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ABSTRACT
Theoretical and numerical aspects of the open-source po-

tential flow boundary element solver, NEMOH, for the first or-
der hydrodynamic coefficients computations in the frequency do-
main are described in [Babarit, A. and Delhommeau, G., 2015].
[Philippe, M. et al., 2015] described the implementation and
verifications of the second order difference-frequency quadratic
transfer functions (QTFs) in the NEMOH code. In the latter pa-
per, the QTFs are verified for standard cases, a bottom-mounted
cylinder and a hemisphere. The present study reports the imple-
mentation and verification of the complete QTFs, for difference-
and sum-frequency loads. The QTFs are composed of quadratic
and potential parts. The quadratic part depending on the first
order hydrodynamic quantities, is implemented using the near-
field approach. The potential part, which depends on the second
order potential, is solved using the indirect method. Verifica-
tion is achieved by comparing the NEMOH result with a com-
mercial software HYDROSTAR for a hemisphere and the OC5-
DeepCwind semisubmersible.

INTRODUCTION
The open source potential flow boundary element solver,

NEMOH1, is developed at Ecole centrale de Nantes [1, 2]. The
code has been extensively validated and used in several ocean
engineering applications, especially for the design and optimiza-
tion of wave energy converters [3, 4].

Complementary, offshore wind energy is nowadays seen as
an alternative green and renewable energy with a huge potential
that will be a key element in the energetic transition to come.

1https://lheea.ec-nantes.fr/valorisation/
logiciels-et-brevets/nemoh-presentation

Potential flow codes are now often used for studying offshore
floating wind turbine platforms. In [5], a commercial potential
flow code WAMIT [6] was used to study the second order differ-
ence wave frequency loads on the individual components of the
OC-5 DeepCwind semisubmersible under bichromatic waves.

The difference low-frequency wave, as a product of the pair
frequencies of nonlinear waves, excites large wave loads on a
structure if the difference wave frequency is close to the natural
frequency of the structure. On the other hand, the sum-frequency
wave can also excite large heave force and pitch moment on cer-
tain types of structures, such as the Tension Leg Platform (TLP)
as in [7]. Therefore, investigating second order wave excitation
forces at the difference and sum frequencies of paramount im-
portance.

Methods for solving second order diffraction wave problem
and to calculate second order wave loads have been developed
in past years by many researchers [8, 9, 10]. The second order
wave loads are composed of the quadratic part and the poten-
tial part. Several formulations are available for calculating the
quadratic part: the near-field formulation [9], the far-field for-
mulation [11], the middle field formulation [12] and the lagally
formulation [13]. The potential part can be solved directly by
solving the second order diffraction problem as in [10] or indi-
rectly using the green formulation as in [8, 9].

In the following sections, we describe the second order
wave loads formulations used and implemented in NEMOH. The
quadratic part is based on the near-field formulation and the po-
tential part is based on the indirect method. Then, NEMOH
full QTF implementation is validated through the comparison to
HYDROSTAR commercial software [14]. Four geometries are
tested: a simple hemisphere and the three individual components
of OC5-semisubmersible.
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NOTATIONS
We start by defining notations used throughout this paper.

The fixed earth Cartesian coordinate system is denoted by xxx =
(~x,z) with ~x = (x,y) the horizontal coordinates perpendicular to
the z axis in the opposite direction of gravity, g. The free surface
elevation at time, t, is expressed as η(~x, t) = 0 with respect to
the mean water level at z = 0 and the fluid potential is denoted
as Φ(xxx, t). The interior fluid domain is denoted by VΩ, the points
located at the free surface fluid domain is denoted by SF and the
ones located at the body boundary is SB. Water mass density is
denoted by ρ .

Floating body has 6 degrees of freedom (DOF) determined
at center of gravity (COG), ξξξ = (XXX ,θθθ) where the positions, XXX =
(X ,Y,Z) and the orientations, θθθ = (θ1,θ2,θ3). Displacement of
points at the hull are specified by a body of vector rrr with respect
to the COG as XXX = XXX +R(rrr). R is a rotation operator where
R(rrr) ≈ θθθ ×rrr. The velocity of the points at the hull is expressed
as ẊXX .

We express the wetted part on the body hull SB as a func-
tion z = ζ (x,y, t). We use the normalized normal vector di-
rected toward the fluid domain, nnn=−NNN/|NNN|with NNN = (−∇2ζ ,1)
where ∇2 is the two dimensional gradient in ~x. Then the six-
dimensional generalized normal vector is defined as ννν = (nnn,rrr×
nnn)T , with ()T is the matrix transpose operator. The normal vec-
tors on the body at the mean position, SB0 are expressed as ννν0
and nnn0 .

HYDRODYNAMIC PROBLEM
In this section we describe the potential flow problem.
Fluid is assumed to be inviscid and the flow is irrotational

(∇×UUU = 0) allowing to write the fluid velocity UUU as UUU = ∇Φ.
Fluid is also considered incompressible so that the fluid potential
in the interior domain is described by Laplace equation.

The fluid potential has to satisfy a set of boundary condi-
tions. First, the constant pressure condition on the free surface.
Second, the diffraction and radiation conditions on the body hull.
Third, the impermeable condition at bottom and the last, radia-
tion wave condition at the far field.

Taylor series development is applied to approximate the
fluid potential on the free surface by the potential at the mean
water level. The hydrodynamic problem can then be reformu-
lated at the first order, n = 1, and at the second order nonlinear,
n = 2, by applying the perturbation series, as



∇2Φ(n)(xxx, t) = 0 xxx ∈VΩ

∂ 2
t Φ(n)+g∂zΦ

(n) = Q(n)
F xxx ∈ SF

∂nnnΦ(n) = ẊXX
(n)
B ·nnn0 +Q(n)

B xxx ∈ SB

∂zΦ
(n)(xxx) = 0 at z =−D

lim(Φ(n)−Φ
(n)
I ) = 0 for x2 + y2→ ∞,

(1)

where the incoming wave potential, Φ
(n)
I , will be discussed in the

following sections. The free surface forcing term, Q(n)
F , and the

body forcing term, Q(n)
B , are zero for the first order terms and for

the second order terms are given by

Q(2)
F = −2∇Φ

(1) ·∂t∇Φ
(1)+

1
g

∂tΦ
(1)

∂z

[
∂ttΦ

(1)+g∂zΦ
(1)
]∣∣∣∣

z=0
(2)

Q(2)
B =

[
ẊXX

(1)−∇Φ
(1)
]
·R(1)(nnn0)−

[(
XXX (1) ·∇

)
∇Φ

(1)
]
·nnn0

∣∣∣
SB0

.

(3)

In NEMOH, the first order hydrodynamic problem is formu-
lated in the source distribution boundary integral equations and
solved using a panel method as described in [1].

The second order hydrodynamic problem is not solved di-
rectly in NEMOH but the second order force for sum- and
difference-frequency can be calculated using the indirect method
as in [8, 9] and described in the following sections.

SECOND ORDER HYDRODYNAMIC FORCES
The hydrodynamic force is obtained from integration of the

hydrodynamic pressure over the body hull. Following [9], the
integration over the body hull, SB, is composed of the integration
over the mean wetted surface position, SB0 , and of the integra-
tion over the perturbed body surface, εS. Taylor expansion is
applied to the potential over the body hull to be expressed as
the potential at the mean body hull position. The hydrodynamic
pressure, PH , is obtained by subtracting the hydrostatic part in the
Bernoulli pressure. Then, by applying a perturbation series up to
and including second order term, ε2, the truncated hydrodynamic
pressure is defined as

P(1)
H =−ρ∂tΦ

(1)

P(2)
H =−ρ

[
∂tΦ

(2)+
1
2
|∇Φ

(1)|2 +XXX (1) ·∂t∇Φ
(1)
]
.

The hydrodynamic force is then given as

FFFH(t) =−
∫∫

SB0∪εS
PHνννdS = εFFF(1)

H + ε
2FFF(2)

H ,

FFF(1)
H =−

∫∫
SB0

P(1)
H ννν0dS

FFF(2)
H = R(1)FFF(1)

H −
∫∫

SB0

P(2)
H ννν0dS−

∫∫
εS

P(1)
H ννν0dS. (4)
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The second order hydrodynamic force in Eq. (4) can be com-
posed as a sum of the quadratic terms of the first order quantities,
FFF(2)

H1
, and a second order potential term, FFF(2)

H2
.

Similarly, the second order excitation force, FFF(2)
exc, is also

separated in the quadratic term and the potential term. In the
quadratic term of the excitation force, there is also a contribution
from the second order hydrostatic force as

FFF(2)
exc1 = R(1)

(
FFF(1)

S

)
+ρg

∫∫
εS

z(1)ννν0dS+FFF(2)
H1
.

Note that the sum of the first order hydrostatic force and the first
order hydrodynamic force is the inertia force, FFF(1)

I . The per-
turbed surface, εS, is located between an instantaneous water-
line, ζwl and the free surface along the waterline. The integral
then can be performed horizontally along the waterline, Γ and
vertically between ζwl and η . Let Θ be the angle of hull with
respect to vertical axis along the waterline, so dS = dΓdz/cosΘ.
With the first order free surface is defined as η(1) = −∂tΦ

(1)/g,
then the integral over the perturbed surface in the excitation force
can be calculated. The excitation force is then expressed, with Γ0
is the waterline of the body at the mean position, as

FFF(2)
exc1 =R(1)

(
FFF(1)

I

)
− ρg

2

∫
Γ0

[
η
(1)−ζ

(1)
wl

]2
ννν0 dΓ (5)

+
∫∫

SB0

ρ

[
1
2
|∇Φ

(1)|2 +XXX (1) ·∂t∇Φ
(1)
]

ννν0dS

This quadratic term of the second order excitation force, Eq. (5),
has been verified and the results shown in [2].

The potential term of the second hydrodynamic force is

FFF(2)
H2

=
∫∫

SB0

ρ∂tΦ
(2)

ννν0dS.

As in the first order potential, the second order total potential,
Φ(2), can be composed as a sum of the second order incoming
potential, Φ

(2)
I , and the perturbed potential, Φ

(2)
P . The perturbed

potential is Φ
(2)
P = Φ

(2)
D +Φ

(2)
R , where Φ

(2)
D is the diffraction po-

tential and Φ
(2)
R is the radiation potential. The second order radi-

ation potential is due to the second order motion, Φ
(2)
R = ξ̇ξξ

(2)
·ψψψ ,

where ψψψ is the normalized radiation potential. Then the force is
composed as a sum of the potential part of the second order ex-
citation force and the second order radiation force. The potential
part of the second order excitation force, FFF(2)

exc2 , is a sum of the
second order Froude-Krylov force, FFF(2)

HI
, and the second order

diffraction force, FFF(2)
HD

; FFF(2)
exc2 =FFF(2)

HI
+FFF(2)

HD
.

The second order potential is assumed to be an harmonic
function, which frequency is the sum- or difference-frequency
modes, with ω+ =ω1+ω2 and ω−=ω1−ω2. The potential can
then be expressed as Φ(2)±(xxx, t) = Re

{
Φ

(2)
1 (xxx)e−iω±t

}
. Corre-

spondingly, the excitation force is expressed as

FFF(2)
exc2 = Re

{[
FFF(2)

HI1
+FFF(2)

HD1

]
e−iω±t

}
, where (6)

FFF(2)
HI1

=−iω±ρ

∫∫
SB0

Φ
(2)
I1

ννν0dS

FFF(2)
HD1

=−iω±ρ

∫∫
SB0

Φ
(2)
D1

ννν0dS.

The Froude-Krylov force, FFF(2)
HI1

, in Eq. (6), can be calculated by
given the second order incoming potential as discussed in the
next section.

Instead of solving the second order diffraction problem, the
diffraction force is obtained with the indirect method using Green
formulation and an assisting function that is a normalized radi-
ation potential [8]. As also described in [9], the normalized ra-
diation potential, ψψψ , is the first order solution of the radiation
potential that satisfies the boundary value problem (BVP) simi-
larly as in the first order problem of Eq. (1) but restricted to the
radiation problem. The BVP, Eq. (1), has also to be satisfied by
the second order diffraction potential. Then the BVP is reformu-
lated in the boundary integral equations using the Green-Gauss
theorem. The integrals over the bottom surface, SD, and over the
far field boundary vanish, the boundary integral of the second
order diffraction potential can then be expressed as

∫∫
SB0

Φ
(2)
D1 ννν0dS =−

∫∫
SB0

(
∂nnnΦ

(2)
I −Q(2)±

B

)
ψψψ
±dS

− 1
g

∫∫
SF

Q(2)±
FD ψψψ

±dS (7)

where the body forcing term Q(2)±
B as in Eq. (3) but now for sum

and difference frequencies. The diffraction free surface forc-
ing term is obtained as, Q(2)±

FD = Q(2)±
F −Q(2)±

FI where Q(2)±
F and

Q(2)±
FI are obtained as in Eq. (2) but with the sum- and difference-

frequency total potential and the incoming potential, respec-
tively. The potential part of the second order diffraction force,
FFF(2)

HD1
, Eq. (6), can now be obtained by the boundary integral in

Eq. (7).

DIFFERENCE AND SUM FREQUENCY FORCES
In this section, we give an explicit expression for the second

order excitation force on a structure excited by uni-directional
bichromatic incoming wave.
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Following identity of product of two bi-harmonic func-
tions will be used. Suppose a harmonic function with co-
efficient, a, Ψl j = al je−iω jt and a biharmonic function ϕl =

Re{Ψl1 +Ψl2} = Re{Ψl} =
Ψl+Ψ∗l

2 , where ∗ is a complex con-
jugate, then

ϕ1 ·ϕ2 =
1
2


Re{Ψ11Ψ21}+Re{Ψ12Ψ22}
+Re{Ψ11Ψ∗21}+Re{Ψ12Ψ∗22}
+Re{Ψ11Ψ∗22 +Ψ∗12Ψ21}
+Re{Ψ11Ψ22 +Ψ12Ψ21}

 . (8)

The product of the two biharmonic functions, Eq. (8), is com-
posed of several terms; the double frequency terms e−i2ω1t,
e−i2ω2t , the constant terms, the difference-frequency, e−i(ω1−ω2)t ,
and the sum-frequency, e−i(ω1+ω2)t . Here we focus only on the
difference- and sum-frequency products in Eq. (8) and rewrite the
products, with a complex conjugate operator applied to a com-
plex variable, i.e. γ as γC− = γ∗ and γC+ = γ , as

[ϕ1 ·ϕ2]
± =

1
2

Re
{

Ψ11Ψ
C±
22 +Ψ

C±
12 Ψ21

}
. (9)

This product is used to evaluate the second order incident poten-
tial and the second order excitation force in the next subsections.

Second order Froude-Krylov force
Incident Airy potential for bichromatic wave propagation

above constant bottom with two radial frequencies ω j, with j = 1
and 2, wave number vectors ~k j = (k j cosβ ,k j sinβ ), β is angle
from the positive x-axis and the wave number k is related with ω

in the dispersion relation ω = Ω(k,D) =
√

gk tanhkD, is defined
as

ΦI(xxx, t) =Re
{

ΦI1(xxx)e
−iω1t +ΦI2(xxx)e

−iω2t} (10)

ΦI j(xxx) =− i
a jg
ω

Z (k j,D,z)ei~k j ·~x

where the Airy profile Z (k,D,z) = coshk(D+z)
coshkD .

Using the product identity in Eq. (9) to evaluate the free sur-
face forcing term in Eq. (1) with the biharmonic incident poten-
tial, Eq. (10), the difference- and sum- frequency incident poten-
tial is expressed, with ω± = ω1±ω2, k± = k1± k2, as

Φ
(2)±
I (xxx, t) = Re

{
Φ

(2)±
I1

(xxx)e−i(ω1±ω2)t
}

(11)

Φ
(2)±
I1

(xxx) =
ia1a2g2ei~k±·~xZ (k±,D,z)
−ω(±)2 +Ω2(k±,D) ω±

ω1ω2
k1k2 (1∓ tanhk1D tanhk2D)

+ 1
2

[
k2

1
ω1

sech2 k1D± k2
2

ω2
sech2 k2D

] .

The Froude-Krylov force, FFF±HI1
, Eq. (6), with the incoming po-

tential is given in Eq. (11), can then be calculated directly. This
force contributes in the potential part of the second order excita-
tion force.

Quadratic part
The quadratic part of the difference- and sum-frequency

excitation forces, with the 6−DOF quadratic transfer function
(QTF), TTT FQ , is given as follow

FFF(2)
exc1 =Re

{
TTT−FQ

a1a∗2e−i(ω1−ω2)t
}
+Re

{
TTT+

FQ
a1a∗2e−i(ω1+ω2)t

}
,

TTT±FQ
=
[
FFF±11 +FFF±12 +FFF±13 +FFF±14

]
/a1a∗2. (12)

By applying the product identity in Eq. (9) to evaluate all the
products in Eq. (5), the FFF±11, FFF±12, FFF±13 and FFF±14 are derived as
follow

FFF±11 =−
ρg
2

∫
Γ0

[
η
(1)
1 −ζ

(1)
wl1

][
η
(1)
2 −ζ

(1)
wl2

]C±
ννν0 dΓ (13)

FFF±12 =
ρ

2

∫∫
SB0

[
∇Φ

(1)
1 ·∇Φ

(1)C±
2

]
ννν0dS

FFF±13 =
ρ

2

∫∫
SB0

[
XXX

(1)
1 ·
(
−iω2∇Φ

(1)
2

)C±
−XXX

(1)C±
2 · iω1∇Φ

(1)
1

]
ννν0dS

FFF±14 =
1
2

[
R(1)

1

(
FFF(1)C±

I2

)
+R(1)C±

2

(
FFF(1)

I1

)]
.

Potential part
The potential part of the difference- and sum-frequency

excitation forces, with the 6−DOF quadratic transfer function
(QTF), TTT FP , is given as follow

FFF(2)
exc2 =Re

{
TTT−FP

a1a∗2e−i(ω1−ω2)t
}
+Re

{
TTT+

FP
a1a∗2e−i(ω1+ω2)t

}
,

TTT±FP
=
[
FFF±HI1

+FFF±HDB1
+FFF±HDF1

+FFF±HDF2

]
/a1a∗2, (14)

where F±HI1
is the Froude-Krylov force, the diffraction force is

composed of several terms: the body forcing term F±HDB1
, the free

surface forcing term in the finite domain, FFF±HDF1
, and the asymp-

totic free surface forcing term in the infinite domain, FFF±HDF2
.

Body forcing term Using the product identity in Eq. (9)
to evaluate the body forcing term in Eq. (3), the diffraction force
is calculated and composed of two terms, the term with only first
spatial derivatives in F±HDB11

and only the second spatial derivative
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F±HDB12
. The first force term is

FFF(2)±
HDB1

=iω±ρ

∫∫
SB0

(
∂nnnΦ

(2)±
I −Q(2)±

B1

)
ψψψ
±dS (15)

Q(2)±
B1

=
1
2

(ẊXX (1)
1 −∇Φ

(1)
1

)
·R(1)C±

2 (nnn0)

+
(
ẊXX

(1)C±
2 −∇Φ

(1)C±
2

)
·R(1)

1 (nnn0)


SB0

.

The normal derivative of the incident potential can be calculated
for given the incident potential in Eq. (11).

The second force term in FFF(2)±
HDB12

is calculated by applying
the Stokes theorem such that the force is only expressed in first
spatial derivative as

FFF(2)±
HDB2

=
iω±ρ

2

∫∫
SB0



(
∇Φ

(1)C±
2 ·∇

)(
ψψψ±XXX

(1)
1

)
+
(

∇Φ
(1)
1 ·∇

)(
ψψψ±XXX

(1)C±
2

)
−
(

∇ ·
(

ψψψ±XXX
(1)
1

))
∇Φ

(1)C±
2

−
(

∇ ·
(

ψψψ±XXX
(1)C±
2

))
∇Φ

(1)
1

 ·nnn0 dS

− iω±ρ

2

∫
Γ

(ψψψ±XXX
(1)
1

)
×∇Φ

(1)C±
2

+
(

ψψψ±XXX
(1)C±
2

)
×∇Φ

(1)
1

 ·dΓΓΓ. (16)

Free surface forcing term The diffraction force due to
the free-surface forcing in the finite domain SF1 , FFF(2)±

HDF1
, is calcu-

lated at a radius RF1 between the body waterline Rwl and a finite
distance Re from the origin, Rwl < RF1 ≤ Re. The calculation is
grouped for terms with first order spatial derivative, FFF(2)

HDF11
, and

for terms with second order spatial derivative, FFF(2)
HDF12

. Using the
product identity in Eq. (9) to evaluate the first terms diffraction
free surface forcing body forcing Q(2)

FD1
, the force is given as

FFF(2)±
HDF11

=
iω±ρ

g

∫∫
SF1

Q(2)±
FD1

ψψψ
±dS (17)

Q(2)±
FD1

=


i(ω1±ω2)

[
∇Φ

(1)
1 ·∇Φ

(1)C±
P2

+∇Φ
(1)
P1
·∇Φ

(1)C±
I2

]
− iω1

2g

[
Φ

(1)
1 (−ω2

2 ∂zΦ
(1)C±
P2

)+Φ
(1)
P1
(−ω2

2 ∂zΦ
(1)C±
I2

)
]

∓ iω2
2g

[
Φ

(1)C±
2 (−ω2

1 ∂zΦ
(1)
P1
)+Φ

(1)C±
P2

(−ω2
1 ∂zΦ

(1)
I1
)
]


z=0

.

The second diffraction force terms due to the free-surface

forcing in the finite domain is given as

FFF(2)±
HDF12

=
iω±ρ

g

∫∫
SF1

Q(2)±
FD2

ψψψ
±dS (18)

Q(2)±
FD2

=
1
2


−
(

iω1Φ
(1)
1

)
k2

2Φ
(1)C±
P2

−
(

iω1Φ
(1)
P1

)
k2

2Φ
(1)C±
I2

∓
(

iω2Φ
(1)C±
2

)
k2

1Φ
(1)
P1

∓
(

iω2Φ
(1)C±
P2

)
k2

1Φ
(1)
I1

 .

Note that here the second derivative in z is evaluated di-
rectly as ∂zzΦI = k2ΦI and similarly for the perturbed potential,
that satisfy dispersion relation in the free surface, ∂zzΦP = k2ΦP.
This approach is different from original work of [9] that used the
Green formulation to express the second z derivative such that it
becomes only the first derivative. The Green formulation leads to
an integral with a large error, particularly in the high frequency
case, due to the first derivatives of the functions, i.e. the per-
turbed potential and the radiation potential, are not continuous
on the body boundary.

The asymptotic diffraction force due to the free-surface forc-
ing in the infinite domain SF2 , FFF(2)±

HDF2
, is calculated at a radius RF2

between the truncated radius Re to the infinity, Re ≤ RF2 ≤ ∞.
Following [9], the perturbed potential on the free surface is ex-
pressed in an asymptotic form a cylindrical coordinate system
(r,ϑ ,z), with the Kochin function, HP(ϑ), defined as

HP(ϑ) =
∞

∑
l=0

ClP cos lϑ +SlP sin lϑ (19)

ClP =
−1
4π

∫∫
SB0

σP
(
xxx′
)
Z (k,D,z′)εl (−i)lJl(kr′) cos lα ′dS

SlP =
−1
4π

∫∫
SB0

σP
(
xxx′
)
Z (k,D,z′)εl (−i)lJl(kr′) sin lα ′dS

where ε0 = 1, εl = 2 for l ≥ 1, r′ =
√

x′2 + y′2, α ′ = tan−1
(

y′
x′

)
,

ϑ = tan−1
( y

x

)
and Jl is the first kind Bessel function order l.

σP(xxx′) is the perturbed source distribution, xxx′ is location of points
on the body hull. For the radiation potential, CCC±lR and SSS±lR are de-
fined similar as in Eq. (19) but now with the radiation source dis-
tribution function. The source distributions are obtained from the
first order NEMOH hydrodynamic solution. Then, the asymp-
totic radiation, perturbed and incoming potentials are defined re-
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spectively as

ψψψ
±
R1

=

√
8πk±√

r
F (k±,D,z)ei(k±r+π/4)

∞

∑
l=0

CCC±lR cos lϑ +SSS±lR sin lϑ

ΦP1,2 =

√
8πk1,2√

r
Z (k1,2,D,z)ei(k1,2r+π/4)HP(ϑ)

k1,2D(1− tanh2 k1,2D)+ tanhk1,2D

ΦI1,2 =
−ia1,2g

ω1,2

∞

∑
l=0

εl ilJl(k1,2r)cos l (ϑ −β ) . (20)

The force, as expressed in Eq. (17) and Eq. (18) but now
for the domain SF2 with the potentials expressed as in Eq. 20, is
given as

FFF(2)±
HDF2

=
iω±ρ

g

K ±
1 (k1,k2,ω1,ω2)

[
III±DF11

+III±DF12

]
+K ±

2 (k1,k2,ω1,ω2)
[
III±DF21

+III±DF22

] (21)

where

K ±
1 (k1,k2,ω1,ω2) =∓iω±k1k2

K ±
2 (k1,k2,ω1,ω2) = iω±

Ω2(k1,D)

g
Ω2(k2,D)

g

∓ iω1ω2

2

(
k2

1

ω1 cosh2(k1D)
± k2

2

ω2 cosh2(k2D)

)
III±DF11

=
∫ 2π

0

∫
∞

Re

cos(ϑ −β )Φ
(1)
I1

Φ
(1)C±
P2

ψψψ
±rdrdϑ

III±DF12
=
∫ 2π

0

∫
∞

Re

cos(ϑ −β )Φ
(1)
P1

Φ
(1)C±
I2

ψψψ
±rdrdϑ

III±DF21
=
∫ 2π

0

∫
∞

Re

Φ
(1)
I1

Φ
(1)C±
P2

ψψψ
±rdrdϑ

III±DF22
=
∫ 2π

0

∫
∞

Re

Φ
(1)
P1

Φ
(1)C±
I2

ψψψ
±rdrdϑ .

The integral over r is conducted semi analytically.

RESULTS
In this section, we perform an extensive validation of the

NEMOH QTF through the computation of different test-cases.
First, a floating hemisphere is studied as a standard and sim-
ple configuration. Then, the OC5-DeepCwind semi-submersible
platform is modelled. The NEMOH results are compared
with the commercial hydrodynamic software, HYDROSTAR
[14]. For the comparison, the same meshes are used both in
NEMOH and HYDROSTAR. Note that in both NEMOH and
HYDROSTAR softwares, the near-field formulation is used for
the QTF computation. In addition, both codes have a specific
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FIGURE 1. HEMISPHERE MESH WITH 514 PANELS.
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SURGE (LEFT) AND HEAVE (RIGHT) BETWEEN HYDROSTAR
AND NEMOH WITH DIFFERENT NUMBER OF PANELS.

treatment of irregular frequencies. In NEMOH the irregular fre-
quencies are removed by extended the boundary integral equa-
tions with additional meshes on the lid of the structures [1]. In
HYDROSTAR, similar approach is implemented, except that the
lid meshes are automatically generated. All the meshes used here
are generated using an open source mesh generator software,
GMSH [15]. The convergence study of the first order quantities
of the hydrodynamic coefficients are conducted and compared
for different number of meshes. The first order results are basis
for calculating the QTFs. All the QTFs results are normalized by
ρg, where ρ = 1025kg/m3 and g = 9.81m/s2.

Hemisphere
This test-case considers a hemisphere with a radius 10 m in

a fluid domain with 30 m water depth. Fig. 1 shows the half
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DIFFERENCE.

space of the hemisphere that is discretized with 514 quadrilateral
panels. The free surface is discretized by a circular mesh in the
radius RF1 , 10≤ RF1 ≤ 600 m, with Nr = 600 points in the radial
and Nϑ = 50 points in the angular. Those meshes have been
chosen after a convergence study on the results, as shown in Fig.
2 for the first order results. The QTFs results are shown with the
wave frequencies in the interval f = (0.14,0.22) Hz and ∆ f =
0.008 Hz.

In a previous study [2], the NEMOH results for the quadratic
terms of the difference-frequency QTFs for a fixed and float-
ing hemisphere have been shown and verified against the nu-
merical data proposed in [16]. Fig. 3 shows the contour plots
of the surge difference-frequency total QTF, |T−F | = |T

−
FQ

+T−FP
|

Eqs. (12) to (14), that are obtained with HYDROSTAR and
NEMOH. In addition, the difference between the two solvers re-
sults is shown in Fig. 3 to evaluate their similarities. It is ob-
served that NEMOH and HYDROSTAR are in good agreement,
with larger (but still limited) differences observed for the higher
frequencies f > 0.2 Hz.

The surge sum-frequency quadratic QTF, |T+
FQ
| Eq. (12), re-

sult obtained by NEMOH is compared with the corresponding
data in [10]. The result show that an excellent agreement is
achieved between the NEMOH result and the data in [10], see
in Fig. 4. In NEMOH the irregular frequency removal method

is not optimal yet, as can be seen in Fig. 2, that leads to a large
error in the potential part of the sum-frequency QTF, Eq. (14).
We compared also the NEMOH result against HYDROSTAR,
the agreement is achieved only in the frequency interval less than
0.15 Hz where the sum-frequency is not close to an irregular fre-
quency at 0.3 Hz, but the result is not shown here.

This validate the full QTF calculations within NEMOH in
a simple configuration and that the next section is devoted to a
more complex geometry.

OC5-semisubmersible
Similar to the study [5], in this section we examine the

second order wave loads on the OC5-DeepCWind semisub-
mersible platform at first on the individual elements and then
on the interconnected complete structure. The individual com-
ponents are i) an isolated cylinder and ii) an isolated cylin-
der with a heave plate, that is labeled as ‘Assembly’. The
interconnected components is a combination of three ‘Assem-
blies’, which is labeled as ‘Configuration’, resembling the full
OC5-semisubmersible platform but without the smaller central
columns and pontoon/braces. The dimensions of the compo-
nents are: i) cylinder with a 6 m radius and 14 m draft and ii)
same cylinder dimensions with a heave plate of 12 m radius and
6 m draft. For the ‘configuration’, the center of the three as-
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semblies are placed at (x,y,z)= (14.43,25,0), (−28.87,0,0) and
(14.43,−25,0) m.

Fig. 5 shows meshes of the considered structures that are
used in the computation. The cylinder is discretized with 634
quadrilateral panels, the ‘assembly’ with 920 panels and the
‘configuration’ with 1970 panels. The panels are finer than the
ones used in [5] and ensures the convergence of the 1st-order re-
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THE BOTTOM PLOT IS FOR THE ‘CONFIGURATION’.

sults with NEMOH, as shown in Fig. 6. For the full QTF compu-
tation, including the free surface terms, on the cylinder structure,
the free surface is discretized by a circular mesh in the radius RF1 ,
6≤ RF1 ≤ 50 m, with Nr = 120 points in the radial and Nϑ = 200
points in the angular.

The domain is assumed of infinite depth and waves with fre-
quencies f = (0.01,0.21) Hz and ∆ f = 0.01 Hz are considered.

The comparison of the surge difference-frequency QTF,
|T−F | = |T

−
FQ

+T−FP
| but the T−FP

in Eq. (14) without the free sur-
face forces, for the fixed structures between NEMOH and HY-
DROSTAR is shown in Fig. 7 for the diagonal QTF line plot and
Fig. 8 for the contour plots.

Fig. 7 shows the plots of the real part and the imaginary
part of the surge diagonal QTF at the surge natural frequency
of the OC5 platform, ∆ f = 0.01 Hz. For all the structures, the
real part of the QTF has a dominant magnitude compared to the
imaginary part. In the diagonal QTF plot for the ‘configura-
tion; a local peak is observed. This local peak of the QTF at the
difference-frequency equal to the natural frequency of the struc-
ture is important for understanding the low frequency response
of the structure.

In the contour plots, Fig. 8, the gradient of the QTF contour
lines for the cylinder is increasing for the increasing frequen-
cies, f1. For the ‘assembly’, the additional heave plate structure
causes a larger peak QTF magnitude at the largest difference fre-
quency. In the ‘configuration’, the additional two columns of
the ’assemblies’ increase the peak QTF magnitude at the highest
difference frequency.

Fig. 9 shows the difference frequency total QTF, |T−F | =
|T−FQ

+ T−FP
| Eqs. (12) to (14), for the fixed cylinder. The effect
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FIGURE 8. CONTOUR PLOTS OF THE NORMALIZED SURGE DIFFERENCE FREQUENCY QTF MAGNITUDE (WITHOUT THE FREE
SURFACE FORCES) FOR THE FIXED STRUCTURES; ON THE TOP ROW FOR THE CYLINDER, THE MIDDLE ROW FOR THE ‘ASSEMBLY’
AND ON THE BOTTOM FOR THE ‘CONFIGURATION’. HYDROSTAR RESULTS ARE IN THE LEFT COLUMN, NEMOH RESULTS ARE IN
THE MIDDLE COLUMN AND THE DIFFERENCE IN THE RIGHT COLUMN.
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FIGURE 9. CONTOUR PLOTS OF THE NORMALIZED SURGE DIFFERENCE FREQUENCY TOTAL QTF MAGNITUDE (INCLUDING THE
FREE SURFACE FORCES) FOR THE FIXED CYLINDER. HYDROSTAR RESULTS ARE IN THE LEFT COLUMN, NEMOH RESULTS ARE IN
THE MIDDLE COLUMN AND THE DIFFERENCE IN THE RIGHT COLUMN.

of the free surface forcing term in Eq. (14) is rather small and
concentrated around the largest frequency difference.

The NEMOH results for the surge difference frequency QTF
of the fixed structures are in good agreement with the HY-
DROSTAR results. The results also agree with the results re-

ported in [5]. This validate the full QTF calculations within
NEMOH in the complex geometry.
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CONCLUSION
The full second order wave loads have been implemented in

the open source potential flow code NEMOH. The full second or-
der waves loads composed of the quadratic part and the potential
part. The near-field method as in [9] is applied for calculating
the quadratic part. The indirect-method as in [8,9], that using the
Green-Stokes formulation and the assisting normalized radiation
potential, is implemented for calculating the potential part.

Verification has been performed against an existing commer-
cial code HYDROSTAR [14] and the good agreement is achieved
for the simple geometry, the floating hemisphere, and more com-
plex geometry, the OC5-DeepCwind semisubmersible platform.

In the floating hemisphere case, we verified the difference-
frequency full QTF and the quadratic sum-frequency QTF. The
quadratic sum-frequency QTF Nemoh results is verified with the
data presented in [10]. The full sum-frequency QTF was not
shown because the results were influenced by the irregular fre-
quency. An improvement of the irregular frequency removal
method in NEMOH is needed.

In the OC5-DeepCwind semisubmersible platform case, we
verified the difference-frequency QTF for the three different
components: the cylinder, the ‘assembly’ and the ‘configura-
tion’, of the fixed platform. We also verified the difference-
frequency full QTF, including the free surface forces, for the
cylinder.

In this paper we compared and showed only the QTF in the
surge axis. We conducted also comparison of the QTF for heave
and pitch axes between NEMOH and HYDROSTAR. The same
conclusion as for the surge QTF, the good agreement between
the two codes is achieved.

The NEMOH with the QTF module will be soon released
publicly, which will be, to our knowledge, the sole and only
open-source software that provides the second order module.
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