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Abstract

For negative-torsion maps on the annulus we show that on every C1 essential curve
there is at least one point of zero torsion. As an outcome we deduce that the
Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a
byproduct we obtain a Birkhoff’s Theorem-Like result for C1 essential curves in the
framework of negative-torsion maps.

1 Introduction
Let A = T× R where T = R/Z. Endow A with the standard Riemannian metric and

the standard trivialization. Let f : A→ A be a C1 diffeomorphism isotopic to the identity.
Let (ft)t∈[0,1] be an isotopy in Diff 1(A) joining the identity to f1 = f . We are interested
in the linearized dynamics: more precisely we look at the torsion, a dynamical invariant
first introduced by D. Ruelle in 1985 (see [Rue85]), who called it rotation number.
Roughly speaking, the torsion of the orbit of a point x, denoted as Torsion(f, x), describes
the average asymptotic velocity at which the differential of the diffeomorphism makes the
tangent vectors turn along the considered orbit. The torsion at finite time T of a point
(x, ξ) of the tangent bundle is the variation between 0 and T of a continuous determination
of the angle function associated to Dft(x)ξ, t ∈ [0, T ], divided by T . The torsion of the
orbit of x is the limit for T → +∞ of the torsion at finite time T , whenever the limit
exists. If µ is a compactly supported f -invariant Borel probability measure, then the
torsion of the orbit of x exists for µ-almost every point x ∈ A, see [Rue85].
Besides Ruelle’s work, in the framework of conservative twist maps, the structure of some
null torsion sets, called Aubry-Mather sets, has been studied by Mather (in [Mat82] and
[Mat91]) and Angenent (in [Ang88]) through a variational approach. Using topological
tools, Crovisier has generalised some results in the non conservative twist framework.
He has shown that for every rotation number there exists an Aubry-Mather sets of zero
torsion, see Theorem 1.2 in [Cro03].

A negative-torsion map is a C1 diffeomorphism isotopic to the identity such that at
every point the vertical vector has a negative average rotational velocity: that is, for
every point x ∈ A the torsion at finite time 1 at x with respect to the vertical vector is
negative. Positive twist maps and Tonelli Hamiltonian flows at finite time are examples
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of negative-torsion maps. The notion of negative-torsion map is equivalent to the notion
of positive tilt maps as presented in [Hu98] and [GR13]. A notion of positive-torsion maps
can be given similarly.
In this paper we consider the set of points of zero torsion for negative-torsion maps. The
main result of the work is the following.

Theorem 1.1. Let f : A→ A be a negative-torsion map. Then for any C1 essential curve
γ : T→ A there exists a point z ∈ γ(T) such that Torsion(z) = 0.

Remark that we do not ask any conservative hypothesis on f . Applying Theorem 1.1 to
every simple circle curves, i.e. any curve T× {r} for r ∈ R, we can deduce the following

Corollary 1.1. Let f : A→ A be a negative-torsion map. Then

dimH ({z ∈ A : Torsion(z) = 0}) ≥ 1,

where dimH(·) denotes the Hausdorff dimension of the set.

The idea of the proof of Theorem 1.1 is to consider, for every N ∈ N∗, the preimage on γ
of points of maximal height of fN ◦ γ(T). We then show that the angle variation of the
vector tangent to γ at these points between 0 and N is bounded uniformly in N . By the
negative-torsion property, we control the torsion at finite time m of these points for every
m ∈ J1, NK. Consider then the sequence of preimages on γ of such points of maximal
height. Every limit point of the sequence is a point of zero torsion.
The idea of looking at points of maximal height can be adapted to extend the result to
C0 essential curves which are graphs of functions (see Theorem 3.1). We do not know if
the result can be extended also to C0 essential curves which are not graphs.

As a by-product of the proof of Theorem 1.1, we deduce that the torsion of an orbit of
a point belonging to a C1 f -invariant essential curve can be calculated through the angle
variation of the vector tangent to the curve along the curve itself. We obtain so as a by-
product of the proof of Theorem 1.1 a version of Birkhoff’s theorem for negative-torsion
maps.

Theorem 1.2. Let f : A → A be a negative-torsion map. Let γ : T → A be a C1 f -
invariant essential curve such that f|γ is non wandering. Then γ is the graph of a C1

function.

All the above results still hold also in the case of positive-torsion maps. The paper is
organised as follows. In Section 2 we fix the notation and we provide the main definitions
of torsion and negative-torsion maps. Useful properties of torsion are recalled. Section 3
is devoted to the discussion of the proof of Theorem 1.1. Its demonstration relies on two
main propositions, see Propositions 3.1 and 3.2. In particular, Proposition 3.1 is discussed
first in a simpler case in Subsection 3.1 and then in the general framework in Subsection
3.2. Subsection 3.3 concerns the partial generalisation of Theorem 1.1 to continuous es-
sential curves. Finally, we present the Birkhoff’s tTheorem-Like result (see Theorem 1.2)
for negative-torsion maps in Section 4.

Acknowledgements. The author is extremely grateful to Marie-Claude Arnaud and
Andrea Venturelli for all their preciuos advices and for many discussions. The author
really thanks the anonymous referee for his/her useful suggestions.
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2 Notation, main definitions and first properties of tor-
sion

Let T = R/Z and let A = T × R. Denote as p : R → T and as p × Id : R2 → A
the universal covering maps of T and of A respectively. The functions p1, p2 denote the
projections over the first and the second coordinate respectively over A and, with an abuse
of notation, also over R2.
Endow A with the standard Riemannian metric and the standard trivialization. We fix
the counterclockwise orientation of R2. Thus the notion of oriented angle between two
non zero vectors is well-defined.

Definition 2.1 (see [Hir76]). Let M,N be differential manifolds and let f, g : M → N
be in Diff 1(M,N). An isotopy (φt)t∈[0,1] joining f to g is an arc in Diff 1(M,N) such
that φ0 = f, φ1 = g and which is continuous with respect to the weak or compact-open
C1 topology on Diff 1(M,N).

Usually, isotopies are paths in the space of homeomorphisms, rather than diffeomor-
phisms. Nevertheless, in our case Definition 2.1 is not restrictive: indeed, any diffeomor-
phism of the annulus A that is isotopic to the identity through a path in the space of
homeomorphisms, it is also isotopic to the identity by a path in the space of diffeomor-
phisms, see for example [Sma59] or [Gra73].

Definition 2.2. Let I ⊂ R be an interval. A continuous determination of an angle
function θ : I → T is a continuous lift of θ, that is a continuous function θ̃ : I → R such
that θ̃(s) is a preimage (by p : R→ T) of the oriented angle θ(s) for any s ∈ I.

Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let (ft)t∈[0,1] be an
isotopy joining the identity to f . Extend the isotopy for any positive time so that for any
t ∈ R+ the C1 diffeomorphism ft : A → A is defined as ft := f{t} ◦ f btc, where {·}, b·c
are the fractionary and integer part respectively. We denote I = (ft)t∈R+ the extended
isotopy. For any x ∈ A denote as χ = (0, 1) ∈ TxA the unitary positive vertical vector.
The definition of torsion we adopt is the one given by Béguin and Boubaker in [BB13].
The asymptotic torsion is actually Ruelle’s rotation number, see [Rue85].

Definition 2.3. Let x ∈ A, ξ ∈ TxA, ξ 6= 0. Define the oriented angle function

R+ 3 t 7→ v(I, x, ξ)(t) := θ(χ,Dft(x)ξ) ∈ T, (1)

where θ(u, v) denotes the oriented angle between the two non zero vectors u, v.
Denote

R+ 3 t 7→ ṽ(I, x, ξ)(t) ∈ R (2)

a continuous determination of the continuous oriented angle function v(I, x, ξ)(·).
The torsion at finite time n ∈ N∗ of (x, ξ) ∈ TA, ξ 6= 0 is

Torsionn(I, x, ξ) :=
ṽ(I, x, ξ)(n)− ṽ(I, x, ξ)(0)

n
. (3)

The torsion at x ∈ A is, whenever it exists,

Torsion(I, x) := lim
n→+∞

Torsionn(I, x, ξ). (4)
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Remark 2.1. The torsion at finite time does not depend on the choice of the continuous
determination of the oriented angle function. Moreover, it is independent from the choice
of the isotopy joining the identity to f , see Proposition 2.5 in [Flo19b]. The (asymptotic)
torsion, whenever it exists, does not depend on the tangent vector used to calculate the
finite time torsion. We refer to [BB13] for these properties.

Notation 2.1. Since the torsion does not depend on the chosen isotopy, we write
Torsionn(f, x, ξ) and Torsion(f, x). In addition, in order to lighten the notation, we
omit the dependance on the dynamics f of the torsion, writing just Torsionn(x, ξ) and
Torsion(x), when it will be clear from the contest.

Example 2.1. Consider the dynamical system of the simple pendulum obtained by the
Hamiltonian H(θ, r) = r2

2
− cos(2πθ)

4π2 . Let (φt)t∈R be the associated flow and consider the
time-one flow f = φ1. Let U denote the open region contained between the separatrices
of the pendulum system, see Figure 1. We can calculate the torsion with respect to
the Hamiltonian vector field XH , which is always tangent to the trajectories. So, every
point z not belonging to U has zero (asymptotic) torsion, since the corresponding vector
XH(φt(z)) is always contained in the same open half-plane and thus its angle variation is
uniformly bounded in time. The elliptic point (0, 0) has torsion equal to −1, since each
differential Dφt(0, 0) is a clockwise rotation of angle t. Every point z ∈ U \ {(0, 0)} is
periodic and has torsion equal to − 1

T (z)
, where T (z) is the period of z, since the vector

XH(φt(z)) is turning clockwisely once over a time interval of length T (z).

Figure 1 – Phase portrait of the pendulum system of Example 2.1.

Definition 2.4. A C1 diffeomorphism isotopic to the identity f : A → A is a negative-
torsion map (respectively a positive-torsion map) if for any z ∈ A it holds

Torsion1(z, χ) < 0 ( respectively > 0) . (5)

Example 2.2. Every positive twist map is a negative-torsion map (see [Flo19b]). Actually
the notion of negative-torsion map is equivalent to the notion of positive tilt map: see
[Hu98], [GR13] and [Flo19a]. We remark that the notion of negative-torsion (positive-
torsion) maps can be given also in terms of positive (negative) paths according to the
definitions in [Her83] and [LC88].

Definition 2.5. An essential curve is a C0 embedded circle in A not homotopic to a point.
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We recall here some properties of finite-time torsion. We refer to [BB13], [Flo19b] and
[Flo19a] for the proofs.

Property 2.1. Fix x ∈ A. If we calculate finite-time torsion at x with respect to different
tangent vectors, we can control the error. Indeed, for n ∈ N∗ and for ξ, δ ∈ TxA \ {0}

|Torsionn(x, ξ)− Torsionn(x, δ)| < 1

2n
,

see Lemma 2.1 in [Flo19b].

Property 2.2. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let
I be an isotopy in Diff 1(A) joining the identity to f . Let x ∈ A and ξ1, ξ2 ∈ TxA \
{0}. Let ṽ(I, x, ξ1)(·), ṽ(I, x, ξ2)(·) be continuous determinations of the angle functions
v(I, x, ξ1)(·), v(I, x, ξ2)(·) respectively.
If

ṽ(I, x, ξ1)(0) > ṽ(I, x, ξ2)(0),

then for any t ∈ R it holds

ṽ(I, x, ξ1)(t) > ṽ(I, x, ξ2)(t).

See Proposition 2.2 in [Flo19b].

Property 2.3. Let f : A→ A be a C1 diffeomorphism isotopic to the identity. Let a ∈ A.
Let N ∈ N∗, (ki)i∈J0,N−1K ∈ NN and l0 = 0 < l1 < · · · < lN with li ∈ N. Assume that for
all i ∈ J0, N − 1K it holds

(li+1 − li)Torsionli+1−li(f
li(a), χ) < −ki

2
.

Then for any vector ξ ∈ TaA \ {0} we have

lNTorsionlN (a, ξ) < −
∑N−1

i=0 ki
2

+
1

2
.

In particular, when ξ = χ, we have

lNTorsionlN (a, χ) < −
∑N−1

i=0 ki
2

.

We refer to [Flo19a, Lemma 2.2.3] (see Appendix 2.5).

Thus, from Property 2.3, we bound from above finite-time torsion for negative-torsion
maps.

Property 2.4. Let f : A→ A be a negative-torsion map. Let m ∈ N∗ and let z ∈ A be
such that mTorsionm(z, χ) < −k

2
for some k ∈ N∗. Then for any n ≥ m,n ∈ N∗ it holds

nTorsionn(z, χ) < −k
2
.
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3 Set of points of zero torsion
Theorem 1.1 is an outcome of the following two propositions.

Proposition 3.1. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let
γ : T → A be a C1 essential curve. There exists C ∈ R+ such that for any n ∈ N∗ there
exists sn ∈ T so that

|nTorsionn(γ(sn), γ′(sn))| ≤ C. (6)

We postpone the proof of Proposition 3.1 to Subsections 3.1 and 3.2. In Subsection 3.1,
we will first show it in the simpler case of simple circle curves, that is γ(T) = T × {r}
for r ∈ R, using the link between torsion and linking number. Then we will prove the
proposition in the general case of C1 essential curves, see Subsection 3.2.

Proposition 3.2. Let f : A → A be a negative-torsion map. Let C ∈ R+ and let z ∈ A
be such that |nTorsionn(z, χ)| ≤ C for some n ∈ N∗. Let K = b2Cc + 2. Then for any
m ∈ J1, nK it holds

mTorsionm(z, χ) ∈
[
− K

2
, 0
)
. (7)

Proof. Since f is a negative-torsion map and by Property 2.4, for any z ∈ A and for
any m ∈ N∗ it holds mTorsionm(z, χ) < 0. Let z ∈ A and n ∈ N be such that
|nTorsionn(z, χ)| ≤ C. In particular, by the negative-torsion property, it holds

nTorsionn(z, χ) ∈ [−C, 0).

Argue by contradiction and assume that there exists m ∈ J1, nK such that

mTorsionm(z, χ) < −K
2
≤ −C − 1

2
.

If m = n we contradict the hypothesis. Thus, we have m < n. Again because f is a
negative-torsion map, it holds (n−m)Torsionn−m(fm(z), χ) < 0.
Apply then Property 2.3 for f at z with respect to N = 2, l1 = m, l2 = n, k1 = K, k2 = 0.
We so obtain

nTorsionn(z, χ) < −K
2
< −C,

which is the required contradiction.

Proof of Theorem 1.1. Let (sn)n∈N∗ ⊂ TN∗ be the sequence of points built in Proposition
3.1. That is, for any n ∈ N∗ it holds

|nTorsionn(γ(sn), γ′(sn))| ≤ C,

where C does not depend on n. By the properties of finite-time torsion, see Property 2.1,
we have

|nTorsionn(γ(sn), χ)| ≤ C +
1

2
.

Denote as s∞ ∈ T a limit point of the sequence (sn)n∈N∗ . This is our candidate point of
zero torsion.
Fix N ∈ N∗. Let ε > 0. Up to subsequences and by the continuity of finite time torsion
with respect to the point, there exists n̄ ∈ N∗, n̄ > N such that

|NTorsionN(γ(s∞), χ)−NTorsionN(γ(sn̄), χ)| < ε.
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Let K = b2C + 1c + 2. By Proposition 3.2 and since f is a negative-torsion map (see
Property 2.4), it holds

0 > NTorsionN(γ(s∞), χ) =

= (NTorsionN(γ(s∞), χ)−NTorsionN(γ(sn̄), χ)) +NTorsionN(γ(sn̄), χ) > −ε− K

2
.

Thus
TorsionN(γ(s∞), χ) ∈

[
− K

2N
, 0
)
.

In particular K is independent from N and, as N goes to +∞, we conclude that

Torsion(γ(s∞)) = 0.

3.1 A first simpler case: simple circle curves and Corollary 1.1

Proposition 3.1 can be proved easily in the framework of simple circle curves, that is if
γ(T) = T×{r} for r ∈ R, by using the notion of linking number and the relation between
linking number and torsion. The linking number for a diffeomorphism of the plane of two
points measures the average rotational velocity at which the orbit of the first point turns
around the orbit of the second one. We refer to [BB13] for a deeper discussion. Recall
that χ is the unitary positive vertical vector (0, 1).

Definition 3.1. Let I = (Ft)t∈R+ be an isotopy in Diff 1(R2) joining the identity to
F1 = F and such that F1+t = Ft ◦ F . Fix x, y ∈ R2, x 6= y. Define the oriented angle
function

R+ 3 t 7→ u(I, x, y)(t) := θ(χ, Ft(y)− Ft(x)) ∈ T,

where θ(u, v) denotes the oriented angle between the two non zero vectors u, v.
Since u(I, x, y)(·) is continuous, consider a continuous determination R+ 3 t 7→ ũ(I, x, y)(t) ∈
R of such oriented angle function.
For every n ∈ N∗ the linking number at finite time n of x and y is

Linkingn(I, x, y) :=
ũ(I, x, y)(n)− ũ(I, x, y)(0)

n
.

The linking number of x and y is, whenever the limit exists,

Linking(I, x, y) := lim
n→+∞

Linkingn(I, x, y).

Concerning the relation between torsion and linking number, we recall here Corollary 3.1
in [Flo19b]. The torsion is calculated with respect to the standard trivialization. We
measure oriented angles with respect to χ.

Corollary 3.1 (Corollary 3.1 in [Flo19b]). Let F : R2 → R2 be a C1 diffeomorphism
isotopic to the identity and let I be an isotopy joining the identity to F1 = F . Assume
there exist n ∈ N∗ and x, y ∈ R2, x 6= y such that Linkingn(I, x, y) = l ∈ R. Then
there exists z ∈ [x, y], where [x, y] denotes the segment joining the points x, y, such that
Torsionn(I, z, y − x) = l.

We proceed now with the proof of Proposition 3.1 in the case of a simple circle curve.
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Proposition 3.3. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let
r ∈ R and let n ∈ N∗. Then there exists z(r, n) ∈ T× {r} such that

Torsionn(z(r, n),H) = 0, (8)

where H = (1, 0) ∈ Tz(r,n)A is the horizontal positive unitary vector.

Proof. Let F : R2 → R2 be a lift of f . Let I = (Ft)t∈R+ ∈ Diff 1(R2) be the isotopy
joining the identity of R2 to F , obtained as lift of an isotopy on A joining IdA to f .
Observe that for any t ∈ R+ the function Ft commutes with the translation by (1, 0).
Consequently, for any fixed r ∈ R and for any n ∈ N∗ it holds

Linkingn(I, (0, r), (1, r)) = 0.

By Corollary 3.1 in [Flo19b] (here Corollary 3.1), there exists z(r, n) ∈ (p×Id)([0, 1]×{r})
such that

Torsionn(f, z(r, n),H) = 0,

where H is the unitary positive horizontal vector.

In particular, this proves Theorem 1.1 for an essential curve γ such that γ(T) = T×{r}
for r ∈ R. Consequently, we can deduce Corollary 1.1.

Proof of Corollary 1.1. By Theorem 1.1 applied at all simple circle curves, for any r ∈ R
there exists z(r) ∈ T× {r} such that Torsion(z(r)) = 0. Thus

p2 ({z ∈ A : Torsion(z) = 0}) = R.

We are now interested in the Hausdorff dimension, denoted as dimH , of the set of points
of zero torsion. Recall that if g is a Lipschitz function, then for any set U it holds
dimH(U) ≥ dimH(g(U)).
Since the projection over the second coordinate p2 is Lipschitz and since dimH(R) = 1,
we conclude that dimH({z ∈ A : Torsion(z) = 0}) ≥ 1.

3.2 The general case of C1 essential curves

We are now interested in the general case of γ being a C1 essential curve. In order to deal
with this case we need to introduce the notion of angle variation along the curve γ.
Let γ : T → A be a C1 essential curve and let x, y ∈ γ(T). Let s1, s2 ∈ T be such that
γ(s1) = x, γ(s2) = y. Fix S1 ∈ R a lift of s1 and let S2 ∈ R be the lift of s2 such that
S2 ∈ (S1, S1 + 1].
Define the oriented angle function

R+ 3 t 7→ Θ(γ, S1)(t) := θ

χ, dγ(τ)

dτ
∣∣∣τ=p(S1+t)

 ∈ T,

where p : R→ T is the covering map of T. Equivalently, Θ(γ, S1)(t) is the oriented angle
between χ and the vector tangent to γ at γ(p(S1 + t)). Denote as Θ̃(γ, S1) : R+ → R a
continuous determination of such oriented angle function.
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Definition 3.2. The angle variation along γ between x = γ(s1) and y = γ(s2) is

V arγ(x, y) := Θ̃(γ, S1)(S2 − S1)− Θ̃(γ, S1)(0),

where S1 is a lift of s1 and S2 is the lift of s2 in (S1, S+1].

Observe that the angle variation along γ does not depend on the chosen continuous
determination Θ̃(γ, S1).

Fact 3.1. We recall here some useful properties of the angle variation along a C1 essential
curve γ. Let x, y, z ∈ γ(T).

(1) V arγ(x, y) does not depend on the choice of the lift S1 of s1 ∈ T such that
γ(s1) = x;

(2) V arγ(x, x) = 0;

(3) V arγ(x, y) + V arγ(y, z) = V arγ(x, z).

Remark 3.1. Fix γ(s) ∈ γ(T). We observe that the function R+ 3 t 7→ V arγ(γ(s), γ(s+
p(t))) ∈ R is 1-periodic.

Remark 3.2. An essential curve γ on the annulus is isotopic to either

T 3 t 7→ c1(t) = (t, 0) or T 3 t 7→ c−1(t) = (−t, 0).

Proposition 3.4. Let γ : T → A be a C1 essential curve. Let s0, s1 ∈ T, s0 6= s1

correspond to points of maximal height on γ, that is

p2 ◦ γ(s0) = p2 ◦ γ(s1) = max
s∈T

p2 ◦ γ(s),

where p2 : A→ R is the projection over the second coordinate. Then

V arγ(γ(s0), γ(s1)) = 0.

Proof. Let s0, s1 ∈ T, s0 6= s1 be such that p2 ◦ γ(s0) = p2 ◦ γ(s1) = maxs∈T p2 ◦ γ(s). Let
S0 ∈ R be a lift of s0 ∈ T and let S1 ∈ (S0, S0 + 1) be the lift of s1.
Look now at the lifted framework in R2 and denote as Γ : R → R2 a lift of γ. Consider
the points Γ(S0),Γ(S1) and build the piecewise C1 closed curve C by concatenating the
following ones (see Figure 2):

— {Γ(s) : s ∈ [S0, S1]};

— the vertical segment {(p1 ◦ Γ(S1), p2 ◦ Γ(S1) + ξ) : ξ ∈ [0, 1]}.

— the horizontal segment {(ξp1 ◦Γ(S0)+(1− ξ)p1 ◦Γ(S1), p2 ◦Γ(S1)+1) : ξ ∈ [0, 1]};

— the vertical segment {(p1 ◦ Γ(S0), p2 ◦ Γ(S0) + 1− ξ) : ξ ∈ [0, 1]} 1;

Such a piecewise C1 closed curve does not have self-intersections because both Γ(S0) and
Γ(S1) are points of maximal height. We are then interested in

V arγ(γ(s0), γ(s1)) = V arΓ(Γ(S0),Γ(S1)) = Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0).

1. Recall that p2 ◦ Γ(S0) = p2 ◦ Γ(S1).
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Figure 2 – The simple curve built in the proof of Proposition 3.4.

Claim 3.1. If γ is homotopic to c1 (respectively to c−1), then

p1 ◦ Γ(S0) < p1 ◦ Γ(S1) ( resp. p1 ◦ Γ(S0) > p1 ◦ Γ(S1)) (9)

and
Γ′(S0),Γ′(S1) ∈ R+H ( resp. Γ′(S0),Γ′(S1) ∈ R−H.) . (10)

Since both S0 and S1 are points of maximal height of Γ and since Γ is C1, both Γ′(S0)
and Γ′(S1) are in RH. Let γ be homotopic to c1, the other case can be treated similarly.
Assume, by contradiction, that p1 ◦Γ(S1) < p1 ◦Γ(S0). Then, since Γ(R \ [S0, S1]) cannot
intersect the curve C , it holds Γ′(S0) ∈ R−H, otherwise the unbounded set Γ((−∞, S0])
would be contained in a bounded region.

Since γ is homotopic to c1, there exists n ∈ N such that p1 ◦ Γ(S0 − n) < p1 ◦ Γ(S)
for every S ∈ [S0, S1]. In particular, Γ([S0− n, S0)) is contained in the unbounded region
determined by C . Since p2◦Γ(S0−n) = p2◦Γ(S0), we can build another curve C ′ as done
with C , but starting from S0−n, S0. Thus, Γ(S1), as well as Γ([S1,+∞)), is contained in
the bounded region determined by C ′, providing the required contradiction. This proves
Claim 3.1.

In particular, if γ is homotopic to c1 (respectively to c−1) then the closed curve C is
oriented counterclockwisely (respectively clockwisely).
Apply then the Turning Tangent Theorem to the simple piecewise C1 closed curve C
described above (see Figure 2).
By (9) and (10), if γ is homotopic to c1, then we have

Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0) +
1

4
+

1

4
+

1

4
+

1

4
= 1.

A similar result can be obtained if γ is homotopic to c−1. Thus

Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0) = V arΓ(Γ(S0),Γ(S1)) = V arγ(γ(s0), γ(s1)) = 0.

This ends the proof of Proposition 3.4.

Notation 3.1. Let s0 ∈ T be a point of maximal height, that is such that p2 ◦ γ(s0) =
maxt∈T p2 ◦ γ(t). Fix S0 ∈ R a lift of s0.

Definition 3.3 (Complexity of a C1 essential curve). The complexity of the curve γ is

C(γ) := sup
t∈R+

|V arγ(γ(p(S0)), γ(p(S0 + t))| = max
t∈[0,1]

|V arγ(γ(p(S0)), γ(p(S0 + t))|,

where p : R→ T is the covering map of T.
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Remark 3.3. By Proposition 3.4 and by the properties of the angle variation along γ
(see Fact 3.1), we remark that the definition of C(γ) is independent of the choice of the
point s0 ∈ T of maximal height.

We can now prove Proposition 3.1 for any C1 essential curve γ. More precisely, at the end
of this section, we will show the following proposition.

Proposition 3.5. Let γ : T→ A be a C1 essential curve of complexity C(γ). Let n ∈ N∗.
Then there exists z(n) = γ(sn) ∈ γ(T) such that

|nTorsionn(γ(sn), γ′(sn))| ≤ C(γ).

Notation 3.2. For any t ∈ R+ denote as γt the curve

T 3 s 7→ γt(s) := ft(γ(s)) ∈ A.

Consider the maximal height function

Mh
γ : R+ → R

t 7→Mh
γ (t) := max

s∈T
p2 ◦ γt(s).

For any t ∈ R+ denote

Argmax(p2 ◦ γt) = {s ∈ T : p2 ◦ γt(s) = Mh
γ (t)}, (11)

that is Argmax(p2 ◦ γt) is the set of s ∈ T whose image through γt achieves the maximal
height among γt(T).
Observe that, since each γt is C1, for any s ∈ Argmax(p2 ◦ γt) the tangent vector γ′t(s)
belongs to RH. For any t ∈ R+ denote as st an element of Argmax(p2 ◦ γt).

Notation 3.3. For any t ∈ R+ we denote as tTorsiont(z, ξ) the angle variation ṽ(I, z, ξ)(t)−
ṽ(I, z, ξ)(0).

Notation 3.4. Define the function Φ : R+ → Z

R+ 3 t 7→ tTorsiont(γ(st), γ
′(st)) + V arγ(γ(s0), γ(st)) ∈ R. (12)

The function Φ takes values in Z because if γ is homotopic to c1 (respectively to c−1)
then both Dft(γ(st))γ

′(st) and γ′(s0) belongs to R+H (respectively R−H) (see (10)).

The idea of considering points of maximal (respectively minimal) height on a curve is
due to P. Le Calvez (see Section 5 in [LC91]).

Lemma 3.1. For any t ∈ R+, the value Φ(t) does not depend on the choice of st ∈
Argmax(p2 ◦ γt).

Proof. Let st, s̄t ∈ Argmax(p2 ◦ γt), st 6= s̄t. From Proposition 3.4 it holds that

V arγt(st, s̄t) = 0. (13)

Recall that the torsion at finite-time does not depend on the chosen continuous deter-
mination of the oriented angle function. So we calculate the torsion at γ(s̄t) using the
continuous lift

R+ 3 τ 7→ ṽ(f, γ(st), γ
′(st))(τ) + V arγτ (γτ (st), γτ (s̄t)) ∈ R, (14)
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where ṽ(f, γ(st), γ
′(st))(·) is a continuous lift of the angle function τ 7→ θ(χ,Dfτ (γ(st))γ

′(st)).
In particular, the function in (14) is a continuous determination of the angle function
τ 7→ θ(χ, γ′τ (s̄t)). The value Φ(t) calculated with respect to s̄t ∈ Argmax(p2 ◦ γt) is

tTorsiont(γ(s̄t), γ
′(s̄t)) + V arγ(γ(s0), γ(s̄t)).

Write then tTorsiont(γ(s̄t), γ
′(s̄t)) using the continuous determination in (14). Using the

properties of V arγt (see Fact 3.4) and by (13), we can conclude that

tTorsiont(γ(s̄t), γ
′(s̄t))+V arγ(γ(s0), γ(s̄t)) = tTorsiont(γ(st), γ

′(st))+V arγ(γ(s0), γ(st)),

that is Φ(t) does not depend on the choice of st ∈ Argmax(p2 ◦ γt).

Lemma 3.2. The function Φ : R+ → Z is the constant zero function.

Proof. If we show that Φ is continuous, then, since Φ takes values in Z and since Φ(0) = 0,
we conclude that Φ is the constant zero function.
Consider the function Φ|[0,1] : [0, 1]→ R. If its graph is compact, then Φ|[0,1] is continuous.
Denote for any t ∈ [0, 1]

Kt = {s ∈ T : s ∈ Argmax(p2 ◦ γt)} × {t}

and
K =

⋃
t∈[0,1]

Kt =
⋃
t∈[0,1]

{(s, t) : s ∈ Argmax(p2 ◦ γt)} ⊂ T× [0, 1].

The set K is bounded. Let (sn, tn)n∈N ⊂ K be a sequence converging to (s, t). The
sequence (tn)n∈N ⊂ [0, 1] converges to t ∈ [0, 1]. Moreover, s ∈ Argmax(p2 ◦ γt). That is,
K is closed. Consequently, K is compact. Consider now the function

K 3 (s, t) 7→ (t, tTorsiont(γ(s), γ′(s)) + V arγ(γ(s0), γ(s))) ∈ [0, 1]× R.

It is continuous and, since K is compact, its image is compact too. Observe that its image
is actually the graph of the function Φ|[0,1]. Thus Φ|[0,1] is continuous.
Using the same argument, we deduce that the function Φ is continuous on every compact
[0, n] for n ∈ N∗. Consequently, the function Φ : R+ → Z is continuous. This concludes
the proof.

Proof of Proposition 3.5. Fix n ∈ N∗ and let sn ∈ Argmax(p2 ◦ γn). By Lemma 3.1 the
value Φ(n) does not depend on the element of Argmax(p2 ◦ γn) and by Lemma 3.2 the
function Φ is the constant zero function. Therefore

Φ(n) = nTorsionn(γ(sn), γ′(sn)) + V arγ(γ(s0), γ(sn)) = 0.

Thus
|nTorsionn(γ(sn), γ′(sn))| = |V arγ(γ(s0), γ(sn))| ≤ C(γ),

that is z(n) := γ(sn) ∈ γ(T) is the required point.
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3.3 A partial result on C0 essential curves

It seems natural to wonder if Theorem 1.1 can be generalised to continuous essential
curves. We provide here a partial result.

Theorem 3.1. Let f : A→ A be a negative-torsion map. Let γ : T→ A be a C0 essential
curve such that γ(T) is the graph of a function. Then there exists a point z ∈ γ(T) of
zero torsion.

The result follows from Proposition 3.2 and from the following

Proposition 3.6. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let
γ : T → A be a continuous essential curve such that γ(T) is a graph. Let n ∈ N∗. Then
there exists z(n) = γ(sn) ∈ γ(T) such that

|nTorsionn(γ(sn), χ)| ≤ 1

4
. (15)

For the proof of Proposition 3.6 we need to introduce the notion of tilt angle variation.

Definition 3.4. Let ψ : R → A be a C1 embedded curve such that limt→±∞ p2 ◦ ψ(t) =
±∞.
The angle function tilt(ψ) is defined by

R 3 t 7→ tilt(ψ)(t) := θ(χ, ψ′(t)) ∈ T,

where θ(u, v) denotes the oriented angle between the non-zero vectors u, v.
Let t̃ilt(ψ) : R → R be the continuous determination of the angle function tilt(ψ) such
that if t ∈ R is such that

p2 ◦ ψ(t) > p2 ◦ ψ(s) ∀s < t,

then t̃ilt(ψ)(t) ∈ [−1
4
, 1

4
].

For more details about the well-definition of the lift t̃ilt(ψ), we refer to [Hu98] and
[Flo19a, Lemma 2.3.2].

Notation 3.5. For every z ∈ A denote as

R 3 t 7→ Vz(t) = (p1(z), t) ∈ A

the vertical line passing through z.

We can calculate the finite-time torsion looking at the continuous determination t̃ilt.

Proposition 3.7. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Then
for any z = (x, y) ∈ A it holds

Torsion1(z, χ) = t̃ilt(f ◦ Vz)(y). (16)

Proof. Recall that the time-one torsion at z ∈ A with respect to the vertical vector χ is

ṽ(f, z, χ)(1)− ṽ(f, z, χ)(0),

where t 7→ ṽ(f, z, χ)(t) is a lift of the oriented angle function t 7→ θ(χ,Dft(z)χ). Consider
t̃ilt(f ◦ Vz). Observe that both ṽ(f, z, χ)(1) and t̃ilt(f ◦ Vz)(y) are preimages of the same
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oriented angle θ(χ,Df(z)χ).
The continuous function

A 3 z = (x, y) 7→ Ψ(z) := Torsion1(z, χ)− t̃ilt(f ◦ Vz)(y) ∈ R

takes value in Z. Thus, it is constant.
We are going to exhibit a point z ∈ A such that Ψ(z) = 0. Thus we will conclude that
for any (x, y) ∈ A

Torsion1((x, y), χ) = t̃ilt(f ◦ V(x,0))(y). (17)

Consider the C1 essential curve T×{0} and its image f(T×{0}). The complexity of the
curve T× {0} is clearly zero, see Definition 3.3.
Let z̄ = (x, 0) ∈ T× {0} correspond to a point of maximal height of f(T× {0}), that is

p2 ◦ f(z̄) = max
ξ∈T×{0}

p2 ◦ f(ξ).

By Lemmas 3.1 and 3.2, it holds that Torsion1(z̄,H) = 0. By Property 2.1 we have

|Torsion1(z̄, χ)| = |Torsion1(z̄, χ)− Torsion1(z̄,H)| < 1

2
. (18)

We now show that the point z̄ = (x, 0) ∈ T× {0} is such that for any s < 0 it holds

p2 ◦ f(x, 0) > p2 ◦ f(x, s).

Indeed if by contradiction there exists ŝ < 0 such that p2◦f(x, ŝ) ≥ p2◦f(x, 0), then, since
f(x, 0) is a point of maximal height of f(T× {0}) and since f preserves the boundaries,
the curve f(T × {0}) should intersect the curve {f(x, ξ) : ξ ≤ ŝ}. This contradicts the
fact that (T× {0}) ∩ {(x, ξ) : ξ < 0} is empty and that f is a diffeomorphism.
Consequently, from the definition of t̃ilt (see Definition 3.4) we have

t̃ilt(f ◦ Vx)(0) ∈
[
−1

4
,
1

4

]
. (19)

Look now at Torsion1((x, 0), χ). Choose the continuous determination such that ṽ(f, (x, 0), χ)(0) =

0. Both ṽ(f, (x, 0), χ)(1) and t̃ilt(f ◦ Vx)(0) are preimages of the same angle. Thus

ṽ(f, (x, 0), χ)(1)− t̃ilt(f ◦ Vx)(0) = Torsion1((x, 0), χ)− t̃ilt(f ◦ Vx)(0) ∈ Z.

From (18) and from (19), we have that

Torsion1((x, 0), χ) = t̃ilt(f ◦ Vx)(0),

concluding so the proof.

Proof of Proposition 3.6. Fix n ∈ N∗. Consider fn ◦ γ(T) and let sn ∈ T be such that

p2 ◦ fn ◦ γ(sn) = max
s∈T

p2 ◦ fn ◦ γ(s).

Denote as Vγ(sn) the vertical line passing through γ(sn). Denote γ(sn) = Vγ(sn)(yn). Since
γ(T) is a graph, Vγ(sn) intersects γ(T) only once.
Consequently for every y < yn it holds

p2 ◦ fn ◦ Vγ(sn)(y) < p2 ◦ fn ◦ Vγ(sn)(yn) = p2 ◦ fn ◦ γ(sn)
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because fn ◦ γ(sn) is a point of maximal height of fn ◦ γ(T) and because fn preserves
the boundaries (otherwise we would have another point of intersection between γ(T) and
Vγ(sn)(R)).
By the definition of the continuous determination t̃ilt(Vγ(sn)), see Definition 3.4, we have
t̃ilt(Vγ(sn))(yn) ∈ [−1

4
, 1

4
].

By Proposition 3.7 we conclude that 2

Torsion1(fn, γ(sn), χ) = nTorsionn(f, γ(sn), χ) ∈
[
−1

4
,
1

4

]
.

4 A Birkhoff’s theorem through torsion
Using the tool of torsion, we can prove a Birkhoff’s-theorem-like result (see [Bir22]

and [Her83]) in a different hypothesis framework, see Theorem 1.2. The idea of using the
torsion in order to prove a Birkhoff’s-theorem-like result was already present in the work
of M. Bialy and L. Polterovich (see [BP89], [Pol91] and [BP92]). This result arises from
a question by V. Humiliére.
On one hand we do not require that f is either a twist map or a conservative map. On
the other hand f has to be a negative-torsion (positive-torsion) map and we require that
the dynamics restricted to the C1 curve is non-wandering (see [KH95]).

Lemma 4.1. Let γ be a C1 essential curve. If γ is transversal to the vertical at every
point, then γ is the graph of a function.

Proof. Let Γ : R → R2 be a lift of γ. Consider the C1 function p1 ◦ Γ : R → R. Since
Γ is transversal to the vertical at every point, it holds D(p1 ◦ Γ)(t) 6= 0 for every t ∈ R.
Without loss of generality assume that it is positive at every t ∈ R. Thus, p1 ◦ Γ is an
increasing diffeomorphism to its image.
Since Γ is a lift of an essential curve and since p1 ◦ Γ is increasing, we have that for every
t ∈ R

p1 ◦ Γ(t+ 1) = p1 ◦ Γ(t) + 1.

In particular, we deduce that p1◦Γ(R) = R. That is p1◦Γ is a C1 diffeomorphism. Denote
φ = (p1 ◦ Γ)−1. Consequently, the C1 function R 3 s 7→ p2 ◦ Γ ◦ φ(s) ∈ R is such that its
graph is Γ(R).
The function p2 ◦ Γ ◦ φ is 1-periodic. Thus, its projection on the annulus is well-defined
and γ(T) is the graph of the C1 function ψ : T → R such that ψ ◦ p = p2 ◦ Γ ◦ φ, where
p : R→ T is the covering map of T.

We will now provide an upper bound of the N -finite time torsion along the curve γ. The
bound is independent from N .

Notation 4.1. Let x ∈ A and let δ ∈ (0, 1
4
). Denote

C(x, χ, δ) := {v ∈ TxA : θ(χ, v) or θ(−χ, v) admits a preimage in (−δ, δ)} .
2. Here we make explicit the dynamics with respect to which we are calculating the torsion, since it

changes.
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Lemma 4.2. Let f : A→ A be a negative-torsion map and let K be a compact f -invariant
set. There exist ε ∈ (0, 1

2
) and δ ∈ (0, ε

4
) such that for any x ∈ K, for any v ∈ C(x, χ, δ)

and for any N ∈ N∗ it holds

NTorsionN(x, v) < −ε
2
< 0. (20)

Proof. Let us argue by induction. Since f is a negative-torsion map, since K is compact
and by the continuity of the torsion at time 1, there exist ε ∈ (0, 1

2
) and δ ∈ (0, ε

4
) such

that for every x ∈ K and for every v ∈ C(x, χ, δ) it holds

Torsion1(x, v) < −ε < 0. (21)

Assume now that the result holds for N − 1. Let x ∈ K and let v ∈ C(x, χ, δ). Without
loss of generality assume that the oriented angle θ(χ, v) admits a preimage in (−δ, δ).
The case of θ(−χ, v) admitting a preimage in (−δ, δ) can be discussed similarly. Choose
a continuous determination of the angle so that ṽ(I, x, v)(0) ∈ (−δ, δ). By inductive
hypothesis it holds

ṽ(I, x, v)(N − 1) < −ε
2

+ δ < −ε
4
.

Consider now the continuous determination such that ṽ(I, fN−1(x), χ)(0) = 0. We point
out the fact that we are considering a continuous determination with respect to a different
point in TKA. In particular

ṽ(I, x, v)(N − 1) < ṽ(I, fN−1(x), χ)(0).

From Property 2.2, from the choice of the continuous determinations and by the base
case, we have that

ṽ(I, x, v)(N) < ṽ(I, fN−1(x), χ)(1) = ṽ(I, fN−1(x), χ)(1)− ṽ(I, fN−1(x), χ)(0) < −ε.

Consequently, by the choice of ṽ(I, x, v)(·), we conclude that

NTorsionN(x, v) = ṽ(I, x, v)(N)− ṽ(I, x, v)(0) < −ε+ δ < −ε
2
.

Lemma 4.3. Let f : A→ A be a negative-torsion map. Let γ : T→ A be a C1 f -invariant
essential curve. Then for every s ∈ T and for every N ∈ N∗ it holds

NTorsionN(γ(s), γ′(s)) = V arγ(γ(s), γ(sN)), (22)

where fN ◦ γ(s) = γ(sN).

Proof. We start observing that for every s ∈ T both Torsion1(γ(s), γ′(s)) and V arγ(γ(s), γ(s1))
are variations of the same oriented angle, where γ(s1) = f ◦γ(s). In particular there exists
k ∈ Z such that for any s ∈ T

Torsion1(γ(s), γ′(s)) = V arγ(γ(s), γ(s1)) + k. (23)

The integer k ∈ Z does not depend on s ∈ T.
By Theorem 1.1 there exists a point γ(s∞) ∈ γ(T) such that Torsion(γ(s∞)) = 0.
At the same time, since γ is f -invariant and from (23), we have that for any N ∈ N∗

NTorsionN(γ(s∞), γ′(s∞)) = Nk +
N−1∑
i=0

V arγ(γ(si), γ(si+1) = Nk + V arγ(γ(s∞), γ(sN)),
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where for every i ∈ J0, NK we denote as si ∈ T the point such that γ(si) = f i ◦ γ(s∞).
Since γ(s∞) has zero torsion and since we have |V arγ(γ(s∞), γ(sN))| ≤ C(γ) < +∞, we
conclude that k = 0.
In particular for every s ∈ T and every N ∈ N∗ it holds

NTorsionN(γ(s), γ′(s)) = V arγ(γ(s), γ(sN)),

where γ(sN) = fN ◦ γ(s).

An outcome of Lemma 4.3 is the following corollary, already proved by S. Crovisier for
twist maps in [Cro03].

Corollary 4.1. Let f : A→ A be a negative-torsion map. Let γ : T→ A be a C1 essential
f -invariant curve on A. Then, for any s ∈ T it holds Torsion(γ(s)) = 0.

We can now finally prove Theorem 1.2.

Proof of Theorem 1.2. Argue by contradiction and assume that γ is not a graph. Then
from Lemma 4.1 there exists a point z = γ(s) such that γ′(s) ∈ Rχ. Denote

χ′ =


χ if γ′(s) ∈ R+χ,

−χ if γ′(s) ∈ R−χ.

Let ε ∈ (0, 1
2
) and δ ∈ (0, ε

2
) be the parameters of Lemma 4.2 applied at the f -invariant

compact set γ(T).
Let U ⊂ T be a neighborhood of s such that for any t ∈ U the oriented angle θ(χ′, γ′(t))
admits a preimage in (−δ, δ). The dynamics f|γ is non-wandering and therefore there
exists N ∈ N and τ ∈ U such that τN ∈ U where fN ◦ γ(τ) = γ(τN).
From Lemma 4.3 it holds NTorsionN(f, γ(τ), γ′(τ)) = V arγ(γ(τ), γ(τN)). Observe that
V arγ(γ(τ), γ(τN)) ∈ (−2δ, 2δ).
Consequently, since δ ∈ (0, ε

4
), we conclude that

NTorsionN(γ(τ), γ′(τ)) ∈
(
−ε

2
,
ε

2

)
.

This contradicts Lemma 4.2 and we conclude.

Remark 4.1. We have shown that the curve γ is the graph of a function and it is always
transverse to the vertical. Thus, since γ is C1, we deduce that γ is the graph of a C1

function.

Remark 4.2. In order to obtain the result of Theorem 1.2 we need information over the
dynamics on the curve. Indeed, there exist non conservative positive twist maps that
admit C1 essential f -invariant curves which are not graphs of function. See Proposition
15.3 in [LC88].
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