Anna Florio 
  
On the set of points of zero torsion for negative-torsion maps of the annulus

For negative-torsion maps on the annulus we show that on every C 1 essential curve there is at least one point of zero torsion. As an outcome we deduce that the Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a byproduct we obtain a Birkhoff's Theorem-Like result for C 1 essential curves in the framework of negative-torsion maps.

Introduction

Let A = T × R where T = R/Z. Endow A with the standard Riemannian metric and the standard trivialization. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let (f t ) t∈[0,1] be an isotopy in Diff 1 (A) joining the identity to f 1 = f . We are interested in the linearized dynamics: more precisely we look at the torsion, a dynamical invariant first introduced by D. Ruelle in 1985 (see [START_REF] Ruelle | Rotation numbers for diffeomorphisms and flows[END_REF]), who called it rotation number. Roughly speaking, the torsion of the orbit of a point x, denoted as Torsion(f, x), describes the average asymptotic velocity at which the differential of the diffeomorphism makes the tangent vectors turn along the considered orbit. The torsion at finite time T of a point (x, ξ) of the tangent bundle is the variation between 0 and T of a continuous determination of the angle function associated to Df t (x)ξ, t ∈ [0, T ], divided by T . The torsion of the orbit of x is the limit for T → +∞ of the torsion at finite time T , whenever the limit exists. If µ is a compactly supported f -invariant Borel probability measure, then the torsion of the orbit of x exists for µ-almost every point x ∈ A, see [START_REF] Ruelle | Rotation numbers for diffeomorphisms and flows[END_REF]. Besides Ruelle's work, in the framework of conservative twist maps, the structure of some null torsion sets, called Aubry-Mather sets, has been studied by Mather (in [Mat82] and [START_REF] Mather | Variational construction of orbits of twist diffeomorphisms[END_REF]) and Angenent (in [START_REF] Angenent | The periodic orbits of an area preserving twist map[END_REF]) through a variational approach. Using topological tools, Crovisier has generalised some results in the non conservative twist framework. He has shown that for every rotation number there exists an Aubry-Mather sets of zero torsion, see Theorem 1.2 in [START_REF] Crovisier | Ensembles de torsion nulle des applications déviant la verticale[END_REF].

A negative-torsion map is a C 1 diffeomorphism isotopic to the identity such that at every point the vertical vector has a negative average rotational velocity: that is, for every point x ∈ A the torsion at finite time 1 at x with respect to the vertical vector is negative. Positive twist maps and Tonelli Hamiltonian flows at finite time are examples of negative-torsion maps. The notion of negative-torsion map is equivalent to the notion of positive tilt maps as presented in [START_REF] Hu | A variational principle associated to positive tilt maps[END_REF] and [START_REF] Gidea | Diffusion along transition chains of invariant tori and Aubry-Mather sets[END_REF]. A notion of positive-torsion maps can be given similarly. In this paper we consider the set of points of zero torsion for negative-torsion maps. The main result of the work is the following.

Theorem 1.1. Let f : A → A be a negative-torsion map. Then for any C 1 essential curve γ : T → A there exists a point z ∈ γ(T) such that Torsion(z) = 0.

Remark that we do not ask any conservative hypothesis on f . Applying Theorem 1.1 to every simple circle curves, i.e. any curve T × {r} for r ∈ R, we can deduce the following Corollary 1.1. Let f : A → A be a negative-torsion map. Then dim H ({z ∈ A :

Torsion(z) = 0}) ≥ 1,
where dim H (•) denotes the Hausdorff dimension of the set.

The idea of the proof of Theorem 1.1 is to consider, for every N ∈ N * , the preimage on γ of points of maximal height of f N • γ(T). We then show that the angle variation of the vector tangent to γ at these points between 0 and N is bounded uniformly in N . By the negative-torsion property, we control the torsion at finite time m of these points for every m ∈ 1, N . Consider then the sequence of preimages on γ of such points of maximal height. Every limit point of the sequence is a point of zero torsion. The idea of looking at points of maximal height can be adapted to extend the result to C 0 essential curves which are graphs of functions (see Theorem 3.1). We do not know if the result can be extended also to C 0 essential curves which are not graphs.

As a by-product of the proof of Theorem 1.1, we deduce that the torsion of an orbit of a point belonging to a C 1 f -invariant essential curve can be calculated through the angle variation of the vector tangent to the curve along the curve itself. We obtain so as a byproduct of the proof of Theorem 1.1 a version of Birkhoff's theorem for negative-torsion maps.

Theorem 1.2. Let f : A → A be a negative-torsion map. Let γ : T → A be a C 1 finvariant essential curve such that f |γ is non wandering. Then γ is the graph of a C 1 function.

All the above results still hold also in the case of positive-torsion maps. The paper is organised as follows. In Section 2 we fix the notation and we provide the main definitions of torsion and negative-torsion maps. Useful properties of torsion are recalled. Section 3 is devoted to the discussion of the proof of Theorem 1.1. Its demonstration relies on two main propositions, see Propositions 3.1 and 3.2. In particular, Proposition 3.1 is discussed first in a simpler case in Subsection 3.1 and then in the general framework in Subsection 3.2. Subsection 3.3 concerns the partial generalisation of Theorem 1.1 to continuous essential curves. Finally, we present the Birkhoff's tTheorem-Like result (see Theorem 1.2) for negative-torsion maps in Section 4.

Notation, main definitions and first properties of torsion

Let T = R/Z and let A = T × R. Denote as p : R → T and as p × Id : R 2 → A the universal covering maps of T and of A respectively. The functions p 1 , p 2 denote the projections over the first and the second coordinate respectively over A and, with an abuse of notation, also over R 2 . Endow A with the standard Riemannian metric and the standard trivialization. We fix the counterclockwise orientation of R 2 . Thus the notion of oriented angle between two non zero vectors is well-defined.

Definition 2.1 (see [START_REF] Hirsch | Differential topology[END_REF]). Let M, N be differential manifolds and let f, g : M → N be in Diff 1 (M, N ). An isotopy (φ t ) t∈[0,1] joining f to g is an arc in Diff 1 (M, N ) such that φ 0 = f, φ 1 = g and which is continuous with respect to the weak or compact-open C 1 topology on Diff 1 (M, N ).

Usually, isotopies are paths in the space of homeomorphisms, rather than diffeomorphisms. Nevertheless, in our case Definition 2.1 is not restrictive: indeed, any diffeomorphism of the annulus A that is isotopic to the identity through a path in the space of homeomorphisms, it is also isotopic to the identity by a path in the space of diffeomorphisms, see for example [START_REF] Smale | Diffeomorphisms of the 2-sphere[END_REF] or [START_REF] Gramain | Le type d'homotopie du groupe des difféomorphismes d'une surface compacte[END_REF].

Definition 2.2. Let I ⊂ R be an interval. A continuous determination of an angle function θ : I → T is a continuous lift of θ, that is a continuous function θ : I → R such that θ(s) is a preimage (by p : R → T) of the oriented angle θ(s) for any s ∈ I.

Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let (f t ) t∈[0,1] be an isotopy joining the identity to f . Extend the isotopy for any positive time so that for any t ∈ R + the C 1 diffeomorphism f t : A → A is defined as f t := f {t} • f t , where {•}, • are the fractionary and integer part respectively. We denote I = (f t ) t∈R + the extended isotopy. For any x ∈ A denote as χ = (0, 1) ∈ T x A the unitary positive vertical vector. The definition of torsion we adopt is the one given by Béguin and Boubaker in [START_REF] Béguin | Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms[END_REF]. The asymptotic torsion is actually Ruelle's rotation number, see [START_REF] Ruelle | Rotation numbers for diffeomorphisms and flows[END_REF].

Definition 2.3. Let x ∈ A, ξ ∈ T x A, ξ = 0. Define the oriented angle function R + t → v(I, x, ξ)(t) := θ(χ, Df t (x)ξ) ∈ T, (1) 
where θ(u, v) denotes the oriented angle between the two non zero vectors u, v.

Denote R + t → ṽ(I, x, ξ)(t) ∈ R (2) 
a continuous determination of the continuous oriented angle function v(I, x, ξ)(•).

The torsion at finite time n ∈ N * of (x, ξ) ∈ T A, ξ = 0 is Torsion n (I, x, ξ) := ṽ(I, x, ξ)(n) -ṽ(I, x, ξ)(0) n .

(3)

The torsion at x ∈ A is, whenever it exists, Torsion(I, x) := lim n→+∞ Torsion n (I, x, ξ).

(4)

Remark 2.1. The torsion at finite time does not depend on the choice of the continuous determination of the oriented angle function. Moreover, it is independent from the choice of the isotopy joining the identity to f , see Proposition 2.5 in [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF]. The (asymptotic) torsion, whenever it exists, does not depend on the tangent vector used to calculate the finite time torsion. We refer to [START_REF] Béguin | Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms[END_REF] for these properties.

Notation 2.1. Since the torsion does not depend on the chosen isotopy, we write Torsion n (f, x, ξ) and Torsion(f, x). In addition, in order to lighten the notation, we omit the dependance on the dynamics f of the torsion, writing just Torsion n (x, ξ) and Torsion(x), when it will be clear from the contest.

Example 2.1. Consider the dynamical system of the simple pendulum obtained by the Hamiltonian H(θ, r) = r 2 2 -cos(2πθ) 4π 2 . Let (φ t ) t∈R be the associated flow and consider the time-one flow f = φ 1 . Let U denote the open region contained between the separatrices of the pendulum system, see Figure 1. We can calculate the torsion with respect to the Hamiltonian vector field X H , which is always tangent to the trajectories. So, every point z not belonging to U has zero (asymptotic) torsion, since the corresponding vector X H (φ t (z)) is always contained in the same open half-plane and thus its angle variation is uniformly bounded in time. The elliptic point (0, 0) has torsion equal to -1, since each differential Dφ t (0, 0) is a clockwise rotation of angle t. Every point z ∈ U \ {(0, 0)} is periodic and has torsion equal to -1 T (z) , where T (z) is the period of z, since the vector X H (φ t (z)) is turning clockwisely once over a time interval of length T (z). (
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Example 2.2. Every positive twist map is a negative-torsion map (see [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF]). Actually the notion of negative-torsion map is equivalent to the notion of positive tilt map: see [START_REF] Hu | A variational principle associated to positive tilt maps[END_REF], [START_REF] Gidea | Diffusion along transition chains of invariant tori and Aubry-Mather sets[END_REF] and [START_REF] Florio | Asymptotic Maslov indices[END_REF]. We remark that the notion of negative-torsion (positivetorsion) maps can be given also in terms of positive (negative) paths according to the definitions in [START_REF] Michael | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF] and [START_REF] Le | Propriétés des attracteurs de Birkhoff[END_REF].

Definition 2.5. An essential curve is a C 0 embedded circle in A not homotopic to a point.

We recall here some properties of finite-time torsion. We refer to [START_REF] Béguin | Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms[END_REF], [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF] and [START_REF] Florio | Asymptotic Maslov indices[END_REF] for the proofs.

Property 2.1. Fix x ∈ A. If we calculate finite-time torsion at x with respect to different tangent vectors, we can control the error. Indeed, for n ∈ N * and for ξ, δ ∈ T

x A \ {0} |Torsion n (x, ξ) -Torsion n (x, δ)| < 1 2n , see Lemma 2.1 in [Flo19b].
Property 2.2. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let I be an isotopy in Diff 1 (A) joining the identity to f . Let

x ∈ A and ξ 1 , ξ 2 ∈ T x A \ {0}. Let ṽ(I, x, ξ 1 )(•), ṽ(I, x, ξ 2 )(•) be continuous determinations of the angle functions v(I, x, ξ 1 )(•), v(I, x, ξ 2 )(•) respectively. If ṽ(I, x, ξ 1 )(0) > ṽ(I, x, ξ 2 )(0), then for any t ∈ R it holds ṽ(I, x, ξ 1 )(t) > ṽ(I, x, ξ 2 )(t). See Proposition 2.2 in [Flo19b]. Property 2.3. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let a ∈ A. Let N ∈ N * , (k i ) i∈ 0,N -1 ∈ N N and l 0 = 0 < l 1 < • • • < l N with l i ∈ N. Assume that for all i ∈ 0, N -1 it holds (l i+1 -l i )Torsion l i+1 -l i (f l i (a), χ) < - k i 2 .
Then for any vector ξ ∈ T a A \ {0} we have

l N Torsion l N (a, ξ) < - N -1 i=0 k i 2 + 1 2 .
In particular, when ξ = χ, we have

l N Torsion l N (a, χ) < - N -1 i=0 k i 2 .
We refer to [Flo19a, Lemma 2.2.3] (see Appendix 2.5).

Thus, from Property 2.3, we bound from above finite-time torsion for negative-torsion maps.

Property 2.4. Let f : A → A be a negative-torsion map. Let m ∈ N * and let z ∈ A be such that mTorsion m (z, χ) < -k 2 for some k ∈ N * . Then for any n ≥ m, n ∈ N * it holds nTorsion n (z, χ) < -k 2 .

Set of points of zero torsion

Theorem 1.1 is an outcome of the following two propositions.

Proposition 3.1. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let γ : T → A be a C 1 essential curve. There exists C ∈ R + such that for any n ∈ N * there exists s n ∈ T so that

|nTorsion n (γ(s n ), γ (s n ))| ≤ C. (6) 
We postpone the proof of Proposition 3.1 to Subsections 3.1 and 3.2. In Subsection 3.1, we will first show it in the simpler case of simple circle curves, that is γ(T) = T × {r} for r ∈ R, using the link between torsion and linking number. Then we will prove the proposition in the general case of C 1 essential curves, see Subsection 3.2.

Proposition 3.2. Let f : A → A be a negative-torsion map. Let C ∈ R + and let z ∈ A be such that |nTorsion n (z, χ)| ≤ C for some n ∈ N * . Let K = 2C + 2. Then for any m ∈ 1, n it holds mTorsion m (z, χ) ∈ - K 2 , 0 . (7) 
Proof. Since f is a negative-torsion map and by Property 2.4, for any z ∈ A and for any m ∈ N * it holds mTorsion m (z, χ) < 0. Let z ∈ A and n ∈ N be such that

|nTorsion n (z, χ)| ≤ C.
In particular, by the negative-torsion property, it holds

nTorsion n (z, χ) ∈ [-C, 0).
Argue by contradiction and assume that there exists m ∈ 1, n such that

mTorsion m (z, χ) < - K 2 ≤ -C - 1 2 .
If m = n we contradict the hypothesis. Thus, we have m < n. Again because f is a negative-torsion map, it holds (n -m)Torsion n-m (f m (z), χ) < 0.

Apply then Property 2.3 for f at z with respect to

N = 2, l 1 = m, l 2 = n, k 1 = K, k 2 = 0.
We so obtain

nTorsion n (z, χ) < - K 2 < -C,
which is the required contradiction.

Proof of Theorem 1.1. Let (s n ) n∈N * ⊂ T N * be the sequence of points built in Proposition 3.1. That is, for any n ∈ N * it holds

|nTorsion n (γ(s n ), γ (s n ))| ≤ C,
where C does not depend on n. By the properties of finite-time torsion, see Property 2.1, we have

|nTorsion n (γ(s n ), χ)| ≤ C + 1 2 .
Denote as s ∞ ∈ T a limit point of the sequence (s n ) n∈N * . This is our candidate point of zero torsion. Fix N ∈ N * . Let ε > 0. Up to subsequences and by the continuity of finite time torsion with respect to the point, there exists n ∈ N * , n > N such that

|N Torsion N (γ(s ∞ ), χ) -N Torsion N (γ(s n), χ)| < ε.
Let K = 2C + 1 + 2. By Proposition 3.2 and since f is a negative-torsion map (see Property 2.4), it holds

0 > N Torsion N (γ(s ∞ ), χ) = = (N Torsion N (γ(s ∞ ), χ) -N Torsion N (γ(s n), χ)) + N Torsion N (γ(s n), χ) > -ε - K 2 . Thus Torsion N (γ(s ∞ ), χ) ∈ - K 2N , 0 .
In particular K is independent from N and, as N goes to +∞, we conclude that Torsion(γ(s ∞ )) = 0.

3.1 A first simpler case: simple circle curves and Corollary 1.1

Proposition 3.1 can be proved easily in the framework of simple circle curves, that is if γ(T) = T × {r} for r ∈ R, by using the notion of linking number and the relation between linking number and torsion. The linking number for a diffeomorphism of the plane of two points measures the average rotational velocity at which the orbit of the first point turns around the orbit of the second one. We refer to [START_REF] Béguin | Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms[END_REF] for a deeper discussion. Recall that χ is the unitary positive vertical vector (0, 1).

Definition 3.1. Let I = (F t ) t∈R + be an isotopy in Diff 1 (R 2 ) joining the identity to The linking number of x and y is, whenever the limit exists, Linking(I, x, y) := lim n→+∞ Linking n (I, x, y).

F 1 = F and such that F 1+t = F t • F . Fix x, y ∈ R 2 , x =
Concerning the relation between torsion and linking number, we recall here Corollary 3.1 in [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF]. The torsion is calculated with respect to the standard trivialization. We measure oriented angles with respect to χ.

Corollary 3.1 (Corollary 3.1 in [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF]). Let F : R 2 → R 2 be a C 1 diffeomorphism isotopic to the identity and let I be an isotopy joining the identity to F 1 = F . Assume there exist n ∈ N * and x, y ∈ R 2 , x = y such that Linking n (I, x, y) = l ∈ R. Then there exists z ∈ [x, y], where [x, y] denotes the segment joining the points x, y, such that Torsion n (I, z, y -x) = l.

We proceed now with the proof of Proposition 3.1 in the case of a simple circle curve.

Proposition 3.3. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let r ∈ R and let n ∈ N * . Then there exists z(r, n) ∈ T × {r} such that

Torsion n (z(r, n), H) = 0, (8) 
where H = (1, 0) ∈ T z(r,n) A is the horizontal positive unitary vector.

Proof. Let F : R 2 → R 2 be a lift of f . Let I = (F t ) t∈R + ∈ Diff 1 (R 2 ) be the isotopy joining the identity of R 2 to F , obtained as lift of an isotopy on A joining Id A to f . Observe that for any t ∈ R + the function F t commutes with the translation by (1, 0). Consequently, for any fixed r ∈ R and for any n ∈ N * it holds

Linking n (I, (0, r), (1, r)) = 0.

By Corollary 3.1 in [START_REF] Florio | Torsion and linking number for a surface diffeomorphism[END_REF] (here Corollary 3.1), there exists z(r, n)

∈ (p×Id)([0, 1]×{r}) such that Torsion n (f, z(r, n), H) = 0,
where H is the unitary positive horizontal vector.

In particular, this proves Theorem 1.1 for an essential curve γ such that γ(T) = T×{r} for r ∈ R. Consequently, we can deduce Corollary 1.1.

Proof of Corollary 1.1. By Theorem 1.1 applied at all simple circle curves, for any r ∈ R there exists z(r) ∈ T × {r} such that Torsion(z(r)) = 0. Thus

p 2 ({z ∈ A : Torsion(z) = 0}) = R.
We are now interested in the Hausdorff dimension, denoted as dim H , of the set of points of zero torsion. Recall that if g is a Lipschitz function, then for any set U it holds dim H (U ) ≥ dim H (g(U )). Since the projection over the second coordinate p 2 is Lipschitz and since dim H (R) = 1, we conclude that dim H ({z ∈ A : Torsion(z) = 0}) ≥ 1.

The general case of C 1 essential curves

We are now interested in the general case of γ being a C 1 essential curve. In order to deal with this case we need to introduce the notion of angle variation along the curve γ. Let γ : T → A be a C 1 essential curve and let x, y ∈ γ(T). Let s 1 , s 2 ∈ T be such that γ(s 1 ) = x, γ(s 2 ) = y. Fix S 1 ∈ R a lift of s 1 and let S 2 ∈ R be the lift of s 2 such that S 2 ∈ (S 1 , S 1 + 1]. Define the oriented angle function

R + t → Θ(γ, S 1 )(t) := θ   χ, dγ(τ ) dτ τ =p(S 1 +t)   ∈ T,
where p : R → T is the covering map of T. Equivalently, Θ(γ, S 1 )(t) is the oriented angle between χ and the vector tangent to γ at γ(p(S 1 + t)). Denote as Θ(γ, S 1 ) : R + → R a continuous determination of such oriented angle function.

Definition 3.2. The angle variation along γ between x = γ(s 1 ) and y = γ(s 2 ) is

V ar γ (x, y) := Θ(γ, S 1 )(S 2 -S 1 ) -Θ(γ, S 1 )(0),
where S 1 is a lift of s 1 and S 2 is the lift of s 2 in (S 1 , S + 1].

Observe that the angle variation along γ does not depend on the chosen continuous determination Θ(γ, S 1 ).

Fact 3.1. We recall here some useful properties of the angle variation along a C 1 essential curve γ. Let x, y, z ∈ γ(T).

(1) V ar γ (x, y) does not depend on the choice of the lift S 1 of s 1 ∈ T such that γ(s 1 ) = x;

(2) V ar γ (x, x) = 0;

(3) V ar γ (x, y) + V ar γ (y, z) = V ar γ (x, z).

Remark 3.1. Fix γ(s) ∈ γ(T). We observe that the function

R + t → V ar γ (γ(s), γ(s + p(t))) ∈ R is 1-periodic.
Remark 3.2. An essential curve γ on the annulus is isotopic to either

T t → c 1 (t) = (t, 0) or T t → c -1 (t) = (-t, 0).
Proposition 3.4. Let γ : T → A be a C 1 essential curve. Let s 0 , s 1 ∈ T, s 0 = s 1 correspond to points of maximal height on γ, that is

p 2 • γ(s 0 ) = p 2 • γ(s 1 ) = max s∈T p 2 • γ(s),
where p 2 : A → R is the projection over the second coordinate. Then

V ar γ (γ(s 0 ), γ(s 1 )) = 0.

Proof. Let s 0 , s 1 ∈ T, s 0 = s 1 be such that p 2 • γ(s 0 ) = p 2 • γ(s 1 ) = max s∈T p 2 • γ(s). Let S 0 ∈ R be a lift of s 0 ∈ T and let S 1 ∈ (S 0 , S 0 + 1) be the lift of s 1 . Look now at the lifted framework in R 2 and denote as Γ : R → R 2 a lift of γ. Consider the points Γ(S 0 ), Γ(S 1 ) and build the piecewise C 1 closed curve C by concatenating the following ones (see Figure 2):

-{Γ(s) : s ∈ [S 0 , S 1 ]}; -the vertical segment {(p 1 • Γ(S 1 ), p 2 • Γ(S 1 ) + ξ) : ξ ∈ [0, 1]}.
-the horizontal segment {(ξp

1 • Γ(S 0 ) + (1 -ξ)p 1 • Γ(S 1 ), p 2 • Γ(S 1 ) + 1) : ξ ∈ [0, 1]}; -the vertical segment {(p 1 • Γ(S 0 ), p 2 • Γ(S 0 ) + 1 -ξ) : ξ ∈ [0, 1]} 1 ;
Such a piecewise C 1 closed curve does not have self-intersections because both Γ(S 0 ) and Γ(S 1 ) are points of maximal height. We are then interested in 

V ar γ (γ(s 0 ), γ(s 1 )) = V ar Γ (Γ(S 0 ), Γ(S 1 )) = Θ(Γ, S 0 )(S 1 -S 0 ) -Θ(Γ, S 0 )(0). 1. Recall that p 2 • Γ(S 0 ) = p 2 • Γ(S 1 ).
p 1 • Γ(S 0 ) < p 1 • Γ(S 1 ) ( resp. p 1 • Γ(S 0 ) > p 1 • Γ(S 1 )) (9)
and

Γ (S 0 ), Γ (S 1 ) ∈ R + H ( resp. Γ (S 0 ), Γ (S 1 ) ∈ R -H.) . ( 10 
)
Since both S 0 and S 1 are points of maximal height of Γ and since Γ is C 1 , both Γ (S 0 ) and Γ (S 1 ) are in RH. Let γ be homotopic to c 1 , the other case can be treated similarly. Assume, by contradiction, that

p 1 • Γ(S 1 ) < p 1 • Γ(S 0 ). Then, since Γ(R \ [S 0 , S 1 ]) cannot intersect the curve C , it holds Γ (S 0 ) ∈ R -H, otherwise the unbounded set Γ((-∞, S 0 ]) would be contained in a bounded region. Since γ is homotopic to c 1 , there exists n ∈ N such that p 1 • Γ(S 0 -n) < p 1 • Γ(S) for every S ∈ [S 0 , S 1 ]. In particular, Γ([S 0 -n, S 0 )) is contained in the unbounded region determined by C . Since p 2 • Γ(S 0 -n) = p 2 • Γ(S 0
), we can build another curve C as done with C , but starting from S 0 -n, S 0 . Thus, Γ(S 1 ), as well as Γ([S 1 , +∞)), is contained in the bounded region determined by C , providing the required contradiction. This proves Claim 3.1.

In particular, if γ is homotopic to c 1 (respectively to c -1 ) then the closed curve C is oriented counterclockwisely (respectively clockwisely). Apply then the Turning Tangent Theorem to the simple piecewise C 1 closed curve C described above (see Figure 2). By ( 9) and (10), if γ is homotopic to c 1 , then we have

Θ(Γ, S 0 )(S 1 -S 0 ) -Θ(Γ, S 0 )(0) + 1 4 + 1 4 + 1 4 + 1 4 = 1.
A similar result can be obtained if γ is homotopic to c -1 . Thus

Θ(Γ, S 0 )(S 1 -S 0 ) -Θ(Γ, S 0 )(0) = V ar Γ (Γ(S 0 ), Γ(S 1 )) = V ar γ (γ(s 0 ), γ(s 1 )) = 0.
This ends the proof of Proposition 3.4.

Notation 3.1. Let s 0 ∈ T be a point of maximal height, that is such that

p 2 • γ(s 0 ) = max t∈T p 2 • γ(t). Fix S 0 ∈ R a lift of s 0 .
Definition 3.3 (Complexity of a C 1 essential curve). The complexity of the curve γ is

C(γ) := sup t∈R + |V ar γ (γ(p(S 0 )), γ(p(S 0 + t))| = max t∈[0,1] |V ar γ (γ(p(S 0 )), γ(p(S 0 + t))|,
where p : R → T is the covering map of T.

Remark 3.3. By Proposition 3.4 and by the properties of the angle variation along γ (see Fact 3.1), we remark that the definition of C(γ) is independent of the choice of the point s 0 ∈ T of maximal height.

We can now prove Proposition 3.1 for any C 1 essential curve γ. More precisely, at the end of this section, we will show the following proposition.

Proposition 3.5. Let γ : T → A be a C 1 essential curve of complexity C(γ). Let n ∈ N * . Then there exists z

(n) = γ(s n ) ∈ γ(T) such that |nTorsion n (γ(s n ), γ (s n ))| ≤ C(γ).
Notation 3.2. For any t ∈ R + denote as γ t the curve

T s → γ t (s) := f t (γ(s)) ∈ A.
Consider the maximal height function

M h γ : R + → R t → M h γ (t) := max s∈T p 2 • γ t (s)
.

For any t ∈ R + denote Argmax(p 2 • γ t ) = {s ∈ T : p 2 • γ t (s) = M h γ (t)}, (11) 
that is Argmax(p 2 • γ t ) is the set of s ∈ T whose image through γ t achieves the maximal height among γ t (T).

Observe that, since each γ t is C 1 , for any s ∈ Argmax(p 2 • γ t ) the tangent vector γ t (s) belongs to RH. For any t ∈ R + denote as s t an element of Argmax(p 2 • γ t ).

Notation 3.3. For any t ∈ R + we denote as t Torsion t (z, ξ) the angle variation ṽ(I, z, ξ)(t)ṽ(I, z, ξ)(0).

Notation 3.4. Define the function Φ :

R + → Z R + t → t Torsion t (γ(s t ), γ (s t )) + V ar γ (γ(s 0 ), γ(s t )) ∈ R. (12) 
The function Φ takes values in Z because if γ is homotopic to c 1 (respectively to c -1 ) then both Df t (γ(s t ))γ (s t ) and γ (s 0 ) belongs to R + H (respectively R -H) (see ( 10)).

The idea of considering points of maximal (respectively minimal) height on a curve is due to P. Le Calvez (see Section 5 in [START_REF] Le | Propriétés dynamiques des difféomorphismes de l'anneau et du tore[END_REF]).

Lemma 3.1. For any t ∈ R + , the value Φ(t) does not depend on the choice of

s t ∈ Argmax(p 2 • γ t ). Proof. Let s t , st ∈ Argmax(p 2 • γ t ), s t = st . From Proposition 3.4 it holds that V ar γt (s t , st ) = 0. (13) 
Recall that the torsion at finite-time does not depend on the chosen continuous determination of the oriented angle function. So we calculate the torsion at γ(s t ) using the continuous lift

R + τ → ṽ(f, γ(s t ), γ (s t ))(τ ) + V ar γτ (γ τ (s t ), γ τ (s t )) ∈ R, (14) 
where ṽ(f, γ(s t ), γ (s t ))(•) is a continuous lift of the angle function τ → θ(χ, Df τ (γ(s t ))γ (s t )).

In particular, the function in ( 14) is a continuous determination of the angle function τ → θ(χ, γ τ (s t )). The value Φ(t) calculated with respect to st ∈ Argmax(p 2 • γ t ) is t Torsion t (γ(s t ), γ (s t )) + V ar γ (γ(s 0 ), γ(s t )).

Write then t Torsion t (γ(s t ), γ (s t )) using the continuous determination in (14). Using the properties of V ar γt (see Fact 3.4) and by (13), we can conclude that t Torsion t (γ(s t ), γ (s t ))+V ar γ (γ(s 0 ), γ(s t )) = t Torsion t (γ(s t ), γ (s t ))+V ar γ (γ(s 0 ), γ(s t )), that is Φ(t) does not depend on the choice of s t ∈ Argmax(p 2 • γ t ).

Lemma 3.2. The function Φ : R + → Z is the constant zero function.

Proof. If we show that Φ is continuous, then, since Φ takes values in Z and since Φ(0) = 0, we conclude that Φ is the constant zero function.

Consider the function 

Φ |[0,1] : [0, 1] → R. If its graph is compact, then Φ |[0,1] is continuous. Denote for any t ∈ [0, 1] K t = {s ∈ T : s ∈ Argmax(p 2 • γ t )} × {t} and K = t∈[0,1] K t = t∈[0,1] {(s, t) : s ∈ Argmax(p 2 • γ t )} ⊂ T × [0, 1].
Φ(n) = n Torsion n (γ(s n ), γ (s n )) + V ar γ (γ(s 0 ), γ(s n )) = 0. Thus |n Torsion n (γ(s n ), γ (s n ))| = |V ar γ (γ(s 0 ), γ(s n ))| ≤ C(γ), that is z(n) := γ(s n ) ∈ γ(T)
is the required point.

A partial result on C 0 essential curves

It seems natural to wonder if Theorem 1.1 can be generalised to continuous essential curves. We provide here a partial result.

Theorem 3.1. Let f : A → A be a negative-torsion map. Let γ : T → A be a C 0 essential curve such that γ(T) is the graph of a function. Then there exists a point z ∈ γ(T) of zero torsion.

The result follows from Proposition 3.2 and from the following Proposition 3.6. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Let γ : T → A be a continuous essential curve such that γ(T) is a graph. Let n ∈ N * . Then there exists z

(n) = γ(s n ) ∈ γ(T) such that |nTorsion n (γ(s n ), χ)| ≤ 1 4 . ( 15 
)
For the proof of Proposition 3.6 we need to introduce the notion of tilt angle variation.

Definition 3.4. Let ψ : R → A be a C 1 embedded curve such that lim t→±∞ p 2 • ψ(t) = ±∞.

The angle function tilt(ψ) is defined by

R t → tilt(ψ)(t) := θ(χ, ψ (t)) ∈ T,
where θ(u, v) denotes the oriented angle between the non-zero vectors u, v.

Let tilt(ψ) : R → R be the continuous determination of the angle function tilt

(ψ) such that if t ∈ R is such that p 2 • ψ(t) > p 2 • ψ(s) ∀s < t, then tilt(ψ)(t) ∈ [-1 4 , 1 4 ].
For more details about the well-definition of the lift tilt(ψ), we refer to [START_REF] Hu | A variational principle associated to positive tilt maps[END_REF] and [Flo19a, Lemma 2.3.2]. Notation 3.5. For every z ∈ A denote as

R t → V z (t) = (p 1 (z), t) ∈ A the vertical line passing through z.
We can calculate the finite-time torsion looking at the continuous determination tilt.

Proposition 3.7. Let f : A → A be a C 1 diffeomorphism isotopic to the identity. Then for any z = (x, y) ∈ A it holds

Torsion 1 (z, χ) = tilt(f • V z )(y). (16) 
Proof. Recall that the time-one torsion at z ∈ A with respect to the vertical vector χ is ṽ(f, z, χ)(1) -ṽ(f, z, χ)(0), where t → ṽ(f, z, χ)(t) is a lift of the oriented angle function t → θ(χ, Df t (z)χ). Consider tilt(f • V z ). Observe that both ṽ(f, z, χ)(1) and tilt(f • V z )(y) are preimages of the same oriented angle θ(χ, Df (z)χ).

The continuous function

A z = (x, y) → Ψ(z) := Torsion 1 (z, χ) -tilt(f • V z )(y) ∈ R
takes value in Z. Thus, it is constant. We are going to exhibit a point z ∈ A such that Ψ(z) = 0. Thus we will conclude that for any (x, y) ∈ A Torsion

1 ((x, y), χ) = tilt(f • V (x,0) )(y). (17) 
Consider the C 1 essential curve T × {0} and its image f (T × {0}). The complexity of the curve T × {0} is clearly zero, see Definition 3.3. Let z = (x, 0) ∈ T × {0} correspond to a point of maximal height of f (T × {0}), that is

p 2 • f (z) = max ξ∈T×{0} p 2 • f (ξ).
By Lemmas 3.1 and 3.2, it holds that Torsion 1 (z, H) = 0. By Property 2.1 we have

|Torsion 1 (z, χ)| = |Torsion 1 (z, χ) -Torsion 1 (z, H)| < 1 2 . ( 18 
)
We now show that the point z = (x, 0) ∈ T × {0} is such that for any s < 0 it holds

p 2 • f (x, 0) > p 2 • f (x, s).
Indeed if by contradiction there exists ŝ < 0 such that p 2 •f (x, ŝ) ≥ p 2 •f (x, 0), then, since f (x, 0) is a point of maximal height of f (T × {0}) and since f preserves the boundaries, the curve f (T × {0}) should intersect the curve {f (x, ξ) : ξ ≤ ŝ}. This contradicts the fact that (T × {0}) ∩ {(x, ξ) : ξ < 0} is empty and that f is a diffeomorphism. Consequently, from the definition of tilt (see Definition 3.4) we have

tilt(f • V x )(0) ∈ - 1 4 , 1 4 . ( 19 
)
Look now at Torsion 1 ((x, 0), χ). Choose the continuous determination such that ṽ(f, (x, 0), χ)(0) = 0. Both ṽ(f, (x, 0), χ)(1) and tilt(f • V x )(0) are preimages of the same angle. Thus

ṽ(f, (x, 0), χ)(1) -tilt(f • V x )(0) = Torsion 1 ((x, 0), χ) -tilt(f • V x )(0) ∈ Z.
From (18) and from (19), we have that Torsion

1 ((x, 0), χ) = tilt(f • V x )(0),
concluding so the proof.

Proof of Proposition 3.6. Fix n ∈ N * . Consider f n • γ(T) and let s n ∈ T be such that

p 2 • f n • γ(s n ) = max s∈T p 2 • f n • γ(s).
Denote as V γ(sn) the vertical line passing through γ(s n ). Denote γ(s n ) = V γ(sn) (y n ). Since γ(T) is a graph, V γ(sn) intersects γ(T) only once. Consequently for every y < y n it holds

p 2 • f n • V γ(sn) (y) < p 2 • f n • V γ(sn) (y n ) = p 2 • f n • γ(s n )
Lemma 4.2. Let f : A → A be a negative-torsion map and let K be a compact f -invariant set. There exist ε ∈ (0, 1 2 ) and δ ∈ (0, ε 4 ) such that for any x ∈ K, for any v ∈ C(x, χ, δ) and for any N ∈ N * it holds

N Torsion N (x, v) < - ε 2 < 0. (20) 
Proof. Let us argue by induction. Since f is a negative-torsion map, since K is compact and by the continuity of the torsion at time 1, there exist ε ∈ (0, 1 2 ) and δ ∈ (0, ε 4 ) such that for every x ∈ K and for every v ∈ C(x, χ, δ) it holds Torsion 1 (x, v) < -ε < 0.

(21)

Assume now that the result holds for N -1. Let x ∈ K and let v ∈ C(x, χ, δ). Without loss of generality assume that the oriented angle θ(χ, v) admits a preimage in (-δ, δ).

The case of θ(-χ, v) admitting a preimage in (-δ, δ) can be discussed similarly. Choose a continuous determination of the angle so that ṽ(I, x, v)(0) ∈ (-δ, δ). By inductive hypothesis it holds ṽ(I, x, v)(N -1) < -ε 2 + δ < -ε 4 .

Consider now the continuous determination such that ṽ(I, f N -1 (x), χ)(0) = 0. We point out the fact that we are considering a continuous determination with respect to a different point in T K A. In particular ṽ(I, x, v)(N -1) < ṽ(I, f N -1 (x), χ)(0).

From Property 2.2, from the choice of the continuous determinations and by the base case, we have that ṽ(I, x, v)(N ) < ṽ(I, f N -1 (x), χ)(1) = ṽ(I, f N -1 (x), χ)(1) -ṽ(I, f N -1 (x), χ)(0) < -ε.

Consequently, by the choice of ṽ(I, x, v)(•), we conclude that N Torsion N (x, v) = ṽ(I, x, v)(N ) -ṽ(I, x, v)(0) < -ε + δ < -ε 2 .

Lemma 4.3. Let f : A → A be a negative-torsion map. Let γ : T → A be a C 1 f -invariant essential curve. Then for every s ∈ T and for every N ∈ N * it holds N Torsion N (γ(s), γ (s)) = V ar γ (γ(s), γ(s N )),

where f N • γ(s) = γ(s N ).

Proof. We start observing that for every s ∈ T both Torsion 1 (γ(s), γ (s)) and V ar γ (γ(s), γ(s 1 )) are variations of the same oriented angle, where γ(s 1 ) = f •γ(s). In particular there exists k ∈ Z such that for any s ∈ T Torsion 1 (γ(s), γ (s)) = V ar γ (γ(s), γ(s 1 )) + k. V ar γ (γ(s i ), γ(s i+1 ) = N k + V ar γ (γ(s ∞ ), γ(s N )),
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 1 Figure 1 -Phase portrait of the pendulum system of Example 2.1.

  y. Define the oriented angle function R + t → u(I, x, y)(t) := θ(χ, F t (y) -F t (x)) ∈ T, where θ(u, v) denotes the oriented angle between the two non zero vectors u, v. Since u(I, x, y)(•) is continuous, consider a continuous determination R + t → ũ(I, x, y)(t) ∈ R of such oriented angle function. For every n ∈ N * the linking number at finite time n of x and y is Linking n (I, x, y) := ũ(I, x, y)(n) -ũ(I, x, y)(0) n .

Figure 2 -

 2 Figure 2 -The simple curve built in the proof of Proposition 3.4.

( 23 )

 23 The integer k ∈ Z does not depend on s ∈ T. By Theorem 1.1 there exists a point γ(s ∞ ) ∈ γ(T) such that Torsion(γ(s ∞ )) = 0. At the same time, since γ is f -invariant and from (23), we have that for anyN ∈ N * N Torsion N (γ(s ∞ ), γ (s ∞ )) = N k + N -1 i=0

  The set K is bounded. Let (s n , t n ) n∈N ⊂ K be a sequence converging to (s, t). The sequence(t n ) n∈N ⊂ [0, 1] converges to t ∈ [0, 1]. Moreover, s ∈ Argmax(p 2 • γ t ). That is, K is closed. Consequently, K is compact. Consider now the functionIt is continuous and, since K is compact, its image is compact too. Observe that its image is actually the graph of the functionΦ |[0,1] . Thus Φ |[0,1] is continuous.Using the same argument, we deduce that the function Φ is continuous on every compact [0, n] for n ∈ N * . Consequently, the function Φ : R + → Z is continuous. This concludes the proof.Proof of Proposition 3.5. Fix n ∈ N * and let s n ∈ Argmax(p 2 • γ n ). By Lemma 3.1 the value Φ(n) does not depend on the element of Argmax(p 2 • γ n ) and by Lemma 3.2 the function Φ is the constant zero function. Therefore

	K (s, t) → (t, t Torsion t (γ(s), γ (s)) + V ar γ (γ(s 0 ), γ(s))) ∈ [0, 1] × R.

Here we make explicit the dynamics with respect to which we are calculating the torsion, since it changes.

Acknowledgements. The author is extremely grateful to Marie-Claude Arnaud and Andrea Venturelli for all their preciuos advices and for many discussions. The author really thanks the anonymous referee for his/her useful suggestions.

because f n • γ(s n ) is a point of maximal height of f n • γ(T) and because f n preserves the boundaries (otherwise we would have another point of intersection between γ(T) and V γ(sn) (R)). By the definition of the continuous determination tilt(V γ(sn) ), see Definition 3.4, we have tilt(V γ(sn) )(y n ) ∈ [-1 4 , 1 4 ]. By Proposition 3.7 we conclude that 2

A Birkhoff's theorem through torsion

Using the tool of torsion, we can prove a Birkhoff's-theorem-like result (see [START_REF] Birkhoff | Surface transformations and their dynamical applications[END_REF] and [START_REF] Michael | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF]) in a different hypothesis framework, see Theorem 1.2. The idea of using the torsion in order to prove a Birkhoff's-theorem-like result was already present in the work of M. Bialy and L. Polterovich (see [START_REF] Bialy | Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom[END_REF], [START_REF] Polterovich | The second Birkhoff theorem for optical Hamiltonian systems[END_REF] and [START_REF] Bialy | Hamiltonian systems, Lagrangian tori and Birkhoff's theorem[END_REF]). This result arises from a question by V. Humiliére. On one hand we do not require that f is either a twist map or a conservative map. On the other hand f has to be a negative-torsion (positive-torsion) map and we require that the dynamics restricted to the C 1 curve is non-wandering (see [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF]).

Lemma 4.1. Let γ be a C 1 essential curve. If γ is transversal to the vertical at every point, then γ is the graph of a function.

Proof. Let Γ : R → R 2 be a lift of γ. Consider the C 1 function p 1 • Γ : R → R. Since Γ is transversal to the vertical at every point, it holds D(p 1 • Γ)(t) = 0 for every t ∈ R. Without loss of generality assume that it is positive at every t ∈ R. Thus, p 1 • Γ is an increasing diffeomorphism to its image. Since Γ is a lift of an essential curve and since p 1 • Γ is increasing, we have that for every

In particular, we deduce that

Thus, its projection on the annulus is well-defined and γ(T) is the graph of the C 1 function ψ :

where p : R → T is the covering map of T.

We will now provide an upper bound of the N -finite time torsion along the curve γ. The bound is independent from N .

Notation 4.1. Let x ∈ A and let δ ∈ (0, 1 4 ). Denote C(x, χ, δ) := {v ∈ T x A : θ(χ, v) or θ(-χ, v) admits a preimage in (-δ, δ)} .

where for every i ∈ 0, N we denote as s i ∈ T the point such that γ(s i ) = f i • γ(s ∞ ). Since γ(s ∞ ) has zero torsion and since we have |V ar γ (γ(s ∞ ), γ(s N ))| ≤ C(γ) < +∞, we conclude that k = 0.

In particular for every s ∈ T and every N ∈ N * it holds

An outcome of Lemma 4.3 is the following corollary, already proved by S. Crovisier for twist maps in [START_REF] Crovisier | Ensembles de torsion nulle des applications déviant la verticale[END_REF].

Corollary 4.1. Let f : A → A be a negative-torsion map. Let γ : T → A be a C 1 essential f -invariant curve on A. Then, for any s ∈ T it holds Torsion(γ(s)) = 0.

We can now finally prove Theorem 1.2.

Proof of Theorem 1.2. Argue by contradiction and assume that γ is not a graph. Then from Lemma 4.1 there exists a point z = γ(s) such that γ (s) ∈ Rχ. Denote

Let ε ∈ (0, 1 2 ) and δ ∈ (0, ε 2 ) be the parameters of Lemma 4.2 applied at the f -invariant compact set γ(T). Let U ⊂ T be a neighborhood of s such that for any t ∈ U the oriented angle θ(χ , γ (t)) admits a preimage in (-δ, δ). The dynamics f |γ is non-wandering and therefore there exists N ∈ N and τ ∈ U such that τ N ∈ U where f N • γ(τ ) = γ(τ N ). From Lemma 4.3 it holds N Torsion N (f, γ(τ ), γ (τ )) = V ar γ (γ(τ ), γ(τ N )). Observe that V ar γ (γ(τ ), γ(τ N )) ∈ (-2δ, 2δ). Consequently, since δ ∈ (0, ε 4 ), we conclude that

This contradicts Lemma 4.2 and we conclude.

Remark 4.1. We have shown that the curve γ is the graph of a function and it is always transverse to the vertical. Thus, since γ is C 1 , we deduce that γ is the graph of a C 1 function.

Remark 4.2. In order to obtain the result of Theorem 1.2 we need information over the dynamics on the curve. Indeed, there exist non conservative positive twist maps that admit C 1 essential f -invariant curves which are not graphs of function. See Proposition 15.3 in [START_REF] Le | Propriétés des attracteurs de Birkhoff[END_REF].