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Abstract

The performance of surrogate-based optimization is dependent on the
surrogate training set, certainly for realistic optimizations where the
high cost of computing the training set data imposes small training set
sizes. This is especially true for multi-fidelity surrogate models, where
different training sets exist for each fidelity. Adaptive sampling meth-
ods have been developed to improve the fitting capabilities of surrogate
models, adding training points only where necessary or most useful to
the optimization process (i.e., providing the highest knowledge gain)
and avoiding the need for an a priori design of experiments. Neverthe-
less, the efficiency of the adaptive sampling is highly affected by its
initialization. The paper presents and discusses a novel initialization
strategy with a limited training set for adaptive sampling. The proposed
strategy aims to reduce the computational cost of evaluating the ini-
tial training set. Furthermore, it allows the surrogate model to adapt
more freely to the data. In this work, the proposed approach is applied
to single- and multi-fidelity stochastic radial basis functions for an ana-
lytical test problem and the shape optimization of a NACA hydrofoil.
Numerical results show that the results of the surrogate-based opti-
mization are improved, thanks to a more effective and efficient domain
space exploration and a significant reduction of high-fidelity evaluations.

Keywords: Multi-fidelity, Surrogate-based optimization, Stochastic Radial
Basis Functions, Initial Training Set
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1 Introduction

Automatic shape optimization and uncertainty quantification offer rigorous
and effective mathematical approaches to the design and performance assess-
ment of modern ships and ships’ subsystems (Karlberg et al., 2013; Harries and
Abt, 2019). These methods generally require a large number of evaluations of
one or more merit factors: in (Furcas et al., 2020) thousands of geometries of
a wake equalizing duct have been simulated before converging to an optimal
solution. Similarly, in (Demo et al., 2021; Serani et al., 2022) although compu-
tational cost reduction methods are used, hundreds of numerical simulations
are still required to converge towards a global optimum. If these performance
metrics are evaluated via high-fidelity computations, the computational cost
can become prohibitively high and unaffordable for most users (Serani et al.,
2022). Surrogate models give a solution to this problem: computations are
only performed in a few design points or conditions and an interpolatory
or regressive model is built based on these computations (Jin et al., 2001).
Shape optimization and uncertainty quantification are then performed using
the surrogate model, which is inexpensive to evaluate. Among other surrogate
models, radial basis functions have demonstrated their efficacy in analytical
tests (Jin et al., 2001) and have been successfully used for design optimization
(Volpi et al., 2015), also in high-dimensional spaces (Regis, 2020). An even
greater gain in efficiency is obtained through multi-fidelity surrogate mod-
els, which combine computationally inexpensive low-fidelity simulations with
high-fidelity computations (Peherstorfer et al., 2018). Two or more fidelities
can be defined by combining computations performed with different physical
models (e.g. Reynolds averaged Navier-Stokes equations and potential flow,
Pellegrini et al. 2018) or with different accuracy (e.g. computations performed
varying the grid size, Bonfiglio et al. 2018). Radial basis functions have also
been successfully used for multi-fidelity optimizations (Nuñez et al., 2018).

The performance of multi-fidelity surrogate models depends on several fac-
tors (Fernández-Godino et al., 2019), such as the presence of nonlinearities,
the problem dimensionality, the noisy or smooth behavior of the function, and
the approach used for the definition of the training set. Numerical experiments
show that there is no unique optimal multi-fidelity approach: the best choice
of the surrogate model depends on the data being modeled. For example, a
significant local variation of the merit factors may require a high density of
training data, the presence of noise may require heavy filtering, and finally
low-fidelity corrections are only useful when the low- and high-fidelity data are
sufficiently correlated (similar). The first two issues led the authors to adopt
solution-adaptive sampling for the training points (Serani et al., 2019) and
automatically tuned noise filters (Wackers et al., 2020). Such procedures, which
automatically adapt themselves to the behavior of the data, are a necessity to
achieve efficient multi-fidelity surrogate modeling.

However, adaptive multi-fidelity sampling starts from initial datasets for
each fidelity, defined in a non-adaptive manner. Computing these initial
datasets may be expensive, while the data may not be optimal for the surrogate
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model accuracy. For example, in the authors’ previous work, the multi-fidelity
model is based on a surrogate model of the low-fidelity solutions and a
discrepancy surrogate model based on the difference between high- and low-
fidelity solutions. For each fidelity level, the initial training set for starting the
surrogate-based optimization is defined using 2D+ 1 samples, where D is the
design space dimension. The training points are placed in the center of the
domain and the center of the boundaries. This initialization approach requires
a considerable computational cost, especially for the highest fidelity. Further-
more, unless the optimum is located on a domain boundary, most of these
points are of low importance for the optimization.

The objective of the present work is to introduce a new approach for the
definition of the initial training set. The new approach uses only one initial
point for all the fidelities except for the lowest. When a single training point
is available, the surrogate model prediction is an extrapolation based on that
single training point. Thus, the proposed approach reduces the computational
cost of the initialization making available a larger budget for the adaptive sam-
pling of the training points. Furthermore, less information is initially provided
to the surrogate model in order to have it freely adapt to the data.

The surrogate model is based on stochastic radial-basis functions (SRBF)
with a power-law kernel. The power kernel used in the SRBF lacks a compact
support, as a consequence the extrapolated prediction may not be well cor-
related with the desired function behavior, negatively affecting the adaptive
sampling. Although other kernels exist with compact support, the SRBF with
power kernels is robust, showing good results for several applications (Wack-
ers et al., 2020) and is preferred here. Therefore, a constraint is imposed on
both the surrogate model prediction and the associated uncertainty when an
extrapolation is performed, to improve the adaptive sampling.

The proposed initialization approach is assessed for an analytical test
problem and a simulation-based optimization problem: the drag-coefficient
minimization of a NACA hydrofoil. For both problems, one and three fideli-
ties are used and the results are compared with the previous initialization
approach of Wackers et al. (2020). The simulations are performed with the
unsteady RANS solver ISIS-CFD (Queutey and Visonneau, 2007), developed
at Ecole Centrale de Nantes/CNRS and integrated in the FINE/Marine sim-
ulation suite from Cadence Design Systems. Mesh deformation and adaptive
grid refinement are adopted, different fidelity levels are defined by increasing
the grid refinement.

2 Multi-fidelity approach

The multi-fidelity surrogate model is based on a summation of surrogate mod-
els. Consider x ∈ RD as a design variables vector of dimension D. Let the
true function f(x) be assessed by N fidelity levels: the highest-fidelity level
is f1(x), the lowest-fidelity is fN (x), and the intermediate fidelity levels are
{fl}N−1

l=2 (x). Using ·̃ to denote surrogate model prediction, the multi-fidelity
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(MF) approximation f̂l(x) of fl(x) (l = 1, . . . , N − 1) is the sum of the lowest-
fidelity surrogate and surrogates of the difference between subsequent levels
(inter-level errors or bridge-functions, ε̃):

f̂l(x) = f̃N (x) +

N−1∑
k=l

ε̃k(x) (1)

The final multi-fidelity approximation of f is f̂ ≡ f̂1. For each l-th fidelity
level the training set is Tl = {xi, fl(xi)}Jl

i=1, with Jl the training set size.

The resulting inter-level error training sets are defined as El = {xi, εl(xi)}Jl
i=1,

where
εl(xi) = fl(xi)− f̂l+1(xi) (2)

The SRBF surrogate models provide both a prediction and an associated
uncertainty. The uncertainty Uf̃N

of the lowest-fidelity prediction is considered
as uncorrelated with the uncertainty Uε̃l of the inter-level error predictions.
Therefore, the uncertainty Uf̂l

of the MF prediction can be evaluated as (l =

1, . . . , N − 1)

Uf̂l
(x) =

√√√√U2
f̃N

(x) +

N−1∑
k=l

U2
ε̃k
(x) (3)

2.1 Adaptive sampling method

The multi-fidelity surrogate model is dynamically updated by adding new
training points following a deterministic approach. First, a new training point
x⋆ is identified based on an aggregate-criteria adaptive sampling method,
specifically a modified version of the lower-confidence bounding from Cox and
John (1992) with equally weighted contributions of f̂ and Uf̂ , presented in

Serani et al. (2019). It aims to find points with large prediction uncertainty
and small objective function value, see Figure 1. Accordingly, the sampling
method identifies a new training point by solving the single-objective minimiza-

tion x⋆ = argmin
x

[
f̂(x)− Uf̂ (x)

]
using a deterministic version of the particle

swarm optimization algorithm introduced in (Serani et al., 2016). Once x⋆ is
identified, the fidelity to be evaluated needs to be selected. To achieve this,
the surrogate model prediction uncertainty vector is defined as

U ≡ {Uε̂1/β1, ..., Uε̂N−1
/βN−1, Uf̃N

/βN} (4)

where βl = cl/c1 with cl the computational cost associated to the l-th level
and c1 the computational cost of the highest fidelity. Then, the fidelity level
to sample is l∗ = maxloc(U), and the new training point is added to the l∗-th
training set Tl∗ and to the lower-fidelity sets from l∗ + 1 up to N .
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(a) (b)

Fig. 1: Example of the aggregate-criterion adaptive sampling method using
one fidelity: (a) shows the initial surrogate model with the associated prediction
uncertainty and training set; (b) shows the position of the new training point
and the new surrogate model prediction and its uncertainty

2.2 Stochastic Radial Basis Functions

Given a (single-fidelity) training set T = {xi, f(xi)}Ji=1, the SRBF surro-
gate model prediction f̃ (x) is computed as the expected value (EV) over
a stochastic tuning parameter of the surrogate model (Volpi et al., 2015),
τ ∼ unif[1, 3]

f̃ (x) = EV [g (x, τ)]τ with

g (x, τ) = EV [f ] +

M∑
j=1

wj∥x− cj∥τ
(5)

where wj are unknown coefficients, ∥·∥ is the Euclidean norm, and cj are the
RBF centers, with j = 1, . . . ,M and M ≤ J . If the training set is not affected
by numerical noise then exact interpolation of the training set is imposed
and the coefficients wj are computed by solving Aw = (f − EV [f ]), with
cj = xj (yielding M = J), aij = ∥xi − cj∥τ , and f = {f(xi)}Ji=1. If numerical
noise affects the training set then noise reduction is achieved by choosing a
number of RBF centers M smaller than the number of training points J , and
cj coordinates are defined via k-means clustering (Lloyd, 1982) of the training
points. Hence, wj are determined with least squares regression by solving w =
(ATA)−1AT(f−EV [f ]). The optimal number of stochastic RBF centers (M⋆)
is defined by minimizing a leave-one-out cross-validation (LOOCV) metrics
(Wackers et al., 2020).
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The uncertainty Uf̃ (x) associated with the SRBF prediction is quantified

by the 95%-confidence band using the cumulative density function of g(x, τ)
(Volpi et al., 2015).

3 Initial training set and bounded surrogate
model

In this section a new approach for defining the initial training set is proposed.
The new method uses a reduced training set (RS) with only one datapoint
for the higher fidelities, as opposed to the authors’ previous work where a
full training set (FS) was used: the central composite design without factorial
points. Both the RS and FS approaches can be used with single- or multi-
fidelity methods. Table 1 summarizes the RS and FS approaches for the single-
and multi-fidelity cases, respectively.

Table 1: Comparison between the new reduced training set (RS) and the full
training set (FS)

Approach N Fidelity level Number of Training points
training points placement

RS
1 1 1 Center of domain

> 1
from 1 to N − 1 1 Center of domain
N 2D+1 Center of domain and of the boundaries

FS
1 1 2D+1 Center of domain and of the boundaries

> 1
from 1 to N − 1 2D+1 Center of domain and of the boundaries
N 2D+1 Center of domain and of the boundaries

The challenge for the RS approach is to create a SRBF surrogate model
which can handle extrapolation. Using the RS approach, during the first
iterations of the adaptive sampling, the surrogate model prediction is an
extrapolation based on the limited training points available. If the SRBF sur-
rogate model gives reasonable predictions in this situation, the rest of the
adaptive sampling procedure from section 2 can be used unchanged. However,
the SRBF with power kernel has a low accuracy when extrapolating, since
the positive power laws are unbounded away from the kernel center. There-
fore, a bounded surrogate model prediction (identified with the B subscript)
is adopted, as described in Algorithm 1.

When one training point is available, the surrogate model prediction is
set equal to the function value in the training point f(x1). This approach is
produced naturally by Eq. 5, where the expected value of the training set is
added to the radial basis functions thus providing a non-zero prediction when
only one training point is available. When more training points are available,
the surrogate model prediction is bounded only in regions of the domain far
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from these training points. In Algorithm 1 a sigmoid-like function s(r) is used
to provide a smooth transition between the SRBF prediction and the bounded
prediction

s(r) =
1

1 + eα(r−γ)
(6)

where, for the present work, α = −75 and γ = 0.2. To define r, the smallest
hyperrectangle (whose edges are parallel to the Cartesian coordinated axis)
containing the training points is defined and r is the Euclidean distance of x
from the hyperrectangle boundaries.

Regarding the uncertainty, the definition of Uε̃Bl
(x) in Algorithm 1 stems

from the consideration that the error surrogates represent errors in the multi-
fidelity approximation f̂ . Thus, for want of something better, the average of
the data itself can be used as a surrogate model prediction uncertainty when
an extrapolation is performed. For the single-fidelity Uf̃B

, the same estimation
is adopted. It may be noted that when multiple training points are avail-
able, bounding the uncertainty according to Uε̃Bl

(x) = min(Uf̃ ,EV[f ]) instead
of Uε̃Bl

(x) = min(Uf̃ , 2EV[f ]) would be more consistent with the bounding
applied when one training point is available. Such bounding will be adopted
in the future.

Algorithm 1 Bounding of the SRBF prediction and associated uncertainty.

if N = 1 then ▷ Single-fidelity case
if J = 1 then ▷ One training point available

f̃B(x) = f(x1)
Uf̃B

(x) = f(x1)

else if J > 1 then ▷ J training points available

f̃B(x) = f̃(x) [1− s(r)] + EV[f ]s(r)
Uf̃B

(x) = min(Uf̃ , 2EV[f ])

end if
else if N > 1 then ▷ Multi-fidelity case

if Jl = 1, l = 1, . . . , N − 1 then ▷ One training point available
ε̃Bl(x) = εl(x1)
Uε̃Bl

(x) = εl(x1)
else if Jl > 1, l = 1, . . . , N − 1 then ▷ Jl training points available

ε̃Bl(x) = ε̃l(x) [1− sl(r)] + EV[εl]sl(r)
Uε̃Bl

(x) = min(Uε̃l , 2EV[εl])
end if

end if

Figure 2 shows the first iteration of the RS and FS approaches for a mono-
dimensional example, see Eqs. 7 where f1 and f2 are introduced in Clark
et al. (2016) and f3 in Wackers et al. (2020). In the single-fidelity case the RS
approach yields a constant surrogate model prediction and associated uncer-
tainty, see Figure 2a. In the multi-fidelity case, the RS approach produces a
multi-fidelity prediction that only relies on the low-fidelity surrogate model to
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approximate the trend of the desired function. Differently, the FS approach
takes advantage also of the medium- and high-fidelity evaluations. The RS
approach produces an obviously less accurate prediction in the first iteration
but allows to preserve a reasonable trend while using only one evaluation of
the medium- and high-fidelity.

(a) RS, single fidelity (b) FS, single fidelity

(c) RS, multiple fidelities (d) FS, multiple fidelities

Fig. 2: Example of the two initialization strategies for the mono-dimensional
function. The dots indicate initial data points, the lines indicate the surrogate
models, and the gray zone is the uncertainty band

f1(x) = sin(30(x− 0.9)4) cos(2(x− 0.9)) + (x− 0.9)/2

f2(x) = (f1(x)− 1 + x)/(1 + 0.25x)

f3(x) = sin(20(x− 0.87)4) cos(2(x− 0.87))+

+ (x− 0.87)/2− (2.5− (0.7x− 0.14)2) + 2x

(7)
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4 Test problems

4.1 Analytical test problem

The analytical test problem is based on the Rosenbrock function with two
variables, three fidelities are considered (N = 3). The Rosenbrock function is
a function defined using two parameters a and b. The high-fidelity function
f1 is a Rosenbrock function with a = 1 and b = 100. The medium-fidelity
function f2 is the additive combination of a Rosenbrock function, with a = −2
and b = 50, with a second order function, see Eq. 8. Finally, the low-fidelity
function f3 is a transformation of f1 by addition and multiplication of first
order functions (Rumpfkeil and Beran, 2020):

f1(x) = 100(x2 − x2
1)

2 + (1− x1)
2

f2(x) = 50(x2 − x2
1)

2 + (−2− x1)
2 − 80− 0.5x10.5x2

f3(x) = (f1(x1, x2)− 4− 0.5x1 − 0.5x2)/(10 + 0.25x1 + 0.25x2)

(8)

where x ∈ [−2.048, 2.048] ⊗ [−2.048, 2.048]. The functions are represented in
Figure 3, they are challenging from the optimization viewpoint since the min-
imum is located in a narrow and flat valley. Specifically, the minimum of f1 is
in x = {1, 1} and equal to 0.

A synthetic computational cost is associated with the evaluation of each
fidelity, based on typical cost ratios for CFD simulations in naval applications.
The selected computational cost ratios are equal to β = {1, 0.1, 0.05} (Mainini
et al., 2022).

(a) f1 (b) f2 (c) f3

Fig. 3: Test problem, the Rosenbrock function with three fidelity levels

4.2 NACA hydrofoil optimization

This problem addresses the drag coefficient minimization of a NACA four-digit
airfoil. The following minimization problem is solved

minimize f(x) = CD(x) subject to CL(x) = 0.6 and to l ≤ x ≤ u (9)
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where x is the design variables vector; l and u are the lower and upper bounds
of the design space, respectively; CD and CL are the drag and lift coefficient,
respectively. The equality constraint on the lift coefficient is necessary in order
to compare different geometries at the same lift force (equal to the weight
of the object), since the drag depends strongly on the lift. The simulation
conditions are: velocity U = 10 m/s, chord c = 1 m, and fluid density ρ = 1, 026
kg/m3, with a chord based Reynolds number Re = 8.41 · 106. The hydrofoil
shape is defined by the general equation for four-digit NACA foils (Moran,
2003). In this work the design variables vector is defined as x = {t,m}, where
t ∈ [0.030, 0.120] is the maximum thickness and m ∈ [0.025, 0.065] is the
maximum camber value with the maximum camber position fixed at p = 0.4.
Tests are run with one and three fidelity levels (N = 1, 3), see Figure 4.

(a) (b) (c)

Fig. 4: NACA hydrofoil computational grids for ISIS-CFD: (a) Fine grid,
12.8k cells, (b) Medium grid, 5.7k cells, and (c) Coarse grid, 3.6k cells

Numerical simulations are performed with the ISIS-CFD incompressible
unstructured finite-volume RANS solver for multi fluid flow. In ISIS-CFD, the
velocity field is obtained from the momentum conservation equations and the
pressure field is extracted from the mass conservation constraint transformed
into a pressure equation. These equations are similar to the SIMPLE method
(Rhie and Chow, 1983), but have been adapted for flows with discontinuous
density fields. The unstructured discretization is face-based. While all unknown
state variables are cell-centered, the systems of equations used in the implicit
time stepping procedure are constructed face by face. Therefore, cells with an
arbitrary number of arbitrarily-shaped constitutive faces are accepted. The
code is fully parallel using the message passing interface protocol. A detailed
description of the solver is given by Queutey and Visonneau (2007).

Computational grids are created through adaptive grid refinement (AGR)
(Wackers et al., 2014, 2017), to optimize the efficiency of the solver and to
simplify the automatic creation of suitable grids. The AGR method adjusts
the computational grid locally, during the computation, by dividing the cells of
an original coarse grid. The decision where to refine comes from a refinement
criterion, a tensor field C(x, y, z) computed from the flow. The tensor is based
on second derivatives of pressure and velocity, which gives an approximate
indication of the local truncation errors. The grid is refined until the dimensions
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dp,j (j = 1, 2, 3) of each hexahedral cell p satisfy ∥Cpdp,j∥ = Tr. The refinement
criterion based on the second derivatives of the flow is not very sensitive to grid
refinement (Wackers et al., 2017), so the cell sizes everywhere are proportional
to the constant threshold Tr.

For the MF optimization, grid adaptation is used to take into account the
need for several fidelities. The interest of this procedure is that different fidelity
results can be obtained by running the same simulations and simply changing
the threshold Tr. Thus, it is straightforward to automate the MF simulations.
Highest- to lowest-fidelity simulations require about 17, 9, and 5 minutes of
wall-clock time to converge, respectively. The resulting computational cost
ratios are equal to β = {1, 0.5, 0.3}.

5 Numerical results

The performance of the RS approach is compared with the performance of the
FS approach at a fixed computational budget equivalent to 45 high-fidelity
simulations, for both problems. Even though the analytical problem is cheap
and could be iterated to convergence, this limited budget is chosen to resem-
ble realistic simulation-driven optimization problems where the training set
evaluation is expensive.

5.1 Analytical test problem

The performance of the method applied for the analytical test is assessed by
the convergence of the predicted minimum value (f̂1(xmin)), its validation by a
high-fidelity evaluation (f1(xmin)), the prediction uncertainty in the minimum
point (Uf̂1

(xmin)), and the quantification of the effectiveness of the surrogate
model in identifying the location of the minimum in the variable space by the
computation of the location error (Ex):

Ex =

√√√√ 1

D

D∑
j=1

(
xmin,j − x̌j

uj − lj

)2

(10)

where xmin is the position found by the surrogate model-based optimization, x̌
if the position of the true reference minimum, and lj and uj (for j = 1, . . . , D)
are the lower and the upper bounds of the variables domain, respectively.

The evaluation of the analytical test is not affected by numerical noise,
therefore an interpolative formulation of the SRBF is used. The computational
costs associated with the initial RS training sets are 1 for N = 1 and 1.35 for
N = 3, while for FS the costs are 5 and 5.75, respectively.

Figure 5 shows the response surfaces with the training sets for the two
initialization approaches using one fidelity. The response surface of the RS
method is a constant flat surface whereas for the FS approach a concavity is
already evident, see Figures 5a and 5b. Figures 5c and 5d show the response
surface for a normalized computational cost equal to 10: the RS method has
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(a) RS, first iteration (b) FS, first iteration

(c) RS, CC = 10 (d) FS, CC = 10

(e) RS, last iteration (f) FS, last iteration

Fig. 5: Analytical problem, results for the single fidelity case. Response
surfaces and training sets for the two initialization approaches at the first iter-
ation, for a computational cost (CC) = 10, and at the last iteration of the
adaptive sampling

already performed some exploration of the neighborhood of the region of the
minimum, whereas the FS method distributed new samples in a much smaller
area. At the last iteration, the sampling method with RS has explored the
entire valley where the minimum is located whereas with FS the sampling
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(a)

(b)

(c)

Fig. 6: Analytical problem, results for the single fidelity case. From top to
bottom: convergence of f̂1(xmin), Uf̂1

(xmin), and f1(xmin) for FS (a) and RS

(b) approaches (error bars: Uf̂1
(xmin)); convergence of Ex (c)

method has partially explored the valley and has then focused on the opposite
side, which creates a less reliable surrogate model (see Figures 5c and 5d).

Figure 6 shows the convergence of the surrogate model prediction and
uncertainty f̂1(xmin), Uf̂1

(xmin), and the true value in the predicted opti-

mum f1(xmin), and the position error Ex, for the two initialization approaches
using one fidelity. It is worth noting that for both approaches, the uncertainty
estimation is reliable: the validated minimum almost always lies within the
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Fig. 7: Analytical problem, results for the single fidelity case. Training set size

multi-fidelity model prediction uncertainty. Furthermore, although the RS is
initially less accurate than the FS approach (since it is not really intended for
single-fidelity use), it eventually converges better: the predicted and validated
optima are more accurate, with lower uncertainty, and more stable behavior
when new samples are added. Figure 7 shows that the sampling method with
RS performs more sampling iterations than with FS: the reduced size of the
startset makes available more simulations for the adaptive procedure.

Figure 8 shows the response surfaces with the training sets for the two
initialization approaches using three fidelities. At the first iteration the sur-
rogate model prediction with the RS approach shows the same trend as with
the FS approach, see Figs. 8a-b. Figures 8c and 8d show the response surface
for a normalized computational cost equal to 10, where the RS method has
already started to explore the region of the minimum, whereas the FS method
with its more expensive startset has only distributed a few new samples in a
much smaller area. At the last iteration, the sampling method with RS (Figure
8c) used low-fidelity data to explore the entire valley where the minimum is
located. Thanks to this exploration, the high-fidelity points are placed intel-
ligently, in the center of the valley. Differently, the sampling method with FS
(Figure 8d) has only partially explored the valley and did not perform much
exploration in the rest of the domain; the HF points are of little use since
most points are placed far away from the optimum or scattered throughout
the sampled region. Finally, sampling occurred on only one side of the opti-
mum position, which reduces the accuracy of the surrogate model. Therefore,
RS has produced a more effective sampling.

Figure 9 shows the convergence of the surrogate model prediction and
uncertainty f̂1(xmin), Uf̂1

(xmin), the true value in the predicted optimum

f1(xmin), and the position error Ex, for the two initialization approaches using
three fidelities. While several oscillations are present, the RS approach achieves
better results than FS: it predicts an optimum earlier and it converges deeper,
because of the more efficient exploration. Furthermore, the difference between
the predicted and the validated minimum is always within the prediction uncer-
tainty. Also, comparing with Figure 6 shows that the three-fidelity results are
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(a) RS, first iteration (b) FS, first iteration

(c) RS, CC = 10 (d) FS, CC = 10

(e) RS, last iteration (f) FS, last iteration

Fig. 8: Analytical problem, results for the three fidelity case. Response surfaces
and training sets for the two initialization approaches at the first iteration,
for a computational cost (CC) = 10, and at the last iteration of the adaptive
sampling

better than the single-fidelity optimization. Figures 10a–c show that the sam-
pling method with RS performs a significantly higher number of iterations
than with the FS approach, thanks to the smaller computational cost spent for
the evaluation of the initial training set. Furthermore, the sampling method



Springer Nature 2021 LATEX template

16 Efficient Initialization for Multi-Fidelity Surrogate-Based Optimization

(a)

(b)

(c)

Fig. 9: Analytical problem, results for the three fidelity case. From top to
bottom: convergence of f̂1(xmin), Uf̂1

(xmin), and f1(xmin) for FS (a) and RS

(b) approaches; convergence of Ex (c)

with RS uses less high-fidelity evaluations than FS and it performs a high-
fidelity evaluation only after the 8-th iteration, which confirms that the initial
exploration is performed using only low- and medium-fidelity evaluations.

5.2 NACA hydrofoil optimization

The performance of the method applied for the NACA problem is assessed
using three metrics. Along with the location error Ex, the prediction error (Ep)
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(a) High-fidelity

(b) Medium-fidelity

(c) Low-fidelity

Fig. 10: Analytical problem, results for the three fidelity case. Training sets
size

is used to quantify the accuracy of the minimum predicted by the surrogate
model f̂1(xmin) and the validation error (Ev) is used to quantify the error in
the identification of the true minimum f1(x̌) in the function space:

Ep =

∣∣∣∣∣ f̂1(xmin)− f1(xmin)

R1

∣∣∣∣∣ (11)
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Ev =

∣∣∣∣f1(xmin)− f1(x̌)

R1

∣∣∣∣ (12)

where xmin is the position found by the surrogate model-based optimization,
and R1 is the reference high-fidelity function range.

The challenge of this problem for the surrogate model optimization is that
the data are strongly affected by numerical noise (Wackers et al., 2020), espe-
cially the low-fidelity evaluations. Figure 11 provides an illustration of the
typical noise levels. Therefore a least-squares regressive approach, as described
in section 2.2, is used to fit the surrogate models. The data pertaining to the
NACA hydrofoil optimization with the sampling method and the FS approach
are taken from Wackers et al. (2020). The computational costs associated with
the initial RS training sets are 1.0 for N = 1 and 3.0 for N = 3, while for
FS the costs are 5.0 and 9.2, respectively. The R1 value is the high-fidelity
function range of the FS initial training set and is equal to 1.523E − 3.

Figure 12 shows the response surfaces with the training sets for the two
initialization approaches, using one fidelity. Again, the response surface of
the RS method is a constant flat surface whereas the FS approach produces
a concavity, see Figs. 12a and 12b. Figures 12c and 12d show the response
surface for a computational cost equal to 10, the FS approach has identified
the region of the minimum whereas the RS approach does not. Figures 12e
and 12f show the last iteration of the adaptive sampling: the RS approach has
explored around the region of the minimum with only one training point in
the opposite side of the domain (in {1, 1}), whereas the FS approach has also
sampled the upper corners, which are less relevant for the optimization.

Figure 13 presents the response surfaces for three fidelities. The two
response surfaces at the first iteration are significantly different, see Figures
13a and 13b: the RS surrogate model is reasonable thanks to the LF contri-
bution, while the FS model misinterprets the data. Figures 13c and 13d show
the response surface for a computational cost equal to 10, the FS approach
has added three low-fidelity samples without actually changing the prediction
due to the influence of the high-fidelity initial training set. Differently, the RS

Fig. 11: NACA hydrofoil optimization problem. Training sets in the neigh-
borhood of x2 = 0
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(a) RS, first iteration (b) FS, first iteration

(c) RS, CC = 10 (d) FS, CC = 10

(e) RS, last iteration (f) FS, last iteration

Fig. 12: NACA hydrofoil optimization problem, results for the single fidelity
case. Response surfaces and training sets for the two initialization approaches
at the first iteration, for a computational cost (CC) = 10, and at the last
iteration of the adaptive sampling

approach identified the region of the minimum. Figures 13e and 13f show the
last iteration of the adaptive sampling method. The sampling method with the
RS approach did not sample the upper region of the domain, where the drag
coefficient is higher. However, like for the analytical test, the region around
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(a) RS, first iteration (b) FS, first iteration

(c) RS, CC = 10 (d) FS, CC = 10

(e) RS, last iteration (f) FS, last iteration

Fig. 13: NACA hydrofoil optimization problem, results for the three fidelity
case. Response surfaces and training sets for the two initialization approaches
at the first iteration, for a computational cost (CC) = 10, and at the last
iteration of the adaptive sampling

the optimum is thoroughly explored using low fidelity data. Differently, the
sampling method with the FS approach sampled also the upper corners of the
domain, while most of the effort is spent on medium-fidelity points very close
to the perceived optimum. Although the response surface is mostly different
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Table 2: NACA hydrofoil optimization problem, summary of the results

Initial set N x1 x2 f̂(xmin) Uf̂ (xmin)/R1% f(xmin) Ep% Ev% Ex%

Reduced 1 0.4173 0.0000 7.213E-3 0.06 7.219E-3 0.41 0.52 2.81
Full 1 0.3799 0.0000 7.213E-3 0.03 7.214E-3 0.01 0.03 0.16
Reduced 3 0.4354 0.0000 7.050E-3 2.91 7.224E-3 11.4 0.85 4.09
Full 3 0.3615 0.0000 7.162E-3 1.90 7.218E-3 0.78 0.09 1.14

Reference 1 0.3776 0.0000 - - 7.212E-3 - - -

for the two approaches, the region of the minimum is correctly identified by
both, which is essential for optimization where the only goal is to get closest
to the optimum. The RS approach only adds one high-fidelity simulation to
the initial training set, evaluating it in the center of the region of the mini-
mum. Differently, the FS approach adds two high-fidelity simulations to the
initial training set, evaluating them in the two corners of the lower region of
the domain.

Table 2 summarizes the minimum position, value, and associated uncer-
tainty and the Ep and Ev metrics. While the single-fidelity RS approach
performs well, the table shows that the multi-fidelity RS result is problem-
atic. Even though all the verified minima have errors below 1% with respect
to the reference, the prediction error for multi-fidelity RS is high: the surro-
gate model values in the optimum are not reliable. This is also confirmed by
the value of the normalized prediction uncertainty (Uf̂/R1) which is higher for
the multi-fidelity RS.

The reason for this is shown in Figure 13c. Compared to the single-fidelity
result 12c, the multi-fidelity surrogate model is more irregular. This implies
that, despite the noise filtering, the adaptive surrogate model has overfitted
the low-fidelity training data, which are the most affected from the numerical
noise. Table 3 summarizes the training sets size and the number of RBF centers
at the last iteration. The RS approach uses a larger number of RBF centers for
the low-fidelity training set in comparison to the FS approach. This results in
the RS approach being more affected from the numerical noise by overfitting.
Therefore, the surrogate model includes noise so it is not accurate. For FS, the
low-fidelity surrogate model has ended up with fewer RBF centers (see section
2.2): 20, compared with 89 for RS. Thus, the noise filtering is more effective
for the FS approach, which explains the better results.

Table 3: NACA hydrofoil optimization problem, summary of the training sets
and RBF centers at the final iteration

Initial set N J1 (M∗
1 ) J2 (M∗

2 ) J3 (M∗
3 )

Reduced 1 45 (32) - -
Full 1 45 (36) - -
Reduced 3 2 (2) 22 (19) 105 (89)
Full 3 7 (9) 19 (18) 96 (20)
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However, this problem with the noise filtering is not directly related with
the startsets. Qualitative assessment of the sample points placement shows that
the RS initialization has the desired effect of good exploration with sparing
but intelligent use of high-fidelity samples.

6 Conclusions

Multi-fidelity adaptive sampling is generally started from a non-adaptive ini-
tial set of data, which can be expensive to compute for the higher fidelities.
Furthermore, in a surrogate model-based optimization problem high-fidelity
points far from the optimum do not provide useful information. Therefore, a
new initialization approach is defined here with a reduced number of high-
fidelity data points. The authors’ previous initialization approach uses a full
training set (FS) of 2D+1 samples for all the fidelities, where D is the design
space dimension. In the multi-fidelity case, the new reduced training set (RS)
approach uses 2D + 1 points as training set only for the lowest (and cheapest
to evaluate) fidelity and one single point as initial training set for the other
fidelities. A single-fidelity case is also defined which uses only one point as the
initial training set. Reducing the computational cost of the initialization means
that a larger computational budget is available for an adaptive sampling of
the design space.

The proposed startset can be used with the authors’ existing adaptive sam-
pling method, as long as the surrogate model is able to extrapolate from a
limited number of data points. This capability is developed here for stochastic
radial basis functions with a power kernel (SRBF). Since the power kernel used
in standard SRBF lacks a compact support, a bound is imposed on both the
surrogate model prediction and the associated uncertainty when an extrapo-
lation is performed, to improve the adaptive sampling. For the bounding, the
prediction is gradually blended towards the mean of the data, which is also
used as an upper bound of the uncertainty (this is deemed acceptable since the
multi-fidelity discrepancy surrogate models represent errors in the prediction
of the function).

While single-fidelity performance is not the main objective of the RS start-
set, the different tests show that the single-fidelity RS approach works well.
The distribution of the data points is sensible, with a good balance between
exploration and exploitation, while the optimization results are comparable
with those obtained from FS startsets. This proves that the adaptive sampling
is capable of creating a good surrogate model from a single datapoint, without
needing a full startset.

For multi-fidelity data, the first effect of RS is to reduce the costs of the
startset and to limit the number of HF points with little practical value. In
the tests, the RS approach reduced the computational cost of evaluating the
initial training set by 76% for the analytical problem and by 67% for the
NACA hydrofoil optimization. Furthermore, it is shown that RS provides a
first useful estimate of the optimum at a far lower cost than FS and that, in
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all cases, more computations were available for the adaptive sampling. Finally,
in the data, the number of HF points far away from the optimum is reduced.
Thus, this first objective is met.

A second observation from the tests is that RS leads to more effective explo-
ration of the domain. Moreover, this exploration is mainly performed with
low- and medium-fidelity data. This is due to the bounding of the uncertainty,
which makes the method less interested in exploring the extrema of the highest-
fidelity error surrogate model. On the contrary, HF points are added where they
are most useful: near the perceived optimum. For the Rosenbrock function, the
HF points fill the minimum valley, while for the NACA hydrofoil optimization
problem, the adaptive sampling method adds only one high-fidelity sample in
the region of the minimum. This property is of great importance for optimiza-
tion in higher dimensions, where the exploration of the large design spaces is
very costly. Therefore, exploration with cheap low-fidelity data is crucial.

However, the NACA case also shows that the startset is not the only rele-
vant aspect of a multi-fidelity surrogate model. Indeed, the high errors for this
case are likely due to the procedure used for the selection of the RBF centers,
which is not effective in filtering out the numerical noise, negatively affecting
the adaptive sampling procedure and leading to overfitting.

Future work aims to investigate the effects of the RS approach on the
adaptive sampling using several analytical test problems. Specifically, the ana-
lytical test set defined within the NATO STO Research Task Group AVT-331
on “Goal-driven, multi-fidelity approaches for military vehicle system-level
design” will be considered. Furthermore, an improved strategy to perform
regression with the SRBF in presence of numerical noise will be investigated
in order to avoid overfitting. Still, the current tests indicate that the reduced
startset and bounded surrogate model form a useful component of an optimal
surrogate modeling strategy.
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