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Abstract: Early detection of melanoma remains a daily challenge due to the increasing number of
cases and the lack of dermatologists. Thus, AI-assisted diagnosis is considered as a possible solution
for this issue. Despite the great advances brought by deep learning and especially convolutional
neural networks (CNNs), computer-aided diagnosis (CAD) systems are still not used in clinical
practice. This may be explained by the dermatologist’s fear of being misled by a false negative and
the assimilation of CNNs to a “black box”, making their decision process difficult to understand
by a non-expert. Decision theory, especially game theory, is a potential solution as it focuses on
identifying the best decision option that maximizes the decision-maker’s expected utility. This study
presents a new framework for automated melanoma diagnosis. Pursuing the goal of improving
the performance of existing systems, our approach also attempts to bring more transparency in
the decision process. The proposed framework includes a multi-class CNN and six binary CNNs
assimilated to players. The players’ strategies is to first cluster the pigmented lesions (melanoma,
nevus, and benign keratosis), using the introduced method of evaluating the confidence of the
predictions, into confidence level (confident, medium, uncertain). Then, a subset of players has the
strategy to refine the diagnosis for difficult lesions with medium and uncertain prediction. We used
EfficientNetB5 as the backbone of our networks and evaluated our approach on the public ISIC dataset
consisting of 8917 lesions: melanoma (1113), nevi (6705) and benign keratosis (1099). The proposed
framework achieved an area under the receiver operating curve (AUROC) of 0.93 for melanoma, 0.96
for nevus and 0.97 for benign keratosis. Furthermore, our approach outperformed existing methods
in this task, improving the balanced accuracy (BACC) of the best compared method from 77% to 86%.
These results suggest that our framework provides an effective and explainable decision-making
strategy. This approach could help dermatologists in their clinical practice for patients with atypical
and difficult-to-diagnose pigmented lesions. We also believe that our system could serve as a didactic
tool for less experienced dermatologists.

Keywords: melanoma detection; computer aided-diagnosis; convolutional neural networks; explainability;
game theory; hierarchical architecture; XAI

1. Introduction

Melanoma is still considered a serious public health issue. The only way of prevent-
ing its mortality is early diagnosis. In this field, prevention campaigns have shown a
relatively interesting impact, but more screening actions must be carried out to increase
early detection of melanoma and reduce its progression to an advanced stage. Derma-
tologists perform screening in their daily practice, but, unfortunately, medical resources
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are limited. Computer-aided diagnosis (CAD) systems are an interesting approach to assist
dermatologists for melanoma screening in clinical practice [1].

Nowadays, with advances in deep learning, new perspectives of automating the pro-
cess for the early detection of melanoma among pigmented lesions to assist dermatologists
can be considered. Indeed, CAD based on CNNs have demonstrated high-quality per-
formances, matching those of dermatologists in an experimental context [2–4]. Most of
the common strategies proposed to improve the performance of skin cancer diagnosis can
be grouped into three categories [5]: Transfer learning, data augmentation and ensemble
learning. Transfer learning is used to improve learning by transferring knowledge from
related tasks that have been learnt previously. In fact, the main reason behind the use
of transfer learning for this context resides in the high similarity between malignant and
benign lesions making their identification and classification very slow. Moreover, transfer
learning is more effective in classifying similar lesions, making it a first choice [6]. The main
way to apply transfer learning to skin lesions is to reuse the CNN’s architectures that
have been pre-trained on the ImageNet dataset. Perez et al. [7] conducted an extensive
experimental study in which they analyzed the effectiveness of three well-known optimiza-
tion algorithms, as well as the performance impact of using transfer learning methods.
Their study confirmed the effectiveness of CNN combined with transfer learning for the
melanoma diagnostic task. On the other hand, training a deep learning model requires
a considerable amount of data, while the availability of annotated skin lesion images is
often limited. Therefore, data augmentation is another well-used strategy to improve the
model performance. In this context, Zhao et al. [8] used data augmentation to improve the
accuracy of skin lesion classification. To this end, they used a data augmentation method
based on generative adversarial networks to generate synthesized images for training a
DenseNet201 model. More recently, Maron et al. [9] observed that increasing data can
mitigate the effect of conflicting examples on the classification of skin lesions. Another
successful technique to achieve high performance on skin lesions classification is to assem-
ble a finite set of CNNs [10]. Mahbod et al. [11] developed and evaluated a multi-scale
fusion technique based on the ensemble method. Their approach used three CNN models
trained on cropped images of different sizes and achieved 86.2% accuracy on the ISIC 2018
dataset. Foahom et al. [12] applied an ensemble method based on the directed acyclic graph
technique for melanoma detection. Ensemble methods for building CAD for skin cancer
detection were also used in [13–17].

Despite their performances, these CADs have not yet found their way into the clinical
context due to a variety of reasons mentioned by Goyal et al. [18], among which we
can mention the main ones. In fact, the generation of false negatives and the difficulty
sometimes even for computer vision experts to understand the decisions made by deep
learning frameworks accentuates the skepticism of end users, especially dermatologists.
Therefore, in addition to improving the performance of current systems, the improvement
of their explainability is another important challenge to achieve the goal of extending these
systems to real clinical settings.

Regarding methods to improve the explainability of CADs, there are mainly three
approaches in the literature: visualizing features maps, building content-based image
retrieval (CBIR) systems and incorporating dermatologists’ knowledge. The core principle
of visualizing features maps is to highlight the regions in an image that contribute to the
CNN decision. The class activation maps [19,20] is the most popular method applied for
this task. Van et al. [21] were the first to conduct such an analysis on skin cancers detection.
They showed that CNNs were able to learn features similar to those used by dermatologists
for diagnosis such as border and skin color. Works featured in [22,23] have also used
Grad-CAM to provide explainability to their CAD systems. Another type of visualization is
conducted using SHapley Additive exPlanations (SHAP) values [24], as in [25], to analyze
predictions at a pixel-level and ensure that the model is looking at pertinent parts of
the images. However, visualization approaches are revealed after the training of the
model, which prevents any impact on the performance of the model. CBIR systems are an
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alternative approach to improve the explainability of CAD. The idea behind this approach
is to improve the explainability of the decision making process by retrieving and displaying
similar past cases relevant to the one being examined. Tschandl et al. [26] compare the
diagnostic accuracy of a CBIR system based on dermatoscopic images to predictions made
by a CNN. Their results revealed that CBIR systems were able to outperform a CNN
used alone. Allegretti et al. [27], in the same context, proposed to combine deep neural
networks and embedding networks for dermoscopic image retrieval, which allowed them
to obtain a better retrieval accuracy. CBIR systems for skin lesion detection are also used
in [28,29]. However, such methods have two shortcomings [30]: first they suffered from
the ’semantic gap’, meaning that feature similarity did not necessarily correlate to label
similarity; secondly, they suffer from ’user-gap’, meaning that what a CNN considers as
similar from a disease point-of-view does not necessarily correlate with human measures
of similarity. The last approach to improve the explainability of CAD consists in modeling
the knowledge and practices of dermatologists to integrate them into a CAD system.
The works presented in [31,32] followed this approach. They structured their datasets
following the taxonomic organization [33] of skin lesions to develop their framework.
Nevertheless, despite the fact that this approach brings rationality to the decision, a recent
study [34] explains that models trained using this approach performed worse than a simple
multi-class model.

The goal of this study is to develop an accurate CAD for melanoma diagnosis while
providing an explanation of its decision process. To this end, the proposed approach
combines the three strategies to build an accurate CAD previously discussed. Indeed, the
pipeline of this study is an ensemble method combining several models, so each of these
models was developed from pre-trained architectures and was trained on data augmented
with synthetic images obtained by artificial data generation techniques. Moreover, pur-
suing the other objective of this study which is to build an explainable CAD, our method
introduces a new hierarchical framework inspired by game theory in order to build a
decision process understandable by users and non specialists. In addition, not only has the
framework been combined with a heatmap visualization allowing for a better interpretation
of the results, but an innovative method to evaluate the confidence level of a prediction
has also been introduced. This approach would allow our CAD to bring transparency in
decision making, and improve its performance compared to previous methods.

2. Results
2.1. Results of Our Approach on the Test Dataset

We ran each of our experiments five times and the results were aggregated to generate
an ROC curve of model performance. As shown in Figure 1, our framework performed well
on all classes of lesions, far above a hazardous prediction (AUROC = 0.5). Our approach
achieved a mean AUROC of 96% on the entire test dataset. Looking at the performance of
each class individually, the class with the highest AUROC is the benign keratosis class with
an AUROC value of 97%. The Nevus class obtained an AUROC of 96%. The class with the
lowest performance was the melanoma class with an AUROC of 93%.

2.2. Comparing Our Approach with Prior Works

To evaluate our work, we compared the obtained performances with those obtained
by prior works. For this, we selected a set of works developed within the same classifi-
cation task, i.e., the multi-class classification of melanoma, nevus and benign keratosis.
The reference works were also based in the use of CNNs. Table 1 presents the results of
this study. Our approach outperformed all the compared methods by reaching an AUROC
improvement of 5% for Melanoma, 4% for Benign Keratosis, and 8% for Nevi. Moreover,
our approach led to a mean BACC of 0.86 which is 9% higher than the one obtained by the
method proposed in [12].
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Figure 1. Receiver operating characteristic (ROC) curves obtained with our framework. The Area
under the curve (AUC) of the ROC is given for each lesion class: Melanoma (MEL), Benign Keratosis
(BEK) and nevi (NEV) on the test set.

Table 1. Comparison with existing CAD system for the multi-class classification of Melanoma, Nevi
and Keratosis.

Works BACC Mean-AUROC MEL-AUROC BEK-AUROC NEV-AUROC

Harangi et al. [35] - 0.85 0.84 0.87 0.84
Bisla et al. [36] - 0.92 0.88 - -

Barata et al. (2019) [37] 0.70 0.88 - - -
Barata et al. (2021) [32] 0.74 0.92 0.80 0.92 0.85

Foahom et al. [12] 0.77 ± 0.00 - 0.87 0.93 0.88
Proposed framework 0.86 ± 0.01 0.96 ± 0.00 0.93 ± 0.01 0.97 ± 0.01 0.96 ± 0.00

2.3. Use Case and Performance Analysis

We further presented our results to a dermatologist collaborating with us in our
laboratory for an evaluation in a real clinical context of our tool’s use case. We present in
Figure 2 two illustrative examples chosen by the dermatologist. Lesion 1 (see (a) in Figure 2)
is a dermoscopic image of a typical Melanoma with a high prediction (pM = 1.00) for this
diagnosis and low prediction for the two other classes by our system (a probability of 0.00
for both Begnin keratosis and Nevi). The Heat-map presented a high activation on the
area with white blue veil color, a typical region for Melanoma diagnosis. For this typical
case, no other step was necessary, and the model seems efficient. On the other hand, lesion
2 represents a dermoscopic image of a misleading pigmented lesion. At first sight, this
lesion could be a benign Keratosis or a melanoma. The first step indeed provided similar
predictions for both Melanoma (pM = 0.53) and Benign Keratosis (pB = 0.46) and a lower
prediction for Nevi (pN = 0.01) by s3 model with a confident score u of 54%. The second
step of the framework classified more accurately between these two classes and sorted
out a high prediction (pM = 0.90) for melanoma, which was the ground truth. In fact, the
second heat-map focused on a slight regression area (the whiter part in the center of the
region), a key region for the diagnosis. The second step trained specifically to distinguish
Benign Keratosis and Melanoma was more efficient for this particular task and was able to
correctly diagnose the melanoma lesion. These different stages of the framework highlight
the ability of our approach to differentiate and classify difficult pigmented lesions as well
as its ability to provide a more transparent decision process.
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Figure 2. Use cases of our CAD system for classification of Melanoma (M), Nevi (N) and benign
Keratosis (B) illustrated by two examples. The dermoscopic image of Lesion 1 represents a typical
Melanoma that was associated with a high prediction (1.00) to a Melanoma at the first stage of our
framework with a confidence score of 100%. Indeed, the heat-map in the first step focuses on the
regression area which is a typical area for Melanoma diagnosis. On the other hand, the framework is
very interesting for difficult Melanoma. The dermoscopic image of Lesion 2 is a suspicious lesion,
but is not a typical melanoma and could be confused with benign Keratosis. The first step presented
a shared prediction between benign Keratosis (0.46) and Melanoma (0.53) with a confidence score
of 54%. Being in a situation where the confidence level is medium, our framework directed the
prediction of the Lesion 2 to the binary classifier trained to dissociate the two most probable classes
in occurrence the benign keratosis versus melanoma (sBM). The second stage allowed to refine the
prediction by finally associating Lesion 2 to Melanoma with a much better probability (0.90). Indeed,
the second heat-map focused on a key region for Melanoma. Heat-map generation is implemented
with Grad-CAM [20]. Heat-map images framed by red dashed lines are those representative of
the melanoma class; those framed by blue dashed lines are those representative of the benign
keratosis class.

2.4. Performances of the Individual Model Used in Our Framework

Table 2 shows the results obtained with all the seven models for each individual task:
MEL versus ALL, BEK versus ALL, NEV versus ALL, MEL versus NEV, MEL versus BEK,
NEV versus BEK, and BEK versus MEL versus NEV. If we first look at the one-versus-all
(ova) classifiers, we observe that the BEK-vs-ALL classifier is the one that has obtained the
best performance with a BACC equal to 90%. This suggests that the class Benign Keratosis
is the one that best distinguishes itself from the other two classes Nevi and Melanoma.
On the other hand, with the one-versus-one (ovo) classifiers, the NEV-vs-BEK classifier
performed best with a BACC of 94%. Nevus and keratosis are the two easiest classes to
discriminate in our task. The most difficult lesions for our framework to distinguish are
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Nevi from Melanoma where the classifier has obtained a BACC of 87%. The 3-class model
reached a BACC of 84%, which achieved a 2% improvement with the entire pipeline.

Table 2. Performance on the test set for each of the seven models on different tasks involved in our
framework. We report on table the BACC and the AUROC scores.

Task BACC AUROC

BEK vs. MEL vs. NEV 0.84 ± 0.01 0.96 ± 0.00
MEL vs. ALL 0.81 ± 0.02 0.94 ± 0.01
NEV vs. ALL 0.86 ± 0.01 0.96 ± 0.00
BEK vs. ALL 0.90 ± 0.01 0.98 ± 0.00

MEL vs. NEV 0.87 ± 0.01 0.95 ± 0.01
MEL vs. BEK 0.91 ± 0.01 0.97 ± 0.00
NEV vs. BEK 0.94 ± 0.01 0.99 ± 0.00

2.5. Ablation Study: Choice of the Best Hyper-Parameters u1 and u2

We present in Table 3 the results of the grid-search we have done on the validation set
to find the best values of the hyper-parameters to maximize the detection of Melanoma.
For this analysis, we used only the models obtained in the run that achieved the best
performance. The best combination value were obtained for u1 and u2 having respectively
the value 0.1 and 0.5.

Table 3. Result of the best combination of hyper-parameters α1 and α2 obtained with grid-search on
the validation set.

(α1, α2) MEL-AUROC

(0.3, 0.5) 0.95
(0.3, 0.4) 0.95
(0.2, 0.5) 0.95
(0.2, 0.4) 0.95
(0.2, 0.3) 0.95
(0.1, 0.5) 0.96
(0.1, 0.4) 0.95

3. Discussion

In this study, a novel deep learning ensemble method is presented to obtain an accurate
and explainable CAD of melanoma. A framework following a hierarchical structure and
combining seven CNNs has been created for this purpose. The BACC and AUROC scores
were mainly used to analyze classification performance. The proposed method reached an
average AUROC of 96%, which demonstrates the good performance of our approach in this
task. The performance of our approach was also compared to that of previous works in the
same task and outperformed all of them with a minimum margin of 9% in terms of BACC.
A use case analysis is also performed by a dermatologist to assess the decision-making
transparency of our approach in a clinical setting.

In our study, we integrate all successful strategies to obtain an accurate classification
of skin lesions. Similar to the works of [10,38,39], we used the pre-trained EfficienetNet
architecture as the backbone of all our models. We also applied data augmentation as
in [8,9] to increase the robustness of our models. Finally, we developed a pipeline that
combines several models to build an ensemble learning which is a well-known strategy
used in previous works [9,12,15,16].

Our approach integrates the heat-maps visualization in the framework. This heat-
maps visualization showing the arrangement between the feature maps and the visual input
is a particularly popular way of explaining CNNs [40]. In this context, Van et al. [21] has
shown that the Grad-CAM method reveals features similar to those used by dermatologists
to make their diagnosis. Moreover, the definition, for the first time, to our knowledge,
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of a method to evaluate the confidence-level of a prediction brings more clarity to the
prediction made by a CAD and provide dermatologists with enough elements to help
them make the best diagnosis. Indeed, as indicated in [40], combining different methods of
explanation with various modalities makes it possible to obtain more complete explanations.
Furthermore, providing clinical end users with sufficient evidence to support the prediction
builds confidence in the model’s decision and helps dermatologists identify potentially
questionable decisions [41].

This study responds to the requirement of CADs that are explainable since this criteria
become more relevant considering the recent ethical and legal standards [42,43]. Never-
theless, our study has some limitations that need to be addressed. First, in this study, we
slightly approached the resolution of the class imbalance problem [44] which is present
in computer vision task and more particularly in skin lesions classification. Future work
integrating tricks for optimizing the performance of deep models about this aspect, such
as those presented in [10,45], could strengthen the robustness of our method. Second, our
study lack of enough investigation on the usability and adoptability of our application in
real clinical scenario as suggested in [46]. Even though we have integrated an analysis of
cases of use of our system by a dermatologist, it would be wise to conduct a real clinical
study by integrating a large number of clinicians.

The results obtained in this study show that it is clearly possible to build automatic
diagnostic systems based on deep learning that are explainable without losing diagnostic
accuracy. We have made the codes and models used in this manuscript available online to
the community. They are accessible via the link provided in the Supplementary Material.

4. Methods and Materials

In this section, we present our methodology. We describe the overall workflow of our
framework and the CNN backbone model used in our experiments.

4.1. Convolutional Neural Network

Several CNN architectures are open-source, with some of them being already trained
on the ImageNet dataset. Thus, we can reuse their weights and biases and fine-tune them
for application in our task. This is known as transfer learning. EfficientNet networks [47] are
currently one of the most commonly used architectures in computer vision. Their authors
defined a way to scale the models when more computing power is available. They proposed
for that eight versions of the architecture depending on the scale level ranging from B0
to B7. The B7 version achieved 84.4% top-1 accuracy on ImageNet while being 8.4× smaller
and 6.1× faster on inference than the best existing CNN at that time. They have also
been successfully used in the task of classifying skin lesions [13,48]. In our works, we
use the B5 version of EfficientNet as the backbone of our models due to the available
resources. We modified the original model by replacing the classification layer with a
new fully connected (FC) layer of two nodes to perform binary classification or three
nodes to perform ternary classification. The news layers were initialized with a Kaiming
initialization [49].

4.2. Game Theory

Game theory is a theoretical framework for modeling conflict situations among compet-
ing players and for analyzing the behavior of various players. Game theory was originally
developed as a mathematical model in the field of operations research and has been applied
to other disciplines to solve competition and collaboration problems between different
objectives. More recently, some researchers investigated the use of game theory for deep
learning [50]. There are three main components in the game: the players, the strategies
they use, and the payoff they receive from the corresponding strategies [51]. In general, the
principle of game theory can be summarized as the process by which the decision-maker
makes a choice to maximize the benefit of each player after the opponent adopted a certain
strategy, assuming that all players are rational. In the process of the game theory in this
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study, the CNN models represent the players, two strategies are defined for the players,
the first is to cluster the predictions by confidence level (confident, medium, uncertain)
and the second is to make the final prediction. The payoff value depends on the output
probabilities of the models.

4.3. Class Activation Map

We adopted the Gradient-weighted Class Activation Mapping (Grad-CAM) [20] algo-
rithm to visualize the region contributing to the CNN model’s decisions as a heat map. Let the
penultimate CNN layer produce K feature maps Ak ∈ Ru∗v of width u and height v. We de-
note by yc the score produced by the feature maps Ak spatially pooled using a global average
pooling GAP. Grad-CAM algorithm generated heat-map using the following formula:

Lc
Grad−CAM = ReLU(∑

k
wc

k Ak) (1)

wc
k represents the gradients of yc with respect to feature maps A, while ReLU is the

rectified linear unit function. In this study, we used the last convolutional layer to compute
the weights as suggested by [20].

4.4. Description of Our Framework

We designed a novel framework (see Figure 3) following a hierarchical architecture
from the combination of several CNNs. We combined seven CNNs among which one
was trained in a multi-class task to classify Melanoma among Nevi and Benign Keratosis.
Three of the CNNs were trained to recognize a given diagnosis class of lesions with an
ova strategy. The three others are trained to distinguish two classes of lesions with an ovo
strategy. The CNNs trained with an ova strategy are used only to evaluate the confidence
level of the multi-class CNN and generate a confident score.

Figure 3. Our novel framework to ternarily classify Melanoma (MEL), Nevi (NEV) and Benign Keratosis
(BEK). An image of a skin lesion is spent in a first set consisting of three CNNs trained to classify
one lesion versus the two other lesions. The second step, depending on the group in which the
image was previously placed based on the confidence score, provides the final decision with the
associated probability.

For a sample image x, we consider a CNN to be a function s : x =⇒ Rn that generates
a vector p of size n containing predicted probabilities pi that x belongs to the class i, where
n represents the number of classes, pi ∈ [0, 1] and ∑n pi = 1. The classifier s makes the
decision to classify x in class i based on Equation (2).

class(x) = i, i f max(p) = pi. (2)

We used the notations s3, sii, and sij, respectively, for the 3-class CNN, the CNN trained
with the ova strategy and the CNN trained with the ovo strategy.
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s3 generates three predicted probabilities pB, pM and pN that x belongs to classes
B, M and N. The classes indicate the nature of the lesion, B for Benign Keratosis, M
for Melanoma and N for Nevi. Each sii is specialized in one class i and generates two
predicted probabilities p

′
i and p

′

i
that x respectively belongs to class i or not. sij generates

two predicted probabilities pi and pj that x respectively belong to class i or j.
To evaluate the confidence level of a prediction pi, we introduce the function u defined by:

u(pi) = abs(pi − p
′
i) (3)

The function u estimated the level of confidence of prediction by calculating the
absolute error of the predictions made by s3 and sii.

In the first step, s3 and the three set of sii are used to cluster each input image x into
three groups: high confidence, medium confidence and uncertain predictions. The division
by group is based on Equation (4). α1 and α2 were determined by grid-search according to
the balanced accuracy obtained by the framework on the validation set.

group(x) =


g1 : high f or u(pi) ≤ α1

g2 : medium f or α1 ≤ u(pi) ≤ α2.
g3 : uncertain otherwise.

(4)

When the prediction belongs to g1, the prediction of s3 is kept and no further steps are
performed. On the other hand, if the prediction belongs to g2, the classifier sij is used to
predict the class of x. For uncertain cases, the three classifiers sBM , sBN and sMN are used
to predict the class of x based on the Max-Win rule [52]. Algorithm 1 describes the steps
followed by our framework to predict the class of an observation x.

Algorithm 1 Pseudo-code of our framework.

Require: Image x, 3 pairwise CNNs sij, 1 3-class CNN s3, 3 pairwise CNNs sii, list of the
three classes class_list = [1, 2, 3]

Ensure: predicted class of x
Generate the prediction probability pi of the class associated to x with s3

Generate the probability p
′
i of belonging to the class i by the model sii specialized to this

class
Estimate the confidence level u(pi) of the prediction made by s3 using the equation
u(pi) = abs(pi − p

′
i)

if u(pi) < α1 then
categorizes the prediction as being certain
x belongs to class i

else if (α1 < u(pi) < α2) & (pi > pj > pk) then
Categorizes the prediction as medium confident
Generate prediction probabilities pi and pj made by the model sij
if pi > pj then

x belongs to class i
else

x belongs to class J
end if

else
Categorizes the prediction as being uncertain
Generate prediction probabilities of all the 3 pairwise CNNs sij
x belongs to class obtain by applying Max-Win rule on the 3 pairwise CNNs sij

end if

Theses predictions are normalized using the Equation (5) to assign final predic-
tion probability.
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prob(i) =
pi

pi + pj + pk
; i, j, k = B, M, N and i 6= j 6= k (5)

4.5. Experimental Setup
4.5.1. Dataset Preparation and Preprocessing

We performed this work on the publicly available dataset ISIC 2018 [53,54]. ISIC 2018
contains 10 017 images annotated into seven classes: Actinic keratosis, Basal Cell Carcinoma,
Melanoma, Benign keratosis, Dermatofibroma, Nevi and Vascular lesion. We focused our
work on the three most challenging classes of lesions for the detection of Melanoma.
This resulted in a dataset of 8 917 lesions: Melanoma (1 113), Nevi (6 705) and Benign
Keratosis (1 099). We started by randomly dividing the dataset into 70% training images,
10% validation images, and 20% test images. Then, to reduce the effect of imbalance between
different classes, we used a data augmentation strategy based on horizontal flip, vertical flip,
rotation, width and height shift. The distribution of the dataset is shown in Table 4.

Table 4. Distribution of the dataset.

Benign Keratosis Melanoma Nevi

ISIC 2018 1099 1113 6705
Ratio 0.12 0.12 0.75

Training set 769 779 4694
Generated data from training set 1231 1221 306

Final training set with data generated 2000 2000 5000
Validation set 110 111 670

Test set 220 223 1341

Once the dataset is loaded, a preprocessing is engaged to reduce the effects induced by
the different acquisition setups such as the lighting difference and the presence of artifacts.
We applied standard preprocessing techniques for skin lesion images [12]. We resized our
images to 456 × 456 using a bicubic interpolation, and performed color standardization
using the gray world color constancy algorithm [55] to deal with color variability.

4.5.2. Fine-Tuning the Networks

We fine-tuned only 64 percent of the deeper layers of our pretrained models with a
batch size of 32 during 150 epochs. We used Adam optimizer to update the weights and
biases of our networks at every iteration to minimize the loss function output. The general
Adam term employed in our work is defined as [56]:

θt ← θt−1 − α.mt/(
√

vt + ε̂) (6)

where θ is the parameter vector of the network, t represents the iteration number, α is the
learning rate, and mt the momentum term.

We calculated the loss value using a weighted cross entropy function. The general
term of the cross-entropy loss is:

L = −wi

N

∑
n=1

p.log(q) (7)

where p is the ground-truth label, q is the predicted Softmax probability, wi is the weight
for class i and N is the number of classes. wi corresponds to the inverse number of samples
for each class as proposed in [57]. Similar to [58], we used the cyclical learning rate (CLR)
proposed by [59] to schedule the learning rate during training in the range from 0.001
to 0.00001. We opted for the “triangular2” setting of CLR with a step size of 2000 iterations.
During fine-tuning, we also applied regularization to avoid overfitting by stopping the
training early when the BACC on the validation set did not improve after 15 epochs.
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We performed experiments using the Pytorch software library (1.11.0) under the
Ubuntu 18.04 operating system. Specifically, all experiments were performed on a work-
station with an Intel(R) Core CPU (3.20 GHz) and one graphic card. The graphics card is
an Nvidia GeForce GTX 2080 GPU with 8 GB of memory. The time required to train and
validate each of the seven models on this machine varied from 10 to 15 h. The time required
to test the entire pipeline was approximately one minute.

4.5.3. Metrics

We used the AUROC score to evaluate the performance of our framework. The
dataset presents a skewed distribution where a normal accuracy would favor the correct
classification of the over-represented class Nevi. Thus, we also opted for the BACC metric
as another measurement for our experiments. The BACC is defined as:

BACC =
∑i Sensitivityi

N
(8)

In Equation (8), N represents the total number of classes in the task, and Sensitivityi
represents the sensitivity of class i.

5. Conclusions and Future Works

Nowadays, one of the main goals of CAD in the medical field is not only to achieve
high performance, but also to improve the explainability of these systems and increase
their use in the clinical setting. In this study, we present a new hierarchical ensemble deep
learning framework for melanoma detection from dermoscopic images, aiming to both
improve the performance of the existing systems and provide more clarity in its decision
process. The proposed approach combines seven CNN models through game theory and
combines it with heatmap visualization. We also introduced a new method to evaluate the
confidence level of a prediction generated by an automated system and integrated it into
our framework. The results show that our approach can effectively improve the accuracy
of CAD compared to the state of the art. Furthermore, by conducting a use case study
of our framework by a dermatologist, we could observe that the decision process of our
approach was found to be more intuitive and explainable, which would support its use in
real clinical settings. Future work will focus on two main directions. The first direction is to
improve the predictive performance of our framework, with a particular focus on reducing
false negative rates and mitigating class imbalance issue. The second direction will be to
perform a large-scale clinical validation of our approach. At this stage, our system has great
potential for use in real clinical settings as a training tool for novice dermatologists.

Supplementary Materials: The code for our experiments is available online at link to github (https:
//github.com/cartelgouabou/CAD-for-melanoma-detection-using-cnn-and-game-theory, accessed
on 8 november 2022).
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