronto-central 
post-error alpha suppression, as observed after error exe-
cution (Carp et al., 2009; van Driel et al., 2012); or (ii) more 
likely through greater frontal alpha activity for errors as 
well as parietal alpha suppression after correct responses, 
as demonstrated in more dynamic error observation tasks 
(Pezzetta et al., 2018). We also made the hypothesis that 
these components would be impacted by task difficulty 
and, thus, an increase in perceptual difficulty would de-
crease the amplitude of the centro-parietal positive one, 
as already observed for error commission and/or observa-
tion (Gehring et al.,  2011; Somon et al.,  2019a; Van der 
Borght et al., 2016). Regarding the effect of time on task 
on observational performance monitoring activity, it is 
expected that complacency leads to the reduction of the 
overall amplitude of the ERP complex. Finally, we pre-
dicted that time on task, independently of the system's re-
sponse accuracy, would trigger an overall increase of the 
alpha band activity as it has been demonstrated on several 
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occasions (Borghini et al.,  2014; Campagne et al.,  2004; 
Craig et al., 2012).

2   |   METHOD

This research was approved by a local ethics committee 
(Comité d'Ethique pour les recherches non interven-
tionnelles de Grenoble, n°IRB00010290-2017-07-04-20-
CERNI_AvisConsultatif-2017-06-13-04) and conducted 
according to the principles expressed in the Declaration 
of Helsinki.

2.1  |  Participants

Based on power analyses performed on previous data 
assessing performance monitoring during supervision 
(suggesting a sample size of 14 participants to detect error-
related spectral components during system supervision 
with α = 0.05, the power 1-β = 0.8 and effect size �2p = 0.45; 
Pezzetta et al., 2018) and on sample size typically described 
in this research domain (including between 15 and 20 
participants; van Driel et al., 2012), twenty healthy right-
handed participants (7 women; 27.75 years ± 1.42 years) 
were recruited for this experiment. All the participants 
were naïve to the task. They had normal or corrected-to-
normal vision and hearing, were free of neurological or 
psychiatric disorders and were not under any medication. 
The volunteering participants signed a written informed 
consent and received a financial compensation (30€ in 
total) for taking part to the experiment. Two participants 
were removed from data analysis due to bad EEG signal 
quality (more than one fourth of the data had to be re-
jected) resulting in a total of 18 participants included in 
the analyses reported in the results section.

2.2  |  Experimental task and procedure

2.2.1  |  Stimuli

This experiment consisted in the supervision of an ob-
stacle avoidance simulator (The Pilot-System Interaction 
Lab—LIPS; Gouraud et al., 2018; Le Goff et al., 2018) with 
various levels of difficulty. This simulator took the shape 
of an aircraft centrally located in a radar zone, in the mid-
dle of a screen. The aircraft was moving at a constant 
speed of 200 m.s−1 and was displayed in white onto a black 
19-in CRT monitor (with a 1024x768 pixels resolution and 
a 100-Hz refresh rate) located 46 cm away from the par-
ticipant in an unlit room. Two types of obstacles could ap-
pear in a predefined order in the radar zone during the 

experiment. Both consisted of yellow circles, which were 
either located on the aircraft trajectory (primary obsta-
cles) or on either side of the aircraft trajectory (secondary 
obstacles; see Figure 1a).

The arrangement of the secondary obstacles in the 
radar zone introduced two levels of difficulty within the 
task: an easy condition for which the secondary obstacles 
were aligned one above the other on either the right or 
left side of the screen, and a difficult condition for which  
the secondary obstacles were randomly dispersed within 
the upper part of the screen and verified one by one by the 

F I G U R E  1   Examples illustrating the different types of 
trials across experimental conditions. Description of the stimuli 
presented for responses in easy (a) and difficult (b) conditions, 
and of the feedback stimuli (c) in the Pilot-System Interaction Lab 
experiment. The left side illustrates stimuli for correct response/
positive feedback and the right side for erroneous response/
negative feedback. Participants had to determine the accuracy 
of responses according to the distribution of the primary and 
secondary obstacles. Yellow dotted lines illustrate the flying path 
taken by the aircraft and are provided for information but were not 
shown during the experiment.
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      |  5 of 20SOMON et al.

experimenter to ensure their accuracy and detectability 
(see Figure 1a,b).

For each avoidance, a stimulus was displayed by the 
simulator to inform the participant of the direction chosen 
by the aircraft to avoid the primary obstacle. This system's 
response consisted in the word “AVOID” in red along with 
an arrow indicating either the right (↗) or the left (↖) 
direction. After each avoidance, two types of feedback ex-
pressing the result of the avoidance were also provided to 
the participant: a positive feedback showing that the air-
craft avoided all the obstacles successfully or a negative 
feedback indicating that the avoidance was not successful 
(respectively “RESOLVED” or “NOT RESOLVED” written 
in yellow below the aircraft; see Figure 1c). Overall, four 
types of trials could be provided to the participant accord-
ing to the accuracy (correct vs. erroneous avoidance) and 
the difficulty (easy vs. difficult condition). They are pre-
sented in Figure 1a,b.

2.2.2  |  Procedure

During the experiment, participants had to supervise the 
obstacle avoidance simulator described above. In this con-
text, the forward-flying aircraft took the decision to avoid 
the primary obstacles appearing on its path by a right or 
left turn. The selected direction of the avoidance maneu-
ver was provided to the participant and was called system's 
response in the rest of the document. The participant had 
to assess whether this response was correct or erroneous 
according to the context surrounding the aircraft (location 
of secondary obstacles, see Figure 1a,b). Participants' re-
sponses were recorded with a computer mouse on which 
the two buttons were assigned to either the “Correct” or 
“Error” assessment (response mapping counterbalanced 
across participants).

The experiment was divided into two experimental ses-
sions taking place on two different days. Every experimen-
tal session included six experimental blocks: three in the 
easy condition and three in the difficult condition com-
pleting a total of six blocks for each level of difficulty over 
the 2 days of experimentation. The order of the blocks was 
randomized for every participant, and each block was fol-
lowed by a break. Every block included 25 trials, 40% of 
which were erroneous (i.e., 10 trials per block, 5 with a 
right turn and 5 with a left turn). This high error rate was 
introduced in order to have enough trials for the follow-
ing EEG analysis and ensure statistical power. Trials were 
randomly presented. Every experimental session included 
a total of 150 trials (75 per difficulty level) and lasted ap-
proximately 1h15. In total, over the 2 experimental ses-
sions, every participant performed 300 trials (120 – 40% 
– erroneous and 180 correct trials; 150 – 50% – right turns 

and 150 – 50% – left turns; 150 trials in the easy condition 
and 150 trials in the difficult condition).

Each trial started with the aircraft displayed in white 
against a black background at the center of the screen and 
of the radar zone. Obstacles progressively appeared at the 
top of the screen: one primary obstacle and five second-
ary obstacles. When the aircraft was close enough from 
the primary obstacle the simulator detected the possibil-
ity of a collision (roughly 7.45 s before the putative con-
flict) and sent a message to the participant by displaying 
“CONFLICT AHEAD”. The simulator then initiated a 
conflict avoidance mode 200 ms after conflict detection. At 
that moment, the system's response was provided to the 
participant indicating the direction taken by the aircraft to 
avoid the primary obstacle, and the simulation froze.

After a 1-s delay during the freezing period, the par-
ticipant had to assess the accuracy of the simulator's de-
cision. The end of this delay was indicated by a change in 
color of the circle surrounding the aircraft, which turned 
green. The participant responded by clicking one of the 
two buttons of the computer mouse: “Correct” or “Error”. 
The simulation stayed frozen until a response was given.

The role of this freezing period was to ensure that 
the quantity of information provided to the participant 
to make a decision was the same for every trial for each 
participant. Similarly, the delay between the system's re-
sponse and the response of the participant ensured that 
the brain activity associated with error-detection was not 
disrupted by motor-related brain activity. Nevertheless, 
this delay also prevents us from analyzing reaction times 
as a performance indicator.

Once the participant had responded, the simulation 
started again, and the aircraft engaged in the avoidance of 
the primary obstacle in the direction chosen by the sim-
ulator. This avoidance lasted approximately 13 seconds, 
depending on the disposition of the obstacles. If the air-
craft encountered secondary obstacles during its avoid-
ance phase, it created a conflict and thus an erroneous 
trial. The aircraft then came back to its initial path and the 
simulator sent a feedback to the participants by indicating 
whether the avoidance was correct (‘RESOLVED’) or not 
(‘NOT RESOLVED’). The response of the participant had 
no impact on the simulation except for unfreezing it, yet 
the participant could understand this feedback as positive, 
when his/her response was in accordance with the feed-
back, or negative when it was not. Finally, the aircraft kept 
a straight trajectory until new obstacles appeared, trigger-
ing another trial. A timeline of a complete trial is provided 
in Figure 2.

All participants underwent a familiarization phase for 
each difficulty level before every experimental session cor-
responding to half a block in each case (12 easy and 12 dif-
ficult trials) lasting approximately 10 min. Trials from this 
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familiarization phase were not included in subsequent 
analyses.

2.3  |  Measure and analysis

2.3.1  |  Subjective measures

Participants' vigilance and emotional states were acquired 
at the beginning and at the end of each experimental ses-
sion respectively through a Karolinska Sleeping Scale 
(from 1 – Very Awake – to 9 – Very Sleepy) and Likert 
scales (from 0 – very little – to 10 – very much) assessing 
calm, stress, joy and boredom. All these variables were an-
alyzed with a two-way repeated-measures ANOVA with 
the moment of the session (Beginning vs. End) and the 
experimental session (session 1 vs. session 2) as within 
factors. Mean comparisons were then performed using a 
Tukey HSD post-hoc test.

Task difficulty was assessed at the end of every experi-
mental block with a Likert scale going from 0 – Easy – to 9 
– Difficult. Task difficulty was statistically analyzed with a 
paired Student's t-test according to the level of difficulty of 
the block (Easy vs. Difficult).

All analyses were performed with Python (v.3.7.10) 
and the Pingouin library (v.0.4.0), and results were re-
ported as mean ± SEM. Generalized eta squared (η2) are 
provided as a measure of the effect size (Bakeman, 2005; 
Olejnik & Algina,  2003). Significance level was placed 
at .05.

2.3.2  |  Behavioral measures

Reaction times were recorded for each participant and 
every trial. However, given the imposed delay between 
the cue and the response, and the infinite time provided 
to the participant for responding, they were not analyzed 
in this study.

In addition, participants hit rates was computed for 
each session and each level of difficulty (Easy vs. Difficult) 
as the number of correct estimations of the accuracy of 
the system's response (i.e., whether the system is going to 
do a correct avoidance or an erroneous one) over the total 
number of trials in each level of difficulty and selected mo-
ment of the experiment (three blocs at the beginning and 
at the end). Hit rates were compared across participants 
with two different pairwise t-tests with Bonferroni cor-
rection: (i) with the level of difficulty (Easy vs. Difficult), 
and (ii) with the moment of the experiment (Beginning 
vs. End) as within-subject factors. Analyses were per-
formed with Python (v.3.7.10) and results were reported 
as mean ± SEM. Generalized eta squared (η2) are provided 
as a measure of the effect size (Bakeman, 2005; Olejnik & 
Algina, 2003). Significance level was placed at .05.

2.3.3  |  Electroencephalography

The electroencephalogram (EEG) was continuously 
recorded using an ActiCAP (Brain Products GmbH) 
equipped with 64 Ag/AgCl unipolar active electrodes 

F I G U R E  2   Description of a trial and its time course (case of the easy condition). Every time the aircraft faced a primary obstacle 
(isolated yellow circle in the pathway), it engaged the conflict avoidance and its safety circle turned orange. The system's response was then 
provided in red for 1 second and that moment corresponded to the start of the freezing period. It was followed by the safety circle turning 
green indicating to the participant that he could provide his response on the accuracy of the avoidance according to the spatial location of 
the secondary obstacles (i.e., the five yellow circle here aligned on the left-hand side of the screen). When the participant gave his response, 
freezing stopped and the simulation resumed; the aircraft performed the avoidance and realigned on its initial trajectory. A feedback on the 
accuracy of the avoidance maneuver was then displayed.
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      |  7 of 20SOMON et al.

which were positioned according to the extended 10–20 
system (Jasper,  1958). The reference and ground elec-
trodes used for EEG data acquisition were positioned 
on the forehead (respectively AFz and Fpz electrodes). 
Blinks and eye movements were also monitored using 
four pure silver electro-oculography electrodes: two posi-
tioned above and below the left eye on the median axis 
for vertical activities and two at the eyes' outer canthi for 
horizontal activities. The ground electrode for the EOG 
was placed on the right earlobe. In addition, participants 
were instructed to limit blinking and eye-movements. 
Signal impedance was kept below 10 kΩ for all electrodes. 
The signal was amplified using an ActiCHamp™ system 
(Brain Products, Inc.), digitized at a 24-bit rate and sam-
pled at 1000 Hz, with a 0.05 μV resolution.

All EEG data analyses were performed using EEGLAB 
v2019.1 (Delorme & Makeig,  2004) and Fieldtrip 
(Oostenveld et al., 2011) MATLAB (R2019b) toolboxes (The 
MathWorks, Inc.). The raw EEG data were re-referenced 
offline to the linked mastoids. The signal was segmented 
into 30s-epochs that started with trial onset. The signal was 
then down-sampled to 500 Hz and band-pass filtered be-
tween 0.5 and 40 Hz (8th order band-pass Butterworth filter 
from ERPLAB; Lopez-Calderon & Luck,  2014). Artifacts 
related to ocular movements (saccades and blinks) were vi-
sually identified and manually rejected after decomposing 
the data with an Independent Component Analysis (ICA) 
with the extended infomax algorithm included in EEGLAB. 
At most four ICs were removed (except for one participant 
whose eye-artifacts ICs were always split into two leading 
to the removal of seven ICs in the first fifteen), selected 
from the first ten components reordered by variance,  
according to the recommendations on the EEGLAB and 
ICLabel wiki. Data were then re-segmented into  
3.5 s-epochs (−1500 to 2000 ms) time-locked to the system's 
response display (see Figure 2). All segments contaminated 
with muscular activity and/or non-physiological artifacts 
were rejected offline after a visual inspection. Data were 
then baseline-corrected from −500 to 0 ms.1 The long pre-
stimulus time window was selected in order to perform 
time-frequency analysis on the data.

EEG data related to system's response were averaged 
and analyzed in two different ways. First, they were con-
sidered according to the accuracy of the system response 
(Error vs. Correct) and task difficulty (Easy vs. Difficult). 
Then they were considered according to the accuracy of 
the response of the system (Error vs. Correct) and the mo-
ment of the experiment (Beginning vs. End). For this sec-
ond analysis, the two first blocks (beginning) and two last 
blocks (end) of every experimental session were averaged 

for each participant, independently of task difficulty. For 
both analyses, trials wrongly classified by the participant 
(false alarms, omission, etc.) were not considered.

EEG data were analyzed both in the time domain, 
through the usual event-related potentials (ERPs), and 
in the time-frequency domain, through the event-related 
spectral perturbations (ERSPs). Finally, the variations in 
the EEG activity across trials were assessed with ERP-
images and inter-trial coherence (ITC). For all statistical 
analyses, the significance level was set at α = .05 after cor-
rection for multiple comparison using FDR.

ERP analysis
Mean ERPs were averaged in the time domain for the 
four conditions for the first (accuracy x task difficulty) 
and second (accuracy x moment of experiment) analy-
sis. Significant differences in ERPs between the vari-
ous conditions for each analysis were assessed using a 
cluster-based permutation test with the Fieldtrip toolbox 
of MATLAB. This test is based on the cluster mass test 
(Maris & Oostenveld, 2007; Oostenveld et al., 2011) and 
identifies spatio-temporal clusters presenting a signifi-
cant difference in ERP data between the conditions in a 
given time period. This method is now commonly used 
in EEG experiments (Sassenhagen & Draschkow,  2019; 
Somon et al., 2019b) and has for main benefit to require 
no a priori on the statistical distribution of the data. 
Likewise, there is no need to predefine the localization or 
the time-window for the ERP analyses. However, it has to 
be noted that the spatio-temporal course of the identified 
clusters by the test, i.e., onset, offset and spatial composi-
tion of the clusters, remains approximate and is provided 
for information (Sassenhagen & Draschkow,  2019). The 
experimental conditions were compared separately two-
by-two with dependent samples tests and the Monte Carlo 
method to compute the significance probability.

ERSP analysis
EEG data were also analyzed in the time-frequency 
domain through Event-Related Spectral Perturbations 
(ERSP) analyses. This type of analysis makes it possi-
ble to uncover evoked as well as induced oscillations 
by studying their power variation across time for each 
frequency band. For each electrode, ERSPs were ob-
tained through a complex Morlet wavelet transforma-
tion applied for every trial. For an optimal frequency 
resolution, wavelet cycles were fixed at 3  cycles at the 
lowest frequency (3  Hz) and increased linearly until 
they reached a maximum of 8 cycles for higher frequen-
cies (40 Hz). Time-frequency data across trials were then 
averaged per condition for each participant and baseline 
corrected through dB-normalization. The literature re-
view as well as visual inspection of the time-frequency 

 1 Another baseline from −1000 to −500 ms was tested with similar 
results.
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8 of 20  |      SOMON et al.

maps revealed activity in the lower alpha (α: 8–10 Hz) 
and theta (θ: 4-8  Hz) frequency bands, either related 
to performance monitoring processes or attentional re-
sources recruitment.

Due to initial high dimensionality of ERSP data (as-
sessing power spectral density at each channel × time × fre-
quency point) in each targeted condition, our first step was 
to reduce this dimensionality for statistical analysis. To this 
aim, time-frequency data were first subject to a statistical 
non-parametric permutation test with FDR correction for 
multiple comparisons (as implemented in EEGLAB) ac-
cording to the same conditions as in the ERPs analyses – i.e. 
accuracy × difficulty for the first analysis and accuracy × mo-
ment of experiment for the second one – across the various 
frequencies (0-40 Hz) at the FCz electrode, which is a usual 
site for performance monitoring activity. This aimed at ap-
proximating the time and frequency window allowing to 
observe differences between the various conditions. The ab-
sence of significant difference at this specific electrode led 
us to base our assumptions on (i) the literature review, and 
(ii) visual inspection of time-frequency data, and further re-
strict the analysis to frequency bands of interest: theta – 4 
to 8 Hz (Cavanagh & Frank, 2014; Pezzetta et al., 2018) – 
and lower alpha – 8 to 10 Hz (Gevins et al., 1997; Klimesch 
et al., 2007). The spatio-temporal distribution of the mean 
spectral power in these frequency bands were statistically 
analyzed by considering the conditions of each analysis 
as within-subject factors. For this we averaged the power 
spectral density over the lower alpha and over the theta 
frequency bands for each trial for every participant and 
submitted these time courses of mean spectral power to 
a dependent samples cluster-based permutation test used 
previously for the ERP analysis. Clusters differentiating 
significantly the various experimental conditions two-by-
two and their spatio-temporal characteristics are reported 
in the results section. They were compared with dependent 
samples tests and the Monte Carlo method to compute the 
significance probability.

Finally, in order to assess the temporal dynamics of 
system response evaluation in this task and variance 
across trials, trial-by-trial time-frequency (ERP-images 
under EEGLAB) and inter-trial phase coherence anal-
yses (ITC) were performed. These analyses were partic-
ularly performed in the theta frequency band, which is 
usually linked to decision making, and at the FCz elec-
trode which is a usual site for performance monitoring 
activity (FCz was included in the significant clusters 
obtained in the previous ERP analysis). For this, trials 
were sorted according to the maximum of the phase 
time-locked to the theta activity peak latency. These two 
analyses allowed to determine and isolate evoked from 
induced activity. Results for trial-by-trial analyses are 
reported in the Supporting Information, as they showed 

no significant differences between any of the conditions 
but can still be informative on the type of activity ob-
served during system supervision.

3   |   RESULTS

3.1  |  Subjective measure

3.1.1  |  Vigilance

Mean vigilance level was significantly impacted by the 
moment of the experiment (F[1,17]  =  51.26, p  < .005, 
η2  = .44), the experimental session (F[1,17]  =  6.9, 
p  < .05, η2  = .07) and the interaction between both 
(F[1,17] = 4.53, p < .05, η2 = .02). Mean comparisons re-
vealed that participants reported being significantly less 
vigilant during the first session (5.22 ± 0.27) compared 
to the second one (4.50 ± 0.26; p < .05) but also that they 
were less vigilant at the end of sessions (6.03 ± 0.30) 
compared to the beginning (3.69 ± 0.26; p < .005). More 
precisely, interactions revealed that they were less vigi-
lant at the end of the first session (6.56 ± 0.33) compared 
to the end of the second session (5.50 ± 0.36; p < .005), 
even though there was no difference between the begin-
ning of the two sessions.

3.1.2  |  Emotions

There was no effect of the experimental session on any 
of the emotions considered. Nonetheless, boredom and 
stress were significantly modulated by the moment of 
the experiment (F[1,17] = 50.40, p < .005, η2 = 0.19 and 
F[1,17]  =  4.67, p  < .05, η2  = 0.01 respectively). Mean 
comparisons revealed that boredom increased signifi-
cantly (4.11 ± 0.36 vs. 6.28 ± 0.40) while stress decreased 
significantly (2.22 ± 0.41 vs. 1.69 ± 0.34) from the be-
ginning to the end of the experimental sessions. An 
interaction effect was observed on happiness between 
the experimental session and the moment of the experi-
ment (F[1,17]  =  4.64, p  < .05, η2  = 0.006). Mean com-
parisons revealed that participants were significantly 
happier at the end (6.5 + 0.45) compared to the begin-
ning (5.94 ± 0.42) of the second session. Calmness was 
not impacted by any of the factors.

3.1.3  |  Difficulty

Participants reported that difficult blocks were sig-
nificantly more difficult (2.12 ± 0.15) than easy ones 
(1.07 ± 0.13; t[17] = −5.0675, p < .005).
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      |  9 of 20SOMON et al.

3.2  |  Behavioral measures

Average participants' hit rate across all conditions was 
97.61 ± 0.57%. The pairwise t-test on the effect of difficulty 
revealed no effect of the difficulty level on participants' hit 
rates (easy vs. difficult; t[17] = −0.35, p = .73; see Figure 3a). 
Likewise, the pairwise t-test on the effect of the moment of 
the experiment did not reveal any statistical effect of the mo-
ment of the experiment on participants' hit rates (beginning 
vs. end; t[17] = 0.59, p = .57; see Figure 3b).

3.3  |  EEG measures

3.3.1  |  ERP analysis

Analysis according to accuracy and task difficulty
The cluster-based permutation test revealed a signifi-
cant difference, spread over the whole scalp, ranging 
from approximately 530 to 610 ms post-system response 
(p  < .01) whose activity amplitude was significantly 
lower for system error detection compared to correct 
system responses observation, regardless task difficulty. 
When separating data according to task difficulty, the 
permutation test revealed a similar difference discrimi-
nating significantly the activities related to accuracy de-
tection of system response (ranging approximately from 
540 to 610 ms post-system response display) in the easy 
condition only. Here, the amplitude of the system error 
detection-related activity was significantly lower than 
the amplitude of the correct system response detection-
related activity (p < .05). These results and their topog-
raphy are presented in Figure 4.

No significant difference in activity between the easy 
and difficult conditions was identified, whatever the accu-
racy of system response.

It must be noted though that the very conservative 
cluster-based permutation analysis did not allow us to 

observe a statistical difference regarding usual perfor-
mance monitoring negative peaks (N2/oERN) in the 
conventional [200; 300]ms post-response observation 
time-window. Nevertheless, a further complementary 
two-way repeated measures ANOVA at these latencies 
demonstrated a main effect of accuracy on the ampli-
tude of the most negative peak at the FCz electrode 
(F[1,17]  =  10.55, p  < .005, η2  = 0.022) with the ampli-
tude at the peak more negative for error observation 
(−3.17 ± 0.53 μV) compared to correct response observa-
tion (−2.47 ± 0.55 μV).

Analysis according to accuracy and moment of the 
experiment
A cluster-based permutation test revealed a significant 
difference of activity for the detection of system errors 
compared to the detection of correct system responses 
(p < .01). This difference seems similar to the one pre-
viously described showing a lower amplitude with the 
difference spread over the whole scalp similarly to the 
one of the first analysis (see Figure  4a), except for oc-
cipital electrodes which were not discriminant. No ef-
fect of the moment of the experiment was observed in 
the ERP data.

3.3.2  |  ERSP analysis

Analysis according to accuracy and task difficulty
Permutation analysis on time-frequency data at elec-
trode FCz across all frequencies showed no effect of ac-
curacy or task difficulty on spectral power time-locked 
to system response. Nevertheless, visual inspection of 
the averaged time-frequency maps across trials per con-
dition showed a predominant performance monitoring 
related low frequency activity (theta and lower alpha) 
following system response observation, irrespective of 
its accuracy.

F I G U R E  3   Boxplots of participants' 
accuracy (%) for the system supervision 
task according to (a) the difficulty 
level (Easy – green, left – vs. Difficult 
– orange, right) and (b) the moment of 
the experiment (Beginning – red, left 
– vs. End – blue, right). Boxes show the 
median (midline) and the (first and third) 
quartiles of the dataset while the whiskers 
extend to show the rest of the distribution.
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Theta activity (4–8  Hz).  A cluster-based permutation 
revealed a significant difference in the theta frequency 
band (p < .05) between system error detection and correct 
system responses observation. In the 160 to 450 ms 
frequency range this difference was pronounced on a large 
number of electrodes, including mainly fronto-temporo-
parietal electrodes. A higher activity was observed 
for system error compared to correct system response 
detection (see Figure 5).

No effect of difficulty or interaction effect with this 
factor was observed on theta band activity time-locked to 
system response.

Low alpha activity (8–10  Hz).  No effect of accuracy, 
difficulty, or interaction effect between both was observed 
on the mean power of the low alpha activity time-locked 
to system response.

Analysis according to accuracy and moment of the 
experiment
Usual permutation analysis on time-frequency data ac-
cording to the accuracy and moment of the experiment 
for each frequency across all trials revealed no effect 
of any of these variables on the spectral power post-
system response at the FCz electrode. Nevertheless, 

as previously observed, visual inspection of the time-
frequency maps showed performance monitoring re-
lated activity through an increase of theta and low alpha 
activities compared to baseline in all conditions follow-
ing system response observation, irrespective of its ac-
curacy (see Figure 6a).

Theta activity (4-8 Hz).  The cluster-based permutation 
test revealed a significant difference in the theta 
frequency band (p  < .01) between the end and the 
beginning of the experiment. This difference spanned 
over a time-window from 0 to 440 ms after system 
response display and was more pronounced for all of 
the median and left-lateralized electrodes (48 electrodes 
in total). A decreased power was observed at the end 
compared to the beginning, regardless the accuracy of 
system response. The time course and topography of 
this difference are presented in Figure 6b.

When looking at data according to the accuracy of sys-
tem response, the cluster-based permutation test revealed 
a decrease in the theta frequency band activity at the end 
compared to the beginning of the experiment for system 
error detection only (p  < .05) extending approximately 
from 0 to 490 ms post-system response and covering most 
of the scalp except for occipital electrodes (see Figure 6b).

F I G U R E  4   Time course (low-pass filtered at 30 Hz for display, between −500 and 1000 ms) and topographies of the clusters 
differentiating significantly the detection of errors (red) and correct responses (blue) of the pilot-system interaction lab during its supervision 
(response onset at 0 ms) (a) for both levels of difficulty and (b) for the easy condition only. Black lines show the time-window during which 
the clusters of activity are significant. Topographies represent the mean activity of the electrodes included in each cluster (gray crosses) 
during this significant time-window for each condition (correct and error – top – and correct easy and error easy – bottom) and for the 
difference topographies (error vs. correct – top – and error vs. correct for the easy condition only – bottom). Black crosses are the electrodes 
not included in the significant cluster, i.e., in the averaged topography. The amplitudes of activity represented on the topographies go from 
positive (max. 2.75 μV in red) to negative (min. -2.75 μV in blue) relative to baseline.
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      |  11 of 20SOMON et al.

Finally, at the beginning of the experiment only, the 
cluster-based permutation test revealed a significant 
higher power in the theta frequency band after system 
error observation compared to correct response observa-
tion for a difference covering most of the scalp (46 elec-
trodes) extending approximately between 100 and 850 ms 
post-system response. This result is presented in Figure 6d.

Low alpha activity (8–10  Hz).  Regardless system 
response accuracy, the cluster-based permutation revealed 
a significant difference in alpha frequency band power 
at the beginning compared to the end of the experiment 
for a large left-lateralized centro-parieto-temporal cluster 
(42 electrodes) extending approximately from 0 to 500 ms 
post-system response display (p < .05; see Figure 6c).

In a later processing time-window, when considering 
correct responses only, the cluster-based permutation test 
revealed another significant difference in left-lateralized 
fronto-centro-temporal region (31 electrodes) spanning 
over a 460 to 750 ms post-system response time-window. 
The activity in the alpha frequency band was lower at the 
beginning compared to the end of the experiment (p < .05; 
see Figure 6c).

Finally, only at the beginning of the experiment, a 
difference in the left-lateralized fronto-centro-temporal 
cluster (29 electrodes) related to system response accu-
racy was observed approximately from 320 to 730 ms 
post-system response. The activity in the low alpha fre-
quency band was significantly lower for observation of 
system correct responses compared to errors (p < .05; see 
Figure 6d).

4   |   DISCUSSION

The aim of this study was to investigate the expression 
of neural correlates reflecting performance monitoring, 
a cognitive mechanism whose electrophysiological fea-
tures have been well-defined in laboratory conditions, 
in a more dynamic and complex context. Indeed, several 
studies have demonstrated the difficulty to transpose 
results observed in standardized conditions to everyday-
life situations (Chavarriaga & Millán,  2010). At the 
same time, the study of performance monitoring and 
error detection during automated system supervision 
has become a major concern in various domains due to 
the increase in automation surrounding us (Chavarriaga 
et al., 2014; Ferrez & Millán, 2008). Here, we used a sce-
nario adapted from the aeronautics field in order to bet-
ter understand how brain activity evolves during system 
error monitoring over a long period of time, i.e., a very 
common situation in flight or during air traffic control. 
We recorded the EEG activity of 18 participants inter-
acting with a conflict avoidance simulator (the Pilot-
System Interaction Lab – Gouraud et al., 2018; Le Goff 
et al., 2018). Two levels of task difficulty were considered 
(easy and difficult conditions) related to perceptual dif-
ficulty. Their influence on supervision-related brain ac-
tivity and the impact of the simulator response accuracy 
were measured. Then, we assessed how the moment of 
the experimental session modulates the supervision-
related brain activity according to the accuracy of sys-
tem responses. Thanks to a robust statistical analysis 
with no a priori on the data (Maris & Oostenveld, 2007), 

F I G U R E  5   (a) Mean time-frequency activity time-locked to system response (0 ms) averaged across the 38-electrode cluster (gray 
crosses) in the difficult (left) and easy (right) conditions for correct system responses (top) and system errors (bottom) averaged across 
participants. Graphs show the power spectral density across trials (between −1 and 1.5 s) for each frequency (1-40 Hz) according to baseline: 
Higher values (increases) are in red and lower values (decreases) are in blue. The black rectangle represents the outline of the significant 
cluster in terms of time and frequency windows. (b) Time course and topography of the difference in theta activity between errors (red 
line, top topography) and correct responses (blue line, bottom topography) independently of task difficulty. The black line represents the 
significant time-window. Topographies show the average theta band power at the 38 electrodes of the cluster (gray crosses) during the 
significant 160-450 ms time-window, and the mean difference topography (right topography) of the theta band activity between errors and 
correct responses (from −0.5 – blue – to 2.6 dB – red – relative to baseline).
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we were able to observe an ERP differentiating between 
the cerebral activity related to correct and erroneous 
system response detection over a wide range of brain 
regions. In addition, we also observed a difference in 
the theta band activity in the time-frequency domain in 

the trial time course bearing some similarities with per-
formance monitoring activity observed in the literature 
(Cavanagh & Frank, 2014; Luu & Tucker, 2001). We ob-
served, in this study, no effect of perceptual difficulty. 
However, we were able to highlight significant effects 

F I G U R E  6   (a) Mean time-frequency activity time-locked to the system response display (0 ms), averaged across the 48-electrode cluster 
for the four conditions (accuracy × moment) averaged across participants. Graphs show the power spectral density across trials (between 
-1 and 1.5 s) for each frequency (1-40 Hz) according to baseline: higher values (increases) are in red and lower values (decreases) are in 
blue. The thin (upper panels – late alpha activity) and thick (lower panels – bheta activity) dotted lines display the outline of the significant 
clusters in terms of time and frequency windows. (b, c) Time course and topography of the clusters differentiating significantly power in 
the (b) theta and (c) alpha frequency bands at the beginning (red) and the end (blue) of the experiment for all responses averaged (plain 
line), erroneous responses (b – thick dotted line) and correct responses (c – thin dotted line). The black lines represent the significant 
approximate time-window for the effect of the moment of the experiment for all responses averaged (b & c – plain line), for system errors 
only (b – thick dotted line) and for system correct response (c – thin dotted line). (b) Topographies show the average theta band power at the 
48 electrodes of the cluster (gray crosses) during the significant 0-440 ms time-window (from 0 – blue – to 2.75 dB – red – relative to baseline) 
(c) topographies show the low alpha band power averaged across the 42-electrode cluster (gray electrodes) in the 0-500 ms significant time 
window for all responses – Left-hand side – And over the 31-electrode cluster (gray electrodes) in the 460-750 ms significant time window 
for system correct responses – right-hand side. (d) Time course and topographies of the significant difference in the theta (red, left-hand side 
topographies) and low alpha (blue, right-hand side topographies) frequency bands of the power spectral activity according to the accuracy 
of the system's response (correct responses – thin dotted lines – and errors – dashed lines) at the beginning of the experiment only. The 
black lines represent the significant time-windows for the effect of system response accuracy on theta (red) and low alpha (blue) activities. 
Topographies show the average power spectral activity: in the theta frequency band at the 46 electrodes of the cluster (gray crosses) averaged 
across the 100-850 ms significant time-window – left-hand side topographies – and in the low alpha frequency band at the 29 electrodes of 
the cluster (gray crosses) averaged across the 320-730 ms significant time-window – right-hand side topographies.
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of the moment of the experiment on: (i) the low alpha 
activity, with a late increase at the end of the experiment 
compared to the beginning for correct system response; 
(ii) the early theta activity, with a decrease at the end 
of the experiment compared to the beginning both re-
gardless system response accuracy and for system errors 
specifically. Overall, we evidenced activities related to 
performance monitoring and error detection, regardless 
task difficulty, associated with specific activities related 
to the supervision task and its length. We will now dis-
cuss our results according to these three axes.

4.1  |  Supervision activity: Errors vs. 
correct response detection

Concerning the supervision activity, several studies 
have identified a negative oERN component followed 
by a positive oPe, or an N2 peak followed by a P3 wave 
complex usually at later latencies (i.e., a frontocentral 
negative component followed by a centro-parietal posi-
tive one) after another's error observation. Interestingly, 
this error-observation-related activity was found even 
in supervisory contexts without any movement or in-
teraction required by the agent, may it be a human or 
an automated system (Somon et al.,  2019b). The main 
issue addressed in this study was the evolution of such 
activity related to the observation of system's errors in a 
dynamic and complex context in terms of stimuli pres-
entation. Even though the complexity of stimuli was in-
creased, participants still demonstrated an overall very 
good ability to detect accurately system correct response 
and errors (average hit rate 97.6%) during the whole ex-
periment (as demonstrated by the absence of difference 
on hit rates between the beginning and the end of the 
experiment).

In this supervisory context, we observed a significant 
difference in activity between error and correct response 
detection. This difference was significant on the whole 
scalp and was associated with a higher positive activity 
emerging between approximately 530 and 610 ms post-
system response for correct responses compared to error 
detection.

This component was not spatially specific. Difference 
topographies showed that, even though the whole scalp 
was involved, the greater activity for correct responses 
was mainly displayed at parieto-occipital sites. Its more 
positive activity observed for correct responses could 
bear some similarities with a Reward positivity (RewP), a 
well-known component observed during feedback moni-
toring whose role is to strengthen the link between a re-
sponse and its result, after a positive feedback, through  
reinforcement learning (Fukushima & Hiraki,  2009; 

Holroyd & Coles, 2002; Proudfit, 2015). It has to be noted 
though that the RewP is generally observed during reward 
responsiveness paradigms, where a monetary reward is at 
stake (Proudfit, 2015). Our context of system supervision 
is a bit different, but the positive activity observed after 
correct response detection could correspond to the poten-
tiation of the participant's estimated response, defined 
both by the processing of the stimulus they are performing 
and their confidence towards the system, by the accuracy 
of the system's response which is displayed. On another 
hand, the RewP signal bears similarities with the P300 
wave. Yet, the P300 is known to be modulated by task diffi-
culty both in terms of latency and amplitude (Leuthold & 
Sommer, 1998). At the latency level, several laboratory stud-
ies have demonstrated that the P300 latency is increased 
by the task difficulty, but also the quantity of stimulation 
noise surrounding the stimuli (Magliero et al., 1984). This 
effect has been demonstrated to be even stronger in de-
manding ecological tasks like operating a radar (Kramer 
et al., 1995) or an aircraft (Dehais et al., 2019). The present 
results provide novel evidence supporting this hypothesis 
and could provide more evidence that the RewP and P300 
have, at least in part, common bases. Without formally 
naming this parieto-occipital component, it shares sev-
eral characteristics with usual performance monitoring 
ERPs. This component could emerge from the association 
of a negative fronto-central and a wider positive centro-
parietal activity. In the context of performance monitoring 
activity, such a negative fronto-central activity has been 
given different names – i.e., ERN, oERN, N2 – according 
to the situation at hand, and likewise for the positive activ-
ity – i.e., Pe, oPe, P300. The literature suggests that these 
two components would reflect the performance monitor-
ing activity arising at different moment of cognitive con-
trol and decision making: whether before, during or after 
action selection and execution (Cavanagh & Frank, 2014; 
Somon et al., 2019b; Ullsperger, Fischer, et al., 2014). More 
broadly, the effects reported tend to support the theory of 
Predicted Response-Outcome (PRO) according to which 
the performance monitoring activity is regulated at me-
diofrontal locations (by the pMFC) and corresponds to a 
feedback activity associated with learning on a Reward 
Prediction Error signal based on a response-outcome pat-
tern prediction (Alexander & Brown, 2010, 2011). Within 
this theoretical spectrum, supervising agents can learn 
from any type of outcome, without any motor response 
necessary, based on the reward prediction associated with 
that outcome. However, a better resolution of our ERPs 
in terms of number of trials would be required to confirm 
this hypothesis.

Compared to the evoked potentials and given the dy-
namic context of the task, the time-frequency activity seems 
to be much more relevant and provides more information 
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regarding the supervision-related performance monitor-
ing activity. The sensitivity of time-frequency analyses to 
activities which are not phase-locked or phase-reset by the 
stimulus is much higher. Time-frequency analyses made 
it possible to observe a cluster in the theta frequency band 
which was associated with an increased theta spectral ac-
tivity between approximately 160 and 450 ms after system 
errors as compared to correct responses. It is interesting 
to note that error execution and detection has been asso-
ciated with an increase in theta band activity on several 
occasions in laboratory standardized contexts (Cavanagh 
& Frank, 2014; Gehring et al., 2011; Luu & Tucker, 2001). 
This activity, though initially supposed phase-locked (Luu 
et al., 2004), has been shown to be mostly non-phase-
locked for both error execution, and error observation 
(Pezzetta et al.,  2018). Our results on sorted trials time-
frequency analysis, as well as the coherence between 
the trials (ITC), support this hypothesis, given the low 
ITC values observed. Taken together, these results indi-
cate that the theta band activity increase observed in our 
study is consistent with a performance monitoring activ-
ity taking place here during dynamic system supervision 
with complex stimulation. Concerning the spatial distri-
bution of this theta activity provided by the topographies 
and difference topographies, it seems that there might be 
fronto-temporo-parietal theta involved in error detection 
compared to correct responses, but the link with usual 
Frontal-Midline Theta (FMT) remains unclear as FCz and 
Cz electrodes do not seem to be involved in our study.

In addition, in the first half of the experiment only, the 
theta band activity difference was followed by a later later-
alized fronto-centro-temporal alpha frequency difference 
discriminating significantly errors and correct responses 
detection. This significant difference revealed a lower alpha 
power from approximately 320 to 730 ms post-response 
for correct responses compared to error detection. In the 
performance monitoring literature, a post-error alpha 
suppression has been identified between roughly 300 and 
500 ms post-response in Simon and Sustained Attention 
to Response tasks (van Driel et al.,  2012). Nevertheless, 
this post-error alpha suppression is generally attributed to 
an attentional refocusing after a lapse (Carp et al., 2009; 
van Driel et al., 2012). In our study the errors are not the 
ones of the participant himself, thus do not demonstrate 
lapses in sustained attention, but errors of the system. It 
thus seems consistent that no reorienting alpha response 
should be observed. Moreover, a recent study about re-
sponse observation in a continuous movement dynamic 
virtual reality context also displayed stronger alpha sup-
pression (see Figure 5 in Pezzetta et al., 2018), here only 
assessed at the POz electrode, for avatar correct actions 
observation compared to error detection. In our case, 
latencies of this alpha suppression are similar, but the 

topographies tend to be more central. Finally, many stud-
ies have demonstrated a close relation between increase 
in alpha frequency band and hypovigilance in the litera-
ture (Borghini et al., 2014; Campagne et al., 2004; Craig 
et al., 2012), our results support a better vigilance and a 
better late processing for correct system responses com-
pared to errors in the first half of the experiment.

To summarize, our study provides novel bricks for the 
characterization the activity related to error monitoring in 
a dynamic context where complex stimuli were presented. 
The results revealed that the spatio-temporo-frequential 
features of performance monitoring of dynamically evolv-
ing automated system had many similarities with the ones 
observed in the literature during execution tasks and su-
pervision of another agent, although the executive and 
decision-making processes involved are different in every 
situation. Nevertheless, two critiques remain on the more 
complex and dynamic aspect of our supervision task mak-
ing it less realistic: (i) the recurrent freezing of the simula-
tion which prevents from motor activity contamination on 
performance-monitoring activity; and (ii) the high error 
rate of the simulator, allowing us to obtain enough trials 
in every condition for the statistical analyses. On this latter 
point, a study by Pezzetta et al. (2018) where they manip-
ulated the error rate of a system during error observation, 
tends to show that performance monitoring activity (in 
the time and frequency domains) are not linked to error 
rates as they were still observable for an avatar performing 
70% of errors. Still, several differences that we observed 
between correct system response and error detection in 
our study were not spatially specific, thus difficult to asso-
ciate per se to the usual error monitoring activity.

4.2  |  Effect of task difficulty on 
performance supervision activity

A few studies in the literature have assessed the effect of 
task difficulty on performance monitoring activity but 
most of them were conducted in standardized lab environ-
ments with very simple stimuli. Both perceptual (Pailing & 
Segalowitz, 2004; Scheffers & Coles, 2000) and decisional 
difficulty (Van der Borght et al., 2016) have been shown 
to modulate some performance monitoring ERPs in ex-
ecution and supervision tasks performed in laboratory 
conditions. As an illustration, an effect of task difficulty 
was reported for the N2 and the P3 associated with error 
detection during supervision task (Somon et al.,  2019b). 
In more dynamic conditions though, this effect of the task 
difficulty on performance monitoring activity remains un-
clear. In our study, even though participants reported that 
the difficult condition was more difficult to supervise, no 
main effect of task difficulty was observed on neither their 
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behavioral accuracy, nor the electrophysiological activity. 
The absence of effect on the behavioral data might come 
from the impact of the freezing of the simulation, pro-
viding participants enough time to make their decision, 
as well as the infinite time provided to them to respond. 
At the electrophysiological level though, one cluster was 
drawn from the data, discriminating between errors and 
correct responses. This cluster was associated with a posi-
tive potential whose characteristics tend to be similar to 
the RewP described in the previous paragraph and was 
only observed in the easy condition. One explanation 
could be the absence of such monitoring activity in the dif-
ficult condition. Yet, additional ERSP and ITC measures 
to assess performance monitoring activity appear more 
relevant than ERPs in our dynamic task. Despite a rela-
tive dynamic of performance monitoring-related activities 
illustrated by a small inter-trial coherence, a theta-evoked 
ERSP activity related to accuracy of the system response 
was observed for both task difficulties. Another explana-
tion suggested by the literature in task execution (Somon 
et al., 2019a; Van der Borght et al., 2016), proposes that 
overall perceptual difficulty increase in a task with com-
plex stimuli taken from air-traffic control simulations 
would decrease significantly the amplitude difference 
between error-related and correct response-related activi-
ties and could justify the absence of a significant cluster 
in the difficult condition. This effect associated with more 
restrictive (e.g., dynamical decision making, fewer data 
recorded) and varying recording conditions could blur the 
identification of the error-detection activity in the difficult 
condition. In addition, the small number of trials in our 
experiment limits conclusions from ERP data.

Although the effect of task difficulty is weak in our 
study, it allows us to better decipher how performance 
monitoring processes unfold. The PRO theory (Alexander 
& Brown, 2010, 2011) supposes that the pMFC's response 
is maximal after an expected response not happening. In 
our study, correct responses from the system were more 
expected in the easy condition than in the difficult one. 
It follows that an error (i.e., the non-occurrence of an ex-
pected correct response) triggered an increased activity 
in the easy condition compared to the difficult one. Thus, 
our results tend to support the PRO theory in dynamical 
and more complex contexts.

4.3  |  Effect of time on task on 
performance supervision activity

One major concern of our study was to determine the ex-
tent to which the performance monitoring activity would 
be degraded over time on task. Several studies have dem-
onstrated a negative effect of time on task on performance 

supervision activity. Long and monotonous tasks are 
known to decrease vigilance and progressively reduce 
the ability to monitor correctly automated systems (i.e., 
the out-of-the-loop phenomenon; Berberian, Gouraud, 
et al.,  2017; Berberian, Somon, et al.,  2017; Davies & 
Parasuraman, 1982; Matthews et al., 2002). However, their 
applied consequences on specific executive functions are 
not well documented.

In this study, even though no direct effect of the time 
on task on performances was observed, we showed from 
the time-frequency data that performance monitoring 
activity really changes over time during an automated 
system supervision task. By comparing the cerebral ac-
tivity in the first two blocks with the activity in the last 
two blocks of the experiment, we identified a significant 
difference of activity covering the major part of the scalp, 
even though slightly lateralized to the left, associated with 
a reduction of theta band spectral power with increasing 
time on task. When splitting error-related from correct 
response-related trials, this result was only observed when 
system errors were detected. The theta activity is usually 
linked to cognitive control and performance monitoring 
(Cavanagh & Frank, 2014; Luu & Tucker, 2001; Ullsperger, 
Danielmeier, & Jocham, 2014). In our case the decrease of 
this activity could reflect either a drop in error monitoring 
activity at the end of the experiment compared to the be-
ginning, or a decreased ability to encode the information 
(Kutas et al., 1977; Luu & Tucker, 2001). Nevertheless, as 
mentioned earlier, it has to be noted that performance 
monitoring related cerebral activities can also be dissoci-
ated from performances themselves (Debener et al., 2005; 
Pezzetta et al.,  2018). Thus, given the high error rate of 
the system in our experiment, the effect of time on task 
on theta activity could also be due to an habituation effect 
related to an initially high necessity to recruit cognitive 
resources to evaluate system responses, with this need de-
creasing over time.

In left fronto-centro-temporal regions, this theta activ-
ity was followed by another significant difference of activ-
ity associated with an increase of the alpha spectral power 
across time. Based on the literature (Borghini et al., 2014; 
Campagne et al.,  2004), this increased alpha activity at 
the end of the experiment could reflect a degraded vigi-
lance state or also a lower conscious perception of system 
responses. These results are consistent with the effect of 
time on task on alpha activity usually studied in the case 
of execution tasks. In addition, in our supervision task, we 
showed a lower alpha activity after correct response obser-
vation compared to error detection at the beginning of the 
experiment only. This result could be explained by either an 
impact of confidence or of consciousness towards the stim-
ulus. Indeed, some studies have shown that attention ori-
entation, especially to task relevant stimuli, and conscious 
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perception of stimuli could produce an alpha-amplitude 
reduction (Babiloni et al., 2006; Harris et al., 2017). In a 
no-report inattentional blindness paradigm using cluster-
based permutation analyses, Harris et al.  (2018) showed 
a significant decrease in post-stimulus contralateral alpha 
power related to the awareness of probe stimuli. Our anal-
ysis however, only included trials (for errors and correct 
responses) to which the participants responded to with ac-
curacy. Consequently, we should not expect any difference 
in system response awareness, and no specificity of the 
moment of the experiment. One the other hand, our study 
permitted to highlight physiological markers associated 
with the effect of time on task on the degradation of the 
monitoring activity (i.e., the decrease in theta activity and 
increase in alpha activity). Here, the cause of such deg-
radation cannot be identified. Several causes are known 
to give rise to effects on psychophysiological activity ac-
cording to the time spent supervising automated systems. 
Namely monotony, fatigue, hypovigilance, loss of agency 
or increased complacency towards automated systems 
have been demonstrated as causing a decreased supervi-
sion activity. Taking the example of trust, trust towards 
the automated system or confidence towards its responses, 
can vary over time. Behavioral as well as EEG experiments 
revealed an attentional bias towards automated systems, 
with an initial over-confidence due to an automation bias 
leading participants to consider automation as being reli-
able (de Visser et al., 2018; Parasuraman & Manzey, 2010), 
followed by an updating of trust through reinforcement 
learning across time (Goodyear et al., 2017). This updating 
can build up confidence towards the system response and 
thus in the forthcoming response of the participant. An 
experiment (Gherman & Philiastides, 2015) showed that 
brain activity associated with participants' confidence at 
the single trial level was building up starting from 300 ms 
and peaking 600 ms post-stimulus, as discrimination in-
creased gradually between certain and uncertain trials. 
Likewise, Desender et al.  (2019) observed in a two-time 
choice-response task that neural processes could link con-
fidence towards one's decision to observation seeking be-
havior at the post-decisional timescale. In our experiment, 
late post-stimulus alpha could show confidence building 
towards the system's response. In this pattern, confidence 
would both be impacted by the type of response, requir-
ing more information seeking for errors in order to ensure 
that response, but also by the moment of the experiment. 
Indeed, the system's accuracy level was unknown at the 
beginning of the experiment by all participants, who could 
have learned it and have a better error expectation by the 
end. Lower alpha activity for correct response observation 
compared to error detection at the beginning of the exper-
iment would thus illustrate a higher confidence in correct 
response detection (and, conversely for error detection), 

which could decrease with time on task, as illustrated 
by a higher alpha activity at the end the experiment. 
Such a decrease of overall trust towards the automated 
system during system monitoring between pre- and 
post-experiment has already been observed (Goodyear 
et al., 2017). Still, trust towards the automated system and 
resulting complacency are not the only cause of operator 
disengagement in system supervision and being able to 
precisely identify the neurophysiological correlates of said 
disengagement could allow us to lean towards one cause 
or another.

5   |   CONCLUSION AND 
PERSPECTIVES

In this study we provided new insights into performance 
monitoring-related brain activities during supervision of 
an automated system in more dynamic situations where 
complex stimuli were presented as compared to usual 
lab tasks. We showed similarities with results obtained 
in more standardized laboratory conditions. Importantly, 
our results reveal a degradation of monitoring activity 
with increasing time on task, which could potentially 
constitute a biomarker reflecting an inability to monitor 
correctly the automated systems (i.e. the out-of-the-loop 
phenomenon). Finally, we demonstrate the relevance of 
time-frequency analyses in dynamic contexts, and the 
need to systematically perform ERSPs in addition to ERPs 
as the former contain richer information. Taken together, 
these different insights open interesting avenues regard-
ing the online detection of such neural markers and their 
degradation as operators' complacency towards auto-
mated systems increases. Given the increasing automa-
tion of systems and the difficulties traditionally observed 
during their supervision, these advances reflect an unde-
niable tool for improving safety in several areas where 
human operators are reduced to supervisory control.

What makes automation particularly detrimental to 
the operator's sense of agency is not yet fully understood, 
but there is a relative consensus that the lack of transpar-
ency on how the system makes its decisions, or simply op-
erates, is a key factor (Christoffersen & Woods, 2002; Klien 
et al., 2004; Norman, 1990).
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Additional supporting information can be found online 
in the Supporting Information section at the end of this 
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Figure S1 Trial-by-trial time-frequency of theta activity 
(ERP-Image – top) and inter-trial phase coherence  
(ITC – bottom) averaged across participants at the FCz 
electrode time-locked to the system's response display 
(0ms) according to (a and c) accuracy (system correct 
responses – top – and errors – bottom) and task difficulty 
(difficult condition – left – and easy condition – right) 

and (b and d) accuracy (system correct responses – top –  
and errors – bottom) and moment of the experiment 
(beginning of the experiment – left – and end of the 
experiment – right). ERP-images show the activity trial-
by-trial sorted according to the maximum of the phase 
time-locked to the theta activity peak latency (i.e., 500 ms 
after system response). Positive values (red) and negative 
values (blue) are relative to baseline. ITC display phase 
consistency over trials for all frequencies (1–40 Hz). 
Higher values (red) show a better synchronization of 
phases to the time-locking event (system response) as 
opposed to lower (green) values
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