

# Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass

Anish Ghimire, Eric Trably, Luigi Frunzo, Francesco Pirozzi, Piet N.L. Lens, Giovanni Esposito, Elisabeth Cazier, Renaud Escudié

# ▶ To cite this version:

Anish Ghimire, Eric Trably, Luigi Frunzo, Francesco Pirozzi, Piet N.L. Lens, et al.. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 2018, 248, pp.180-186. 10.1016/j.biortech.2017.07.062 . hal-03847148

# HAL Id: hal-03847148 https://hal.science/hal-03847148v1

Submitted on 10 Aug2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Effect of total solids content on biohydrogen production and lactic acid accumulation

| 2                                                        | during dark fermentation of organic waste biomass                                                                                                                                                                                                                         |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | Anish Ghimire <sup>a,b,*</sup> , Eric Trably <sup>c</sup> , Luigi Frunzo <sup>d</sup> , Francesco Pirozzi <sup>e</sup> , Piet N.L. Lens <sup>f</sup> ,<br>Giovanni Esposito <sup>b</sup> , Elisabeth A. Cazier <sup>c</sup> , Renaud Escudié <sup>c</sup>                 |
| 3                                                        |                                                                                                                                                                                                                                                                           |
| 4                                                        | <sup>a</sup> Department of Civil and Mechanical Engineering, University of Cassino and Southern                                                                                                                                                                           |
| 5                                                        | Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy                                                                                                                                                                                                                        |
| 6                                                        | <sup>b</sup> Present Address: Nepal Engineering College, NEC- Center for Postgraduate Studies,                                                                                                                                                                            |
| 7                                                        | G.P.O. Box: 10210, Kathmandu, Nepal                                                                                                                                                                                                                                       |
| 8                                                        | <sup>c</sup> LBE, INRA, 11100, Narbonne, France                                                                                                                                                                                                                           |
| 9                                                        | <sup>d</sup> Department of Mathematics and Applications Renato Caccioppoli, University of Naples                                                                                                                                                                          |
| 10                                                       | Federico II, via Cintia, Monte S. Angelo, I-80126 Naples, Italy                                                                                                                                                                                                           |
| 11                                                       | <sup>e</sup> Department of Civil, Architectural and Environmental Engineering, University of Naples                                                                                                                                                                       |
| 12                                                       | Federico II, via Claudio 21, 80125 Naples, Italy                                                                                                                                                                                                                          |
| 13                                                       | <sup>f</sup> UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands                                                                                                                                                                         |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | *Corresponding author. Present address: Nepal Engineering College, NEC- Center for<br>Postgraduate Studies, G.P.O. Box: 10210, Kathmandu, Nepal.<br>Tel: +977 01 5221006, Fax: +977 01 015221001<br><i>E-mail address</i> : <u>anishghimire@gmail.com</u> (Anish Ghimire) |

- 27 28 Abstract

| 28<br>29 | Production of biohydrogen and related metabolic by-products was investigated in Solid                            |  |  |
|----------|------------------------------------------------------------------------------------------------------------------|--|--|
| 30       | State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of                            |  |  |
| 31       | the total solids (TS) content and H <sub>2</sub> partial pressure (pp <sub>H2</sub> ), two of the main operating |  |  |
| 32       | factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30 % TS                            |  |  |
| 33       | showed considerable effects of the TS on metabolites distribution. $H_2$ production was                          |  |  |
| 34       | strongly inhibited for TS contents higher than 15% with a concomitant accumulation of                            |  |  |
| 35       | lactic acid and a decrease in substrate conversion. Varying the $pp_{H2}$ had no significant                     |  |  |
| 36       | effect on the conversion products and overall degradation of FW and WS, suggesting that                          |  |  |
| 37       | $pp_{H2}$ was not the main limiting factor in SSDF. This study showed that the conversion of                     |  |  |
| 38       | complex substrates by SSDF depends on the substrate type and is limited by the TS                                |  |  |
| 39       | content.                                                                                                         |  |  |
| 40       |                                                                                                                  |  |  |
| 41       | Keywords: Biohydrogen; Lactic acid; Dark fermentation; Total solids; Food waste                                  |  |  |
| 42       |                                                                                                                  |  |  |
| 43       | Highlights                                                                                                       |  |  |
| 44       | • H <sub>2</sub> and by-products production were investigated in solid state DF of food waste.                   |  |  |
| 45       | • Effects of TS content and H <sub>2</sub> partial pressure on substrate conversion were studied.                |  |  |
| 46       | • 15% TS was found to be limiting for H <sub>2</sub> production during solid state dark                          |  |  |
| 47       | fermentation.                                                                                                    |  |  |
| 48<br>49 |                                                                                                                  |  |  |

#### 50 1. Introduction

51 Interest in Dark Fermentation (DF) bioprocesses has increased over the past decade because 52 it has shown the potential to produce 'green' hydrogen (H<sub>2</sub>) from widely available and low-53 cost organic biomass with a low environmental impact (Azwar et al., 2014). Renewable 54 waste biomass such as agricultural residues, organic fraction of municipal solid waste 55 (OFMSW) and agro-industrial waste might give an additional competitive economic 56 advantage to industrial units treating waste feedstocks by anaerobic digestion for local 57 supply of  $H_2$  (De Gioannis et al., 2013; Guo et al., 2010; Urbaniec and Bakker, 2015). 58 OFMSW and lignocellulosic residues such as wheat and rice straw are potential substrates, 59 as they are abundant and do not compete with food crops as for the production of first 60 generation biofuels (Ghimire et al., 2015a; Guo et al., 2010). 61 Based on the total solids (TS) content of the digestion mixture, anaerobic fermentation 62 processes such as anaerobic digestion (AD) processes can be categorized as: i) wet AD, 63 which operates at low solids content (<15% TS) and ii) dry AD at high solids content 64 (>15% TS) (Motte et al., 2013). Alternatively, AD processes are categorized as: (i) wet 65 (<10% TS), (ii) semi-dry (10–20% TS) and (iii) dry (>20% TS) (Karthikeyan and 66 Visvanathan, 2012). Dry anaerobic fermentation processes can be operated at high substrate 67 concentrations with little water addition, which offers the advantages such as of: (i) 68 economic benefits by reducing reactor volumes and energy consumption for heating the 69 digester, (ii) more efficient handling of the digestate by reducing the drying post-treatment 70 operation and (iii) a higher simpler technicity (Karthikeyan and Visvanathan, 2012; Motte 71 et al., 2013). Dry AD processes have been successfully applied to many different 72 agricultural feedstocks (Liotta et al., 2015; Mussoline et al., 2012).

| 73 | Dry AD anaerobic fermentation processes, in particularly dry DF, can also be attractive for    |
|----|------------------------------------------------------------------------------------------------|
| 74 | commercialization of bio-H $_2$ processes for the same reasons. Dry DF which operates at a     |
| 75 | TS content higher than 15% (sometimes also defined as > 20% TS), is also known as Solid        |
| 76 | State Dark Fermentation (SSDF). SSDF has recently been reported as suitable for                |
| 77 | biohydrogen production from wheat straw (WS) (Motte et al., 2015, 2014). In their study,       |
| 78 | Motte et al. (2015) proposed to combine SSDF with a mechanical pre-treatment process to        |
| 79 | enhance the overall conversion of lignocellulosic biomass, which makes it more feasible for    |
| 80 | upscaling in a biorefinery concept.                                                            |
| 81 | However increasing the TS content during dry anaerobic fermentation can impact both the        |
| 01 | However, increasing the 15 content during dry anaerobic refinentation can impact both the      |
| 82 | total substrate degradation and the biogas production (Abbassi-Guendouz et al., 2012;          |
| 83 | Motte et al., 2013). At high $(19 - 25 \%)$ TS content, mass and energy transfer are lowered   |
| 84 | by the low water content (Motte et al., 2014; Valdez-Vazquez & Poggi-Varaldo, 2009).           |
| 85 | These can lead to a local accumulation of by-products up to inhibitory concentrations or       |
| 86 | result in decreased metabolic conversion rates. Fernández et al. (2008) reported 17%           |
| 87 | decrease of the degradation rates in dry AD of OFMSW, when the TS content increased            |
| 88 | from 20 to 30%. Cazier et al. (2015) showed that high hydrogen partial pressures ( $pp_{H2}$ ) |
| 89 | inhibited wheat straw WS hydrolysis in dry AD, suggesting that local accumulation of           |
| 90 | metabolic intermediates adversely impacted the overall conversion of the biological            |
| 91 | process. More particularly, Motte et al. (2013) reported a significant decrease in $H_2$       |
| 92 | production along with a sharp decrease of WS conversion when performing SSDF at 19 $\%$        |
| 93 | TS. Moreover, a reduction of the $H_2$ yields and shifts in the microbial community            |
| 94 | composition towards lactic acid metabolism was observed at high TS content (Motte et al.,      |

| 95  | 2014). In contrast, only few studies have addressed the effect of increasing the TS content         |
|-----|-----------------------------------------------------------------------------------------------------|
| 96  | on DF of food waste (Valdez-Vazquez and Poggi-Varaldo, 2009).                                       |
| 97  | Therefore, this study aims to investigate the effect of the TS content on organic waste             |
| 98  | conversion in SSDF using food waste (FW) and Wheat Straw as high and low                            |
| 99  | biodegradable substrate, respectively. In addition, the effect of the $pp_{H2}$ on organic waste    |
| 100 | hydrolysis and metabolic pathways was evaluated using SSDF batch tests.                             |
| 101 |                                                                                                     |
| 102 | 2. Material and Methods                                                                             |
| 103 | 2.1 Substrate feedstock                                                                             |
| 104 | Batch SSDF experiments were carried out with synthetic FW (20.6% TS and 19.7% VS),                  |
| 105 | freshly prepared with a well-defined composition as described elsewhere (Ghimire et al.,            |
| 106 | 2015b) and similar to the composition of FW in European countries reported by                       |
| 107 | VALORGAS (2010). WS with a TS and VS content of 95% and 97%, respectively, was                      |
| 108 | used as a model lignocellulosic biomass substrate.                                                  |
| 109 |                                                                                                     |
| 110 | 2.2 Source of inoculum                                                                              |
| 111 | Waste activated sludge was used as inoculum after heat-shock treatment (90 $^{\circ}$ C, 15 min) to |
| 112 | enrich spore forming Clostridium sp. and inhibit methanogenic and homoacetogenic                    |
| 113 | activities that consume $H_2$ (Ghimire et al., 2015a). It was sampled from the secondary            |
| 114 | clarification unit of a municipal wastewater treatment plant located in the center of France        |
| 115 | with a capacity of 285,000 population equivalents. The waste activated sludge was                   |
| 116 | centrifuged at 6,500 rpm for 20 min (4 $^{\circ}$ C) to reach 13.9% TS and 9.7% VS content for      |
| 117 | achieving a higher TS content during all experiments.                                               |
| 110 |                                                                                                     |

#### 119 2.3 Experimental set-up

#### 120 **2.3.1 Effect of TS content on H**<sub>2</sub> production and substrate conversion

- 121 Batch SSDF tests were carried out in triplicates at 10%, 15%, 20%, 25% and 30% TS
- 122 content of FW. In 600 ml flasks, 53.4 g of an inoculated biomass mixture composed of FW
- 123 (20.3 g wet weight with 19.7% VS) and inoculum (4.1 g wet weight with 9.7% VS) with a
- 124 substrate (S) to inoculum (X) ratio (S/X) of 10 g VS substrate/g VS inoculum were mixed
- 125 with 16.0 g of 2-(N-morpholino) ethanesulfonic acid (MES) buffer, 12 ml of 3.2 % NaOH
- and 1 ml of trace metal solution containing (g/L): FeCl<sub>2</sub> 2, CoCl<sub>2</sub> 0.5, MnCl<sub>2</sub> 0.1, NiCl<sub>2</sub>
- 127 0.1 , ZnCl<sub>2</sub> 0.05 , H<sub>3</sub>BO<sub>3</sub> 0.05 , Na<sub>2</sub>SeO<sub>3</sub> 0.05 , CuCl<sub>2</sub> 0.04 and Na<sub>2</sub>MoO<sub>4</sub> 0.01 . This

128 mixture had an initial pH of 5.5. The amount of distillated water to be added was calculated

129 with a mass balance on the TS content, including substrate, inoculum, buffer and the other

- 130 solutions added to obtain final TS contents of 10.0 ( $\pm$  0.01), 14.98 ( $\pm$  0.03), 19.89 ( $\pm$  0.04),
- 131 24.92 (± 0.02) and 30.0 (± 0.07) %TS. Batch tests were then incubated at 37 (± 1) °C for 14
  132 days.

#### 133 2.3.2 Effect of partial pressure of H<sub>2</sub> (pp<sub>H2</sub>) on substrate conversion

134 The study on the effect of the partial pressure of H<sub>2</sub> (pp<sub>H2</sub>) was carried out in four replicated

batch tests operated with FW or WS at a S/X ratio of 10 and a final TS content of 25  $(\pm 1)$ 

136 %. A final TS of 25% was selected to ensure the effect of a high TS content on substrate

137 conversion. Tests were carried out with a thin layer of digestate (< 1 cm), approximately 22

- 138  $(\pm 2)$  g, to minimize the effect of gas diffusion (Cazier et al., 2015). H<sub>2</sub> gas was initially
- added in the headspace of 600 ml serum bottles according to the two following sets of tests:
- 140 pp<sub>H2</sub> equivalent to 542 ( $\pm$  32) mbars (33  $\pm$  2 % H<sub>2</sub> in the headspace, named as "A") and
- 141 1087 ( $\pm$  29) mbars (66  $\pm$  1 % H<sub>2</sub> in the headspace, named as "B"). A control was carried

out with only N<sub>2</sub> in the headspace (named as "C"). In all tests, the initial total pressure was set at 1,500 mbars by adding N<sub>2</sub> at the start of the experiments for all conditions. The initial pH was adjusted at 5.5 using the MES buffer. Batch tests were incubated at mesophilic temperature  $(37 \pm 1 \text{ °C})$  for two fermentation periods of 14 and 21 days each.

146

### 147 **2.4 Analytical methods**

148 Prior to liquid metabolite measurements, 5 g of digestate was diluted in 5 g of deionized

149 water, mixed during 30 minutes, centrifuged at 39,121g during 20 min at 4°C and then

150 filtrated at 0.2 µm with a nylon membrane. The remaining liquid phase was then used to

151 quantify organic acids, other metabolic end-products and soluble sugars. Dark fermentation

152 metabolites were measured at the beginning and the end of each experiment.

153 Organic acids were quantified with a gas chromatograph (Perkin Clarus 580) using an Elite

154 - FFAP crossbond® carbowax® 15 m column connected to a flame ionization detector at

155 280°C, as described elsewhere (Cazier et al., 2015). N<sub>2</sub> was used as carrier gas at a flow

156 rate of 6 mL/min. High performance liquid chromatography (HPLC) was used to quantify

157 other metabolites, e.g. lactic acid, alcohols, and soluble sugars. The HPLC chain was

158 composed of an Aminex HPX-87H column (300 mm on 7.8 mm, Bio-rad), a pre-column to

159 filter residues (Micro guard cation H refill cartbridges, Bio-rad) and an automatic sampler

160 (Water 717). A diluted sulfuric acid solution of 0.005 M in milliQ water was used as eluent

161 at a flow rate of 0.4 ml/min.

162 The gas composition was measured with a gas chromatograph (Perkin Clarus 580)

163 equipped with a thermal conductivity detector at 150°C and an injector heated at 250°C and

164 two capillary columns heated at 60°C. The first column corresponded to a RtU bond for

165 CO<sub>2</sub> analysis, while the second column was a RtMolsieve used for the determination of the

| 166 | $O_2$ , $H_2$ , $N_2$ and $CH_4$ concentration as described elsewhere (Cazier et al., 2015). Argon at a |
|-----|---------------------------------------------------------------------------------------------------------|
| 167 | pressure of 350 kPa and a flow rate of 31.8 ml/min was used as carrier gas. Gas production              |
| 168 | was monitored through the increase in gas pressure, which was periodically measured with                |
| 169 | a digital manometer (2000, Leo2 Keller, Winterthur, Switzerland).                                       |
| 170 |                                                                                                         |
| 171 | 2.5 Microbial diversity analysis                                                                        |
| 172 | For microbial analysis, $0.2 - 0.3$ g of solid samples were collected at the end of the                 |
| 173 | fermentation period of 14 days from the SSDF batch tests operated at different $pp_{H2}$ . PCR          |
| 174 | based pyrosequencing, described elsewhere by Carrillo-Reyes et al. (2016), was carried out              |
| 175 | in order to elucidate the classification of the microorganisms present in the SSDF. The                 |
| 176 | samples for microbial analysis were taken at different $pp_{H2}$ during SSDF of FW and WS.              |
| 177 |                                                                                                         |
| 178 | 2.6 Data analysis                                                                                       |
| 179 | Substrate degradation was estimated by calculating a theoretical chemical oxygen demand                 |
| 180 | (COD) mass balance. For this, the difference in metabolic end-products (accumulated in                  |
| 181 | both the gaseous and liquid phase) at the initial and final state were compared. Direct                 |
| 182 | measurement of COD was not considered in this study, as suggested by Cazier et al.                      |
| 183 | (2015), since the COD measurements of the complex organic residues, such as                             |
| 184 | lignocellulosic biomass and FW, may vary more than 10 %, which may be higher than the                   |
| 185 | overall substrate degradation during the SSDF process.                                                  |
| 186 | Total substrate degradation was estimated from the amount of COD produced during DF of                  |
| 187 | the substrate estimated per kg of TS added initially, and corresponded to:                              |
| 188 | Total Substrate Degradation = COD of Final State – COD of Initial State                                 |

189 
$$Total Substrate Degradation = \frac{A_{H_2,f} + A_{met,f} + A_{GC}}{kg TS} - \frac{A_{H_2,i} + A_{met,i}}{kg TS}$$

Where:  $A_{H_2,f}$  is the amount of H<sub>2</sub> remaining at the end in the headspace,  $A_{met,f}$  the final 190 amount of metabolites accumulated, A<sub>GC</sub> the total amount of gas (H<sub>2</sub>) sampled for analyses, 191 192 A<sub>H2,i</sub> the initial amount of H2 added and A<sub>met.i</sub> the initial amount of metabolites in the 193 medium. 194 R (OSX version 3.1.3) with the package Rcmdr (OSX version 2.1.7) was used for statistical 195 analysis of the experimental data. The P value was set at 0.05 and the significance of the results was tested with P values of: \* < 0.05; \*\* < 0.01; \*\*\* < 0.001; while results were not 196 197 significantly different when P > 0.05. A multivariate analysis by Principal Components was 198 carried out using FactoMineR (version 1.24, more on http://factominer.free.fr/), an 199 extension of the R software, to correlate the  $H_2$  production with the substrate degradation 200 and formation of other metabolic by-products (Lê et al., 2008).

201

#### 202 **3. Results and discussion**

#### 203 **3.1 Effect of TS content on H**<sub>2</sub> production and substrate conversion

204 SSDF tests were carried out with FW at different TS contents (Fig. 1). Overall, the H<sub>2</sub>

205 production was strongly impacted by increasing the initial TS content, which is in

accordance with earlier studies (Motte et al., 2014; Valdez-Vazquez & Poggi-Varaldo,

207 2009). Fig. 1a shows the FW degradation after 14 days of incubation as a function of the

- 208 TS content. Fig. 1b presents the molar yield (mmol/kg TS) of the major metabolic end
- 209 products. Substrate conversion decreased and biohydrogen production was significantly
- 210 lowered when the initial TS content increased (Fig.1b). A simultaneous shift of the
- 211 metabolic pathways was observed at a high TS content. The maximum and minimum

| 212 | substrate degradation of 134 ( $\pm$ 22) and 51 ( $\pm$ 3) g COD/kg TS was achieved at 10 and 30     |
|-----|------------------------------------------------------------------------------------------------------|
| 213 | % TS, respectively. H <sub>2</sub> accumulated in the headspace only at a TS content of 10%.         |
| 214 | Hydrogen production drastically decreased and lactic acid production was favored at TS               |
| 215 | contents higher than 10%. Indeed, from 15% TS onwards, the metabolic pathways shifted                |
| 216 | towards lactic acid conversion, thus explaining the decrease in H <sub>2</sub> production (Fig. 1b). |
| 217 | The highest substrate conversion of 2,901 ( $\pm$ 143) mM metabolites/kg TS was observed at          |
| 218 | wet conditions of (10% TS) (Fig. 1b), while it was the lowest (1,435 $\pm$ 13 mM                     |
| 219 | metabolites/kg TS) at 30% TS (Fig. 1b). As shown in Fig. 1a and b, such adverse effect of            |
| 220 | the TS content started between 10 and 15%. Motte et al. (2014) showed similar decrease of            |
| 221 | the hydrogen yields, related to a metabolic shift with an accumulation of lactic acid, but at        |
| 222 | higher TS content (19%) for wheat straw only. Further narrowing the study of the TS                  |
| 223 | content within the range $10 - 15$ % TS or considering the soluble carbohydrates available to        |
| 224 | microbial degradation could further give new insights on the mechanisms behind this                  |
| 225 | limiting effect of the TS content in SSDF.                                                           |
| 226 | In addition, acetate and butyrate were the two of the major as metabolic by-products in at a         |
| 227 | TS content of 10%, while lactate dominated at higher TS contents. The PCA correlation                |
| 228 | plot (Fig. 2a) shows that H <sub>2</sub> production correlated only with butyrate production,        |
| 229 | suggesting that acetate resulted from DF and homoacetogenesis pathways. Theoretically,               |
| 230 | the presence of acetate and butyrate as metabolic by-products is correlated with hydrogen            |
| 231 | production pathways (Ghimire et al., 2015b). However, a correlation with butyrate                    |
| 232 | production as shown in this study (Fig. 2a), is consistent with previous observations made           |
| 233 | by Guo et al. (2014) for solid waste where homoacetogenesis can occur. Interestingly, $H_2$          |
| 234 | production was also linked to the total substrate degradation, while lactate production did          |
| 235 | not correlate well with the substrate conversion but more with the initial TS content                |

| 236 | suggesting an adverse effect of high TS content likely due to the local microbial                |
|-----|--------------------------------------------------------------------------------------------------|
| 237 | environment (Fig. 2b). Indeed, the decrease of substrate conversion at increasing TS might       |
| 238 | be attributed to VFA accumulation, especially lactic acid, decreasing locally the culture pH     |
| 239 | and inhibiting the hydrolysis process, even though a high amount of MES buffer was added         |
| 240 | to the medium. Such reaction is very similar to the ensiling process where pH lower than         |
| 241 | 4.5 are favored to stop the microbial process (Kafle & Kim, 2013). Consistently, Lin et al.      |
| 242 | (2006) reported that xylose removal decreased from 85% to 37% when the culture pH                |
| 243 | decreased from 8 to 5. Similarly, Fang and Liu (2002) reported a 10% decrease in glucose         |
| 244 | degradation when the pH decreased from 5.5 to 4. The low culture pH could also have had          |
| 245 | an adverse effect on hydrolytic enzymes. Indeed, Veeken et al. (2000) reported a decrease        |
| 246 | in hydrolysis of complex substrates with a decrease in pH, since hydrolytic enzymes are          |
| 247 | optimally functional at neutral pH (Parawira et al., 2005).                                      |
| 248 | Another explanation for the decrease in substrate degradation at higher TS content could be      |
| 249 | the local accumulation of H <sub>2</sub> , as reported and hypothesized by Cazier et al. (2015). |
| 250 |                                                                                                  |

3.2 Effect of ppH2 on substrate conversion 251

252 As potential inhibitory factor, the effect of the pp<sub>H2</sub> on FW and WS degradation at a high

253 TS content (25 % TS) was investigated and different initial pp<sub>H2</sub> were tested. Fig. 3a shows

254 the substrate degradation (expressed as g COD/kg TS) from FW after 14 and 21 days of DF

255 at different pp<sub>H2</sub>. The level of inhibition of pp<sub>H2</sub> on substrate hydrolysis was determined

- 256 based on the difference in total substrate degradation (Fig. 3a). No significant effect of the
- 257 initial  $pp_{H2}$  on biomass hydrolysis (ANOVA test, P-values > 0.05) was observed at 25%
- 258 TS. This was further evident from the metabolic products that accumulated at the end of the

259 experimental period, which showed no significant shift when changing pp<sub>H2</sub> (Fig 3b).

Substrate degradation slightly increased with the fermentation time, and lactic acid and
ethanol accumulated as major metabolites in all tested pp<sub>H2</sub> with FW.

262 Further tests were carried out with WS under similar experimental conditions with the

263 objective to confirm the results obtained with FW. Although the pH did not significantly

264 decrease at the end of the experimental period, Fig. 3 and the ANOVA analysis (P-values >

265 0.05) show that the pp<sub>H2</sub> did not affect the DF of the substrate WS. However, the difference

in metabolites accumulated between 14 and 21 d suggests that hydrolysis occurred.

267 Therefore, it seems that some dark fermentative communities present in the SSDF tests

268 investigated with WS were not strongly affected by the presence of H<sub>2</sub>. These results

269 contrast with the study of Cazier et al. (2015) who reported an inhibition by high ppH<sub>2</sub> of

WS hydrolysis in dry AD, at pH 7. In their work, inhibition was observed at a  $pp_{H2} > 742$ 

mbars and degradation of wheat straw decreased from 90 ( $\pm$  10) to 20 ( $\pm$  10) g COD/kg TS

in the controls and at a pp<sub>H2</sub> of 1,555 mbars, respectively. In contrast, in this study, no

273 evidence of the effect of pp<sub>H2</sub> was observed, suggesting the inhibition of the substrate

274 conversion is mainly due to organic acids (especially lactate) accumulation. Although this

275 difference might be attributed to the lower operational pH in the present study (pH 3.7 -

5.5) compared to the dry AD (pH 7 - 8) process of Cazier et al. (2015), the WS degradation

in the control tests, i.e. 22.4 (± 2) g COD/kg TS (at pH 5.4), was interestingly very similar

to the one reported by Cazier et al. (2015), i.e.  $20 (\pm 10)$  g COD/kg TS, when maximum

279 hydrolysis inhibition occurred at a pp<sub>H2</sub> of 1,555 mbars at pH 7 - 8. Therefore, this

280 difference could be attributed to the fact that substrate degradation in this study was

strongly related to the high content in soluble carbohydrates present in the FW substrate, as

reported by Guo et al. (2013), but not to the substrate to be hydrolyzed such as WS.

- 283 Moreover, the pH might have affected microbial selection and the related metabolic
- 284 pathways. Lactic acid or ethanol were not present as major intermediates in the SSDF of
- 285 WS (Fig. 3c), in contrast to tests with FW (Fig. 3b). This suggests that the microorganisms
- 286 producing these metabolites are dominant in moisture limiting and nutrient rich
- environments such as FW, but not in WS (Sikora et al., 2013).
- 288 This is in good agreement with the characterization of the microbial communities. The
- 289 microbial community characterization (Fig. 4) shows that mainly 3 families represented the
- 290 most abundant OTUs, showing the community present in the SSDF residue after 14 d
- 291 incubation had a low diversity, although the number of distinct operational taxonomic units
- 292 (OTUs) was 1127 and 1877 for the SSDF samples of FW and WS, respectively.. The
- hydrogen (pp<sub>H2</sub>) favored the development of a *Lactobacillales* population (Fig. 4a). The
- high abundance of *Lactobacillales* (Fig. 4) explains the high lactic acid concentration
- during SSDF of FW (Fig. 3c). Moreover, the high abundance of *Lactobacillales* at  $T_0$
- during SSDF of FW (Fig. 4a) compared to WS (Fig. 4b) implies FW as their major source
- 297 of inoculum. On the other hand, during SSDF of WS, the Clostridiales were present
- abundantly, which agrees with the production of several other metabolites such as acetate,
- propionate and butyrate. This observation is also in good agreement with Motte et al.(2014)
- 300 who previously reported that high TS contents impacted the microbial composition through
- 301 the selection of lactic-acid bacteria from the *Bacilli* class.
- 302
- 303 The production of organic acids by fermentative conversion processes is commonly
- 304 significantly affected by the operating parameters such as culture pH, temperature and
- 305 substrate concentration (Wang et al., 2014, 2015). However, the highest conversion of FW
- 306  $(140.7 \pm 23 \text{ g COD/kg VS}_{added} \text{ at initial pH 5.5, 25 \% TS, 14 days SRT and 37 °C})$  in this

| 307 | study is lower compared to the study by Wang et al. (2015) (799 g COD/kg VS <sub>added</sub> at            |
|-----|------------------------------------------------------------------------------------------------------------|
| 308 | controlled pH 6.0, 35 °C) and Wang et al. (2014) (918 g COD/kg VSremoved at controlled pH                  |
| 309 | 6.0, 30 °C). This could explain the higher conversion of the waste biomass into                            |
| 310 | fermentative products reported in these two studies, compared to this study where the pH                   |
| 311 | was not controlled and the low pH conditions (3.7 - 5.1) finally inhibited the microbial                   |
| 312 | activity. Similarly, a comparison can be made between the study of Motte et al. (2015) who                 |
| 313 | obtained 6 fold higher organic acids production (140 $\pm$ 6 g COD/kg TS $_{added}$ at 23 % TS, 37         |
| 314 | °C) at an initial pH 8.5, as compared with this study (22 $\pm$ 2 g COD/kg TS <sub>added</sub> at 25 % TS, |
| 315 | 37 °C) at initial pH 5.5. Therefore, it can be concluded that under SSDF, the substrate                    |
| 316 | conversion depends on the culture pH, TS content, substrate type and microbial                             |
| 317 | <del>community.</del>                                                                                      |
| 318 | The total substrate conversion under SSDF also depends on the substrate type. FW has a                     |
| 319 | high VS content (21 to 27% VS) and is particularly suitable for a concomitant production                   |
| 320 | of bio-hydrogen and platform molecules such as short-chain volatile fatty acids, lactic acid               |
| 321 | and / or alcohols (Uçkun Kıran et al., 2015; VALORGAS, 2010). Soluble by-products of                       |
| 322 | DF can be further applied in biological processes for (i) wastewater treatment (Elefsiniotis               |
| 323 | et al., 2004), (ii) production of platform molecules such as biopolymers (Ntaikou et al.,                  |
| 324 | 2009), (iii) micro-algal lipids production (Turon et al., 2015), iv) H <sub>2</sub> production by photo-   |
| 325 | fermentation, v) feed for microbial electrolysis cells for production of $H_2$ and other value             |
| 326 | added chemicals (El Mekawy et al., 2014) or vi) anaerobic digestion for a higher energy                    |
| 327 | recovery, in the form of hythane, i.e. both H <sub>2</sub> and CH <sub>4</sub> (Ghimire et al., 2015a).    |
| 328 |                                                                                                            |
| 329 |                                                                                                            |

| 330 | 5. | Conclusion |
|-----|----|------------|
|     |    |            |

- 331 This study highlighted the effects of limiting parameters on substrate conversion during
- 332 SSDF of FW and WS. The initial TS content significantly affected the substrate
- degradation and metabolic by-products during SSDF of FW. The H<sub>2</sub> production ceased at a
- TS content higher than 15%, accompanied by the accumulation of lactic acid. Moreover,
- the pp<sub>H2</sub> did not affect the SSDF of food waste due to lactic acid production lowering the
- culture pH, which played a major role in limiting the substrate conversion, as confirmed
- during SSDF of WS.
- 338

### 339 Acknowledgements

- 340 The authors would like to acknowledge the Erasmus Mundus Joint Doctorate Programme
- 341 ETeCoS<sup>3</sup> (Environmental Technologies for Contaminated Solids, Soils and Sediments)
- under the EU grant agreement FPA No 2010-0009.
- 343

#### 344 **References**

345 1. Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J.-P., Steyer, J.-P., Escudié, R., 2012. Total solids content drives high solid anaerobic 346 347 digestion via mass transfer limitation. Bioresour. Technol. 111, 55-61. doi:10.1016/j.biortech.2012.01.174 348 349 2. Azwar, M.Y., Hussain, M.A., Abdul-Wahab, A.K., 2014. Development of 350 biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renew. Sustain. Energy Rev. 31, 158-173. 351 352 doi:10.1016/j.rser.2013.11.022 3. Carrillo-Reyes, J., Trably, E., Bernet, N., Latrille, E., Razo-Flores, E., 2016. High 353 robustness of a simplified microbial consortium producing hydrogen in long term 354 operation of a biofilm fermentative reactor. Int. J. Hydrogen Energy 41, 2367–2376. 355 doi:10.1016/j.ijhydene.2015.11.131 356 357 4. Cazier, E.A., Trably, E., Steyer, J.P., Escudie, R., 2015. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. 358 359 Bioresour. Technol. 190, 106-113. doi:10.1016/j.biortech.2015.04.055

| 360<br>361<br>362<br>363        | 5.  | Chen, Y., Luo, J., Yan, Y., Feng, L., 2013. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl. Energy 102, 1197–1204. doi:10.1016/j.apenergy.2012.06.056                                                                                       |
|---------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 364<br>365<br>366               | 6.  | De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R., 2013. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–61. doi:10.1016/j.wasman.2013.02.019                                                                                                                                                               |
| 367<br>368<br>369               | 7.  | Elefsiniotis, P., Wareham, D.G., Smith, M.O., 2004. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol. 114, 289–97. doi:10.1016/j.jbiotec.2004.02.016                                                                                                                                                                                        |
| 370<br>371<br>372<br>373        | 8.  | ElMekawy, A., Srikanth, S., Vanbroekhoven, K., De Wever, H., Pant, D., 2014.<br>Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing<br>bacteria in bioelectrochemical system (BES). J. Power Sources 262, 183–191.<br>doi:10.1016/j.jpowsour.2014.03.111                                                                                            |
| 374<br>375                      | 9.  | Fang, H.H.P., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93.                                                                                                                                                                                                                                                      |
| 376<br>377<br>378               | 10. | Fernández, J., Pérez, M., Romero, L.I., 2008. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 99, 6075–6080. doi:10.1016/j.biortech.2007.12.048                                                                                                                                     |
| 379<br>380<br>381               | 11. | García-Bernet, D., Buffière, P., Latrille, E., Steyer, JP., Escudié, R., 2011. Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem. Eng. J. 172, 924–928. doi:10.1016/j.cej.2011.07.003                                                                                                                                                        |
| 382<br>383<br>384<br>385        | 12. | Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G., 2015a. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 144, 73–95. doi:10.1016/j.apenergy.2015.01.045                                                                                                   |
| 386<br>387<br>388<br>389<br>390 | 13. | Ghimire, A., Valentino, S., Frunzo, L., Trably, E., Escudié, R., Pirozzi, F., Lens,<br>P.N.L., Esposito, G., 2015b. Biohydrogen production from food waste by coupling<br>semi-continuous dark-photofermentation and residue post-treatment to anaerobic<br>digestion: A synergy for energy recovery. Int. J. Hydrogen Energy 40, 16045–<br>16055. doi:10.1016/j.ijhydene.2015.09.117 |
| 391<br>392<br>393<br>394        | 14. | Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J., 2014. Predictive and explicative models of fermentative hydrogen production from solid organic waste: Role of butyrate and lactate pathways. Int. J. Hydrogen Energy 39, 7476–7485. doi:10.1016/j.ijhydene.2013.08.079                                                                                                  |
| 395<br>396<br>397               | 15. | Guo, X.M., Trably, E., Latrille, E., Carrère, H., Steyer, JP., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 35, 10660–10673. doi:10.1016/j.ijhydene.2010.03.008                                                                                                                                                          |
| 398<br>399<br>400               | 16. | Kafle, G.K., Kim, S.H., 2013. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by products. Bioresour. Technol. 142, 553–561 doi: 10.1016/j.biortech.2013.05.018                                                                                                                                    |

| 401<br>402<br>403                      | 17 | Karthikeyan, O.P., Visvanathan, C., 2012. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev. Environ. Sci. Bio/Technology 12, 257–284. doi:10.1007/s11157-012-9304-9                                                                                                                                                                                                                   |
|----------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 404<br>405                             | 18 | Lê, S., Josse, J., Husson, F., 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 25, 1–18.                                                                                                                                                                                                                                                                                                                                   |
| 406<br>407<br>408<br>409               | 19 | Lin, CY., Hung, CH., Chen, CH., Chung, WT., Cheng, LH., 2006. Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem. 41, 1383–1390. doi:10.1016/j.procbio.2006.01.021                                                                                                                                                                                                      |
| 410<br>411<br>412<br>413               | 20 | Liotta, F., Esposito, G., Fabbricino, M., van Hullebusch, E.D., Lens, P.N.L., Pirozzi, F., Pontoni, L., 2015. Methane and VFA production in anaerobic digestion of rice straw under dry, semi-dry and wet conditions during start-up phase. Environ. Technol. 3330, 1–8. doi:10.1080/09593330.2015.1074288                                                                                                                                           |
| 414<br>415<br>416<br>417               | 21 | Motte, JC., Sambusiti, C., Dumas, C., Barakat, A., 2015. Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery. Appl. Energy 147, 67–73. doi:10.1016/j.apenergy.2015.02.042                                                                                                                                                     |
| 418<br>419<br>420<br>421               | 22 | Motte, JC., Trably, E., Escudié, R., Hamelin, J., Steyer, JP., Bernet, N., Delgenes, JP., Dumas, C., 2013. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol. Biofuels 6, 164. doi:10.1186/1754-6834-6-164                                                                                                                                                                                          |
| 422<br>423<br>424<br>425               | 23 | Motte, JC., Trably, E., Hamelin, J., Escudié, R., Bonnafous, A., Steyer, JP.,<br>Bernet, N., Delgenès, JP., Dumas, C., 2014. Total solid content drives hydrogen<br>production through microbial selection during thermophilic fermentation.<br>Bioresour. Technol. 166, 610–5.                                                                                                                                                                      |
| 426<br>427                             | 24 | Mussoline, W., Giovanni, E., Giordano, A., Lens, P., 2012. The Anaerobic Digestion of Rice Straw- A Review. Crit. Rev. Environ. Sci. Technol. 43, 895–915.                                                                                                                                                                                                                                                                                           |
| 428<br>429<br>430<br>431               | 25 | Ntaikou, I., Kourmentza, C., Koutrouli, E.C., Stamatelatou, K., Zampraka, a, Kornaros, M., Lyberatos, G., 2009. Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour. Technol. 100, 3724–30. doi:10.1016/j.biortech.2008.12.001                                                                                                                                                                  |
| 432<br>433<br>434                      | 26 | Parawira, W., Murto, M., Read, J.S., Mattiasson, B., 2005. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem. 40, 2945–2952. doi:10.1016/j.procbio.2005.01.010                                                                                                                                                                                                      |
| 435<br>436<br>437<br>438<br>439<br>440 | 27 | Robledo-Narváez, P.N., Muñoz-Páez, K.M., Poggi-Varaldo, H.M., Ríos-Leal, E.,<br>Calva-Calva, G., Ortega-Clemente, L.A., Rinderknecht-Seijas, N., Estrada-Vázquez,<br>C., Ponce-Noyola, M.T., Salazar-Montoya, J.A., 2013. The influence of total solids<br>content and initial pH on batch biohydrogen production by solid substrate<br>fermentation of agroindustrial wastes. J. Environ. Manage. 128, 126–37.<br>doi:10.1016/j.jenvman.2013.04.042 |
| 441<br>442                             | 28 | Sikora, A., Błaszczyk, M., Jurkowski, M., Zielenkiewicz, U., 2013. Lactic Acid<br>Bacteria in Hydrogen-Producing Consortia: On Purpose or by Coincidence?, in:                                                                                                                                                                                                                                                                                       |

| 443        | Kongo, D.J.M. (Ed.), Lactic Acid Bacteria - R & D for Food, Health and Livestock                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 444        | Purposes. doi:http://dx.doi.org/10.5772/50364                                                                                                                |
| 445        | 29. Turon, V., Baroukh, C., Trably, E., Latrille, E., Fouilland, E., Steyer, JP., 2015.                                                                      |
| 446        | Use of fermentative metabolites for heterotrophic microalgae growth: Yields and                                                                              |
| 447        | kinetics. Bioresour. Technol. 175, 342–349. doi:10.1016/j.biortech.2014.10.114                                                                               |
| 448        | <ol> <li>Uçkun Kıran, E., Trzcinski, A.P., Liu, Y., 2015. Platform chemical production from</li></ol>                                                        |
| 449        | food wastes using a biorefinery concept. J. Chem. Technol. Biotechnol. 90, 1364–                                                                             |
| 450        | 1379. doi:10.1002/jctb.4551                                                                                                                                  |
| 451        | <ol> <li>Urbaniec, K., Bakker, R.R., 2015. Biomass residues as raw material for dark</li></ol>                                                               |
| 452        | hydrogen fermentation – A review. Int. J. Hydrogen Energy 40, 3648–3658.                                                                                     |
| 453        | doi:10.1016/j.ijhydene.2015.01.073                                                                                                                           |
| 454        | 32. Valdez-Vazquez, I., Poggi-Varaldo, H.M., 2009. Alkalinity and high total solids                                                                          |
| 455        | affecting H2 production from organic solid waste by anaerobic consortia. Int. J.                                                                             |
| 456        | Hydrogen Energy 34, 3639–3646. doi:10.1016/j.ijhydene.2009.02.039                                                                                            |
| 457<br>458 | 33. VALORGAS, 2010. Compositional analysis of food waste from study sites in geographically distinct regions of Europe-Valorisation of food waste to biogas. |
| 459        | 34. Veeken, A., Kalyuzhnyi, S., Scharff, H. and, Hamelers, B., Hammelers, B., 2000.                                                                          |
| 460        | Effect of pH and VFA on Hydrolysis of Organic Solid Waste. J. Environ. Eng. 6,                                                                               |
| 461        | 1076–1081.                                                                                                                                                   |
| 462        | 35. Wang, K., Yin, J., Shen, D., Li, N., 2014. Anaerobic digestion of food waste for                                                                         |
| 463        | volatile fatty acids (VFAs) production with different types of inoculum: Effect of                                                                           |
| 464        | pH. Bioresour. Technol. 161, 395–401. doi:10.1016/j.biortech.2014.03.088                                                                                     |
| 465        | 36. Wang, Q., Jiang, J., Zhang, Y., Li, K., 2015. Effect of initial total solids                                                                             |
| 466        | concentration on volatile fatty acid production from food waste during anaerobic                                                                             |
| 467        | acidification. Environ. Technol. 36, 1884–1891.                                                                                                              |
| 468        | doi:10.1080/09593330.2015.1015454                                                                                                                            |
| 469        | 37. Zhang, P., Chen, Y., Zhou, Q., 2009. Effects of pH on the waste activated sludge                                                                         |
| 470        | hydrolysis and acidification under mesophilic and thermophilic conditions. 2009                                                                              |
| 471        | Int. Conf. Energy Environ. Technol. ICEET 2009 3, 306–309.                                                                                                   |
| 472        | doi:10.1109/ICEET.2009.539                                                                                                                                   |
| 473        |                                                                                                                                                              |
| 474        |                                                                                                                                                              |
| 475<br>476 |                                                                                                                                                              |

| 477 | Figure | Cap | tions |
|-----|--------|-----|-------|
|     |        |     |       |

478 Fig. 1. Effect of TS content on substrate degradation (in g COD per kg of initial TS) (a);
479 and accumulation of end metabolites accumulation (mM per kg of initial TS) (b); at
480 different TS content

482 Fig. 2. Principal component analysis correlation circle plots: (a) Hydrogen and major
483 metabolic by-products production and (b) substrate degradation and metabolic products
484

485 **Fig. 3.** Substrate degradation (in g COD per kg of initial TS) at 25% TS using FW and WS

486 (a) as well as end metabolites accumulation (mM per kg of initial TS) in SSDF of FW (b)

487 and WS (c) at different  $pp_{H2}$  and at the end of two fermentation times (14 d and 21 d). A =

488 542 ( $\pm$  32) mbars, B= 1087 ( $\pm$  30) mbars, C = 0 mbars, 14 = 14 d and 21 = 21 d

489

490 **Fig. 4.** Microbial community distribution at family level of the sequenced samples during

491 the SSDF using FW (a) and WS (b) at the beginning (To) and end of the 14 d incubation at

different  $pp_{H2}$  (0, 542 (± 32) mbars, and 1087 (± 30) mbars) considering most abundant

493 OTUs (only OTUs with a presence of >1.0% were considered)

**Fig. 1.** 



497 Fig. 2.498







**Fig. 3.** 





**Fig. 4.** 



