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Abstract
In this article, we propose in-depth analysis and characterisation of the optimis-
ers of the following optimisation problem: how to choose the initial condition
u0 in order to maximise the spatial integral at a given time of the solution of the
semilinear equation ut −Δu = f (u), under L∞ and L1 constraints on u0? Our
contribution in the present paper is to give a characterisation of the behaviour
of the optimiser u0 when it does not saturate the L∞ constraints, which is a key
step in implementing efficient numerical algorithms. We give such a character-
isation under mild regularity assumptions by proving that in that case u0 can
only take values in the ‘zone of concavity’ of f . This is done using two-scale
asymptotic expansions. We then show how well-known isoperimetric inequal-
ities yield a full characterisation of maximisers when f is convex. Finally, we
provide several numerical simulations in one and two dimensions that illus-
trate and exemplify the fact that such characterisations significantly improve the
computational time. All our theoretical results are in the one-dimensional case
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and we offer several comments about possible generalisations to other contexts,
or obstructions that may prohibit doing so.

Keywords: reaction equation, optimal control, shape optimisation, two-scale
expansions

Mathematics Subject Classification numbers: 35B30, 35B65, 35K15, 35K57,
35Q80, 35Q80.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Scope of the article

In this article, we propose to establish several results concerning an optimal control problem
for a class of semilinear parabolic equations. Some aspects of this problem have been initially
addressed by two of the authors in [36]. In the setting under consideration, the control variable
to optimise is the initial condition. As we will see throughout the statement of the results, the
form (e.g. convex or concave) of the semilinearity plays a crucial role in the analysis and calls
for a detailed study of second order optimality conditions, which is our main result, theorem
1. In the case of convex semilinearities, using rearrangement arguments, we can give a full
characterisation of maximisers, see theorem 2. Using theorem 1, we can improve an algorithm
initially developed in [36], and we display numerical results in section 4.

Initial motivation of the paper. The origin of this paper is the study of an optimal con-
trol problem that arises naturally in mathematical biology and that deals with bistable reac-
tion–diffusion equations. Namely, for a semilinear equation, what is the best possible initial
condition (‘best’ being understood as maximising the integral of the solution at a certain time
horizon T)? The complicated behaviour of bistable nonlinearities, which are neither convex
nor concave, makes the analysis of this query very intricate. The two aforementioned results,
theorems 1 and 2, enable us to show how complicated the behaviour of maximisers can be
for such nonlinearities. Bistable equations are of central importance in mathematical biology
[35] and, very broadly speaking, model the evolution of a subgroup of a population. Among
their many applications, one may mention chemical reactions [39], neurosciences [13], phase
transition [27], linguistic dynamics [40] or the evolution of diseases [35]. The last interpreta-
tion is of particular relevance to us, given that this model is used to design optimal strategies
in order to control the spread of several mosquito borne diseases such as the dengue [7]; this
was the main motivation in [3]. The strategy is to release a certain amount of Wolbachia car-
rying mosquitoes (Wolbachia is a bacterium that inhibits the transmission of mosquito borne
diseases that individuals inherit from their mother) in a population of wild mosquitoes that can
potentially transmit the diseases, in order to maximise the proportion of Wolbachia carrying
mosquitoes at the final time. In mathematical terms: given a time horizon T.

How should we arrange the initial population in order to maximise the population size
at T?

Even without having stated it formally, we can make two observations on this problem: the
first one is that, since the variable of the equation is the proportion of a subgroup, we need
to enforce pointwise (L∞) constraints. The second one is that we naturally have to add an L1

constraint for modelling reasons. Both of these constraints can in practice be very complicated
to handle.
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Optimisation problems in mathematical biology. Let us briefly sketch how this problem
fits in the literature devoted to such optimisation and control problems for mathematical biol-
ogy. Optimisation problems for reaction–diffusion equations have by now gathered a lot of
attention from the mathematical community. Most of these optimisation problems are set in
a stationary setting, that is, assuming that the population has already reached an equilibrium,
and the main problems that have been considered often deal with the optimisation of the spa-
tial heterogeneity [12, 16, 17, 22, 23, 30, 31, 33, 37] (we also refer to the recent surveys
[19, 32]); most of these works deal with monostable nonlinearities. We also point to the recent
[9] for the study of an optimal control problem for parabolic monostable equations. On the
other hand, optimisation problems for bistable equations, which are the other paradigmatic
class of equations in mathematical biology [35], have received a less complete mathematical
treatment, but are now the topic of an intense research activity from the control point of view,
see [3, 36] and the references therein. Related optimal control problems are not yet fully under-
stood. More generally, less attention has been devoted to optimisation problem with respect to
the initial condition for such semilinear evolution equations.

1.2. Mathematical setup and statement of the results

1.2.1. Statement of the problem. We work in Ω = (0;π). We consider a C 2 function f :
[0; 1] → IR, and the associated parabolic equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu −Δu = f (u) in IR+ × Ω,

u(0, x) = u0(x) in Ω,

∂u
∂ν

(t, x) = 0 in IR+ × ∂Ω,

(1)

where u0 is an initial condition satisfying the constraint

0 � u0 � 1.

Since our initial motivation, as explained in the first paragraph of this introduction, is to
maximise the proportion of a subgroup of a population, such an L∞ constraint is natural. At
the mathematical level, it should be noted that we could carry out the same analysis with any
L∞ constraint of the form 0 � u0 � κ by a simple change of variable.

We define, for any T > 0, the functional

JT (u0) :=
∫
Ω

u(T, x)dx. (2)

The goal is to maximise JT with respect to u0. Since we are then again wondering how to
maximise the proportion of a subgroup by controlling its distribution at the initial time, it is
natural to introduce a L1 constraint on u0. This constraint is encoded by a parameter m ∈ (0; |Ω|)
which is henceforth fixed.

These considerations lead us to defining our admissible class as

A :=

{
u0 ∈ L∞(Ω), 0 � u0 � 1 a.e. ,

∫
Ω

u0 = m

}
, (3)

and the variational problem under scrutiny throughout this paper is

max
u0∈A

JT (u0). (P f )
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This problem (P f ) was directly addressed by two of the authors in [36], where expressions
for the first and second order optimality conditions were provided. We need to recall them, to
motivate and contextualise our results: if we consider u0 ∈ A and an admissible perturbation h0

at u0 (by ‘admissible perturbation’ we refer to the fact that h0 belongs to the tangent cone to the
set A at u0. This tangent cone is the set of functions h ∈ L∞(Ω) such that, for any sequence of
positive real numbers (εn)n∈IN decreasing to 0, there exists a sequence of functions (hn)n∈IN ∈
L∞(Ω)IN converging to h as n →+∞, and u0 + εnhn ∈ A for every n ∈ IN) then the first order
Gâteaux-derivative of JT at u0 in the direction h0 is

〈∇JT (u0), h0〉 =
∫
Ω

h0(x)p(0, x)dx (4)

where p solves the adjoint equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∂t p−Δp = f ′(u)p in (0, T) × Ω,

p(T, x) = 1 in Ω,

∂p
∂ν

(t, x) = 0 for all t ∈ (0, T), for all x ∈ ∂Ω.

(5)

Here u is the solution of (1) with initial condition u0.
The main result in [36] states the following:

Theorem [36]. There exist a solution u0 ∈ A of (Pf). Moreover, setting u as the solution of
(1) associated with this optimal initial data and p as the unique solution of (5) for u = u, there
exists a non-negative real value c such that

(a) If 0 < u0(x) < 1 then p(0, x) = c,
(b) If p(0, x) > c, then u0(x) = 1,
(c) If p(0, x) < c, then u0(x) = 0.

Finally, for almost every x ∈ {p(0, ·) = c}, one has

f ′ (u0(x)) = −pt(0, x)/p(0, x) (6)

and the left-hand side belongs to Lp
loc(Ω).

The characterisation of u0 with the help of p is almost complete here, except on the singular
arc ω = {0 < u0 < 1}. Note first that this singular arc might have a positive measure. It was
even proved in [36] that, if f is concave, then ω ≡ Ω. If f ′ is monotonic, equation (6) admits
a unique solution and thus fully characterizes u0. But for a bistable nonlinearity fθ(u) = u(1 −
u)(u − θ), equation (6) might have two solutions, one belonging to [0; η] and the other to (η; 1 ],
where η = η(θ) ∈ (0; 1) is the unique real number such that fθ is convex in [0; η ) and concave in
(η; 1 ]. It is then necessary to distinguish between these two possible roots in order to completely
characterize u0 with p.

From the numerical point of view, the characterisation given by this result naturally leads to
a gradient descent algorithm, which is not well-posed if we are not able to characterise u0 onω.
Let us briefly describe this algorithm, which we detail further in section 4 of the present paper,
to explain the core difficulty and how our theoretical results enable us to bypass it: starting
from an initial configuration u0

0, we seek to improve it to obtain a better admissible candidate
u1

0. We first compute the adjoint state p0
0 associated with u0

0. The problem arises if p0
0 has ‘flat

zones’, in other words if there exists c0 (necessarily unique) such that{
p0

0 > c0

}
| < m,

∣∣{p0
0 � c0}

∣∣ > m,
∣∣{p0

0 = c0}
∣∣ > 0.
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On the set {p0
0 > c0}, we replace u0

0 by 1, while on {p0
0 < c0} we replace u0

0 by zero. On
{p0

0 = c0} we must replace u0
0 with a root of (6). (6) can have two roots μ0

1 and μ0
2. These roots

can be distinguished by the convexity of f : up to a relabelling, f ′′(μ0
1) > 0 and f ′′(μ0

2) � 0. In
[36], the two possibilities were explored successively, which led to high computational costs.
This was the main limitation of the numerical approach of [36]. Theorem 1 of the present paper
shows that one should chooseμ0

2. This significantly improves the running time of our algorithm
and we refer to section 4 for examples.

1.2.2. Related works. A related problem has first been addressed by Garnier et al in [15],
where the authors consider a bistable reaction term f (u) := u(1 − u)(u − θ), with θ ∈ (0, 1),
over the full line Ω = IR. In this earlier paper, the authors did not investigate (P f ), but they
tried to optimize the initial datum in order to ensure the convergence to u ≡ 1 when t →+∞.
They investigated numerically the particular case u0 := 𝟙(−α−m

2 ,−α) + 𝟙(α,α+m
2 ), and proved that

in some situations the initial datum associated with α = 0 might lead to extinction (that is,
u(t, x) → 0 as t →+∞), while a positiveα > 0 might lead to persistence (that is, u(t, x) → 1 as
t →+∞). Also, numerics for more general classes of initial datum indicate that fragmentation
might favor species persistence. Hence, even if the problem we consider here is a bit different,
we expect the maximiser to be fragmented, that is, non-smooth, for bistable nonlinearities.

More recently, this problem was also addressed in [24], in a slightly more general form,
and for the criterion

∫
Ω |1 − u(T, x)|2 dx. These authors investigated in particular various con-

ditions ensuring that the maximiser u0 is constant with respect to x, and, reciprocally, that the
constant initial datum is a local maximiser.

1.3. Main results of the paper

The main contributions of this paper are the following:

• When u0 does not saturate the L∞ constraints (i.e. when the set ω := {0 < u0 < 1} has
positive measure), we prove in theorem 1 that any maximiser u0 must necessarily be in a
zone of concavity of f : in ω, f ′′(u0) � 0.

• When f is convex, theorem 2 characterizes explicitly a global maximiser, using rearrange-
ment techniques. Here, the presence of Neumann boundary conditions prohibits using in
a straightforward manner the results of [6], and we need to adapt some points of the proof
to this case.

• When f is a bistable nonlinearity, we improve the algorithm initially introduced in [36]
and display several numerical simulations. One-dimensional simulations are displayed
that exemplify the fact that theorem 1 significantly improves the computational time of
optimisation algorithms. We also provide two-dimensional simulations.

1.3.1. Characterisationof the singular arc. Let us first recall the expression of the second order
derivative [36]:

〈
∇2JT (u0), h0

〉
=

∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)h2(t, x)dx dt, (7)
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where p solves (5) and h solves⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂h
∂t

−Δh = f ′(u)h in (0; T) × Ω,

h(0, x) = h0(x),

∂h
∂ν

= 0 on (0; T) × ∂Ω.

(8)

We can now state our main result:

Theorem 1. Assume Ω = (0;π). Let u0 be a solution of (Pf). If the set Ωc := {x ∈ Ω : 0 <
u0(x) < 1} has a positive measure then, for almost every interior point x of Ωc, there holds

f ′′(u0(x)) � 0. (9)

Remark 1. The method we put forth is reminiscent of one that was used in [36] to study the
case of a constant initial condition and to prove that such a constant u0 was always a maximiser
in the case of monostable nonlinearities. Here, working with interior point greatly complexifies
the situation and calls for two-scale asymptotic expansions.

The main drawback to our approach is that it cannot cover the case of singular (e.g. Cantor-
like) singular arcs, and it is a very interesting question to prove that such a property holds for
any point of the singular arc Ωc. We comment on the main difficulties of this approach in the
conclusion and only state, for the moment, that the main problem is related to the ubiquitous
problem of separation of phases in homogenisation [2].

1.3.2. Convex nonlinearities and rearrangements. We present, in this section, a characterisa-
tion of maximisers when the nonlinearity f is convex, using rearrangement and symmetrisation
techniques. It should be noted that, since we are working with Neumann boundary conditions,
it is not possible to use directly well-known parabolic isoperimetric inequalities [5, 6, 34].
We refer to [6, 28, 41] and the references therein for an introduction to parabolic isoperimetric
inequalities, and only underline here that the most precise results available in the literature only
encompass the case of Dirichlet boundary conditions. For Neumann boundary conditions, a
large literature [11, 14, 25] is devoted to such questions. Usually, it involves a comparison of the
solution with the solution of a Dirichlet, or of a mixed Dirichlet–Neumann problem, and makes
use of constants appearing in relative isoperimetric inequalities. It is unclear whether these
comparison results could be used in our case. Since we are working in the one-dimensional
case, a direct adaptation of the proof of [6] yields the required results.

In order to state our result, let us introduce the following notation: let ũ0 be defined as

ũ0 := 𝟙(0;m) ∈ A. (10)

Theorem 2. Assume f is a convex, C 1 function such that f(0) = 0. Then ũ0 is a solution of
(Pf).

Remark 2.

• It should be noted that ũ0 appears as the solution of many other optimisation problems in
population dynamics, most specifically for the monostable case [8, 17, 30] with Neumann
boundary conditions.
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• The maximiser 𝟙(0;m) is clearly not unique, since 𝟙(1−m;1) is also a maximiser for example.
This provides an example of non-uniqueness of the maximiser.

• As a corollary, ũ0 := 𝟙(0;m) is a minimiser of JT over A if f is concave.

2. Proof of theorem 1

2.1. Notations, plan of the proof and first simplification

Second order optimality conditions. We recall the expression of the second order derivative
of J : for an admissible perturbation h0, we have

〈
∇2JT (u0), h0

〉
=

∫ T

0

∫
Ω

f ′′(u(t, x))p(t, x)h2(t, x)dx dt,

where p solves (5) and h solves (8). Let u0 be a solution of (P f ). We assume that the set
Ωc := {0 < u0 < 1} has a non-empty interior and we want to prove that f ′′(u0) � 0 almost
everywhere on the interior of this set. To do this, we need the following expression of second
order optimality conditions:

Lemma 1. For every h0 ∈ L∞(Ω) supported in Ωc, such that
∫
Ω h0 = 0, there holds∫∫

(0;T)×Ω

f ′′(u(t, x))p(t, x)h2(t, x)dx dt � 0 (11)

where h is the solution of (8) associated with the initial condition h0.

Proof of lemma 1. We first notice the following thing: let, for any n ∈ IN∗, the set Fn be
defined as

Fn :=

{
1
n
< u0 < 1 − 1

n

}
.

Then, for any L∞ function h0 supported in Fn (in the sense that h0𝟙Fn = h0) such that∫
Ω h0 = 0, if h is the solution of (8) associated with h0, we have∫∫

(0;T)×Ω

f ′′(u(t, x))p(t, x)h2(t, x)dx dt � 0.

This is a consequence of the fact that, for any τ such that |τ | is small enough, u0 + τh0 is
an admissible initial condition.

Let us now consider h0 ∈ L∞(Ωc̄) satisfying
∫
Ω h0 = 0. We define, for any n ∈ IN,

h0,n := 𝟙Fn

(
h0 −

∫
Fn

h0

|Fn|

)
.

For every n ∈ IN, h0,n is supported in Fn and verifies
∫
Ω h0,n = 0. Hence, defining, for any

n ∈ IN, hn as the solution of (8) associated with the initial condition h0,n we have∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)h2
n(t, x)dx dt � 0. (12)
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However, there holds

h0,n −−−→
n→∞

h0 in L2(Ω),

which, by standard parabolic estimates, entails

hn −−−→
n→∞

h in L2((0; T) × Ω)

where h is the solution of (8) associated with the initial condition h0. Passing to the limit n →∞
in (12) yields the conclusion. �

Since we want to retrieve, from the second order optimality conditions (11), an information
of f ′′(u0), we need to find a perturbation h0 such that the ensuing solution h satisfies, roughly
speaking,

h2(t, x) ≈ Cδt=t0 g(x),

for a certain function g. As h is a solution of a parabolic equation, one possibility to obtain such
a behaviour is to choose a highly oscillating initial condition, say h0(x) = cos(kx) with a large
integer k. This would give h2(t, x) ≈ e−tk2

cos (kx)2, which, thanks to the Laplace method, does
concentrate around t = 0 up to a proper rescaling. This however is not particularly convenient,
as such a perturbation is not admissible: it is not supported in Ωc̄. To overcome this difficulty,
we need to truncate such highly oscillating perturbations, thus choosing a perturbation of the
form θ(x)cos(kx), with θ a cut-off function, leading to two-scale asymptotic expansions. The
objective is to pick the correct function θ.

In order to summarise our approach, let us fix notations: we pick an optimiser u0, we define
Ωc̄ := {0 < u0 < 1}, and we set Ω̊c̄ as the interior of Ωc̄. To prove theorem 1 we argue by
contradiction: assume that, for some δ > 0,∣∣∣{ f ′′(u0) � δ} ∩ Ω̊c̄

∣∣∣ > 0. (13)

Since Ω̊c̄ is an open set, we can write it as a union of intervals

Ω̊c̄ =

∞⋃
k=0

(ak; bk). (14)

By (13), there exists n0 ∈ IN such that∣∣{ f ′′(u0) � δ} ∩ (an0 ; bn0)
∣∣ > 0,

so that there exists ε > 0 such that, for the same n0, we have∣∣{ f ′′(u0) � δ} ∩ (an0 + ε; bn0 − ε)
∣∣ > 0. (15)

We fix such an ε > 0.
To alleviate notations, define E := { f ′′(u0) � δ} ∩ (an0 + ε; bn0 − ε). As p(0, ·) > 0 by the

parabolic maximum principle, (15) yields∫
Ω

f ′′(u0(·))p(0, ·)𝟙E > 0. (16)
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We approximate in L1(an0 ; bn0 ) the function 𝟙E by a sequence {ψk}k∈IN of uniformly bounded,
non-negative, C∞ functions that are compactly supported in (an0 ; bn0 ) ⊂ Ω̊c̄. In particular, the
sequence {ψ2

k}k∈IN also converges to 𝟙E in L1(Ω), so that (16) implies that for K large enough∫
Ω

f ′′(u0(·))p(0, ·)ψ2
K > 0. (17)

We fix K large enough so that (17) holds and we set, for this index K,

θ :=ψK ∈ C∞(Ω).

The sequence of truncated, highly oscillating initial conditions is

hk,0 := θ(·) (cos(k·) + αk)

where

αk = −
∫
Ωθ cos(k·)∫

Ωθ
(18)

simply ensures that
∫
Ωhk,0 = 0. This constant does not play a role in the upcoming analysis for

the following reason:

(a) First, by setting hk,0 := θ(x)cos(kx) and by defining hk as the solution of (8) associated
with the initial condition h0

k we shall show that∫∫
(0;T)×Ω

f ′′(u)ph2
k ∼

k→∞

C
k2

∫
Ω

f ′′(u0(·))p(0, ·)θ2(·) (19)

for some constant C. This is the core of the proof, and will take up the remainder of this
section of the paper.

It is also immediate by parabolic regularity to obtain that the sequence {hk}k∈IN is
uniformly bounded in L2((0; T ) × Ω).

(b) Second we observe that, as θ∈ C 4, the Riemann–Lebesgue lemma in particular ensure
that αk = O

k→∞

(
1
k4

)
.

(c) If we now set z as the solution of (8) associated with the initial condition θ(·), the solution
hk associated with the (admissible) initial condition hk,0 is given by hk = hk + αkz. Then
the second order derivative in the admissible direction hk,0 is given by

〈
∇2JT (u0), hk,0

〉
=

∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)
(
hk

)2
(t, x)dx dt

=

∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)h2
k(t, x)dx dt

+ 2αk

∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)z(t, x)hk(t, x)dx dt

+ α2
k

∫∫
(0;T)×Ω

f ′′(u(t, x))p(t, x)z2(t, x)dx dt.

Taking into account (19) and the fact that αk = O
k→∞

(
1
k4

)
leads to

〈
∇2JT (u0), hk,0

〉
∼

k→∞

C
k2

∫
Ω

f ′′(u0(·))p(0, ·)θ2(·) > 0,
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a contradiction.
(d) As a consequence, the theorem is proved, provided we can prove (19), and we henceforth

focus on this point.

2.2. Asymptotic expansion of hk

Let θ be given as above. We consider the following sequence of equations: let, for any k ∈ IN,
hk be the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂hk

∂t
− ∂2hk

∂x2
= f ′(u)hk,

∂hk

∂ν
= 0,

hk(0, x) = hk,0(x) = θ(x) cos(kx).

(20)

In this context, it is natural [1] to look for a two-scale asymptotic expansion of hk of the form

hk(t, x) ≈ h0
k(k2t, x, kx) +

1
k

h1
k(k2t, x, kx) + . . . (21)

which, after a formal identification at the first and second order, gives the following equations
on h0

k and h1
k : ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂h0
k

∂s
− ∂2h0

k

∂y2
= 0,

∂h0
k

∂ν
= 0,

h0
k(0, x, y) = θ(x) cos(y).

(22)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂h1
k

∂s
− ∂2h1

k

∂y2
= 2

∂2h0
k

∂x∂y
,

∂h1
k

∂ν
= 0,

h1
k(0, x, y) = 0.

(23)

Equation (22) can be solved explicitly, giving

h0
k(s, x, y) = θ(x) cos(y)e−s. (24)

This, in turn, allows to solve equation (23) as

h1
k(s, x, y) = −2s e−sθ′(x) sin(y). (25)

Proposition 1. The asymptotic expansion (21) is valid in L2(Ω) in the following sense: there
exists M > 0 that depends on the time horizon T such that, if we define

Rk := hk(t, x) − h0
k(k2t, x, kx) − 1

k
h1

k(k2t, x, kx)
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then, for any t ∈ (0; T ),

‖Rk(t, ·)‖L2(Ω) �
M
k2
. (26)

In particular, ∫∫
(0;T)×Ω

R2
k �

M2

k4
,

∫ T

0
‖Rk‖L2(Ω) �

MT
k2

. (27)

Proof of proposition 1. To prove this proposition, we write down the equation satisfied
by Rk. Straightforward computations show that Rk solves

∂tRk −ΔRk − f ′(u)Rk := f ′(u)

(
h0

k +
1
k

h1
k

)
+

∂2h0
k

∂x2
+ 2

∂2h1
k

∂x∂y
+

1
k
∂2h1

k

∂x2
, (28)

and all the functions on the right-hand side are evaluated at (k2t, x, kx) (we dropped this for
notational convenience). We now introduce the following notations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W0 := f ′(u),

V0,k(t, x) := h0
k(k2t, x, kx) +

1
k

h1
k(k2t, x, kx),

V1,k := − ∂2h0
k

∂x2
(k2t, x, kx),

V2,k := − 2
∂2h1

k

∂x∂y
− 1

k
∂2h1

k

∂x2
.

First of all, since 0 � u � 1 and f ∈ C 1, there exists M0 > 0 such that

‖W0‖L∞((0;T)×Ω) � M0. (29)

We gather the main estimates on source terms in the following lemma:

Lemma 2. There exists M̃ > 0 such that∫ T

0
‖V0,k(t, ·)‖L2(Ω) �

M̃
k2

, (30)

∫ T

0
‖V1,k(t, ·)‖L2Ω) dt � M̃

k2
. (31)

∫ T

0
‖V2,k(t, ·)‖L2Ω) dt � M̃

k2
. (32)

Proof of lemma 2. We prove the three estimates separately. Let us recall the following
consequence of the Laplace method: for any integer m ∈ N

∗, one has∫ T

0
tm−1 e−k2t dt ∼

k→∞

(m − 1)!
k2m

. (Im)
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Proof of (30)
By the triangle inequality we get, for any t ∈ (0; T ),

‖V0,k(t, ·)‖L2 � ‖h0
k(k2t, ·, k·)‖L2(Ω) +

1
k
‖h1

k(k2t, ·, k·)‖L2(Ω).

We first use the explicit expressions (24) and (25) for h0
k and h1

k to obtain, using ‖θ‖L∞ � 1,

‖h0
k(k2t, ·, k·)‖2

L2(Ω) =

∫
Ω

θ(x)2 cos (kx)2 e−2k2t dx � e−2k2t|Ω|, (33)

and integrating this inequality between 0 and T gives∫ T

0
‖h0

k(k2t, x, k·)‖L2(Ω) dt � M̃
k2
.

In the same way, we have, for any t ∈ (0; T ),

‖h1
k(k2t, ·, k·)‖2

L2(Ω) = 4k4t2 e−2k2t

∫
Ω

(θ′(x))2 sin (x)2 dx � Ck4t2 e−2k2t|Ω| · ‖θ′‖2
L∞ , (34)

for some constant C. Taking the square root and integrating in time we get, for a constant C′,

1
k

∫ T

0
‖h1

k(k2t, ·, k·)‖L2(Ω) dt � C′|Ω| · ‖θ′‖L∞k
∫ T

0
t e−k2t dt.

Using (Im) with m = 2 gives∫ T

0

1
k
‖h1

k(k2t, ·, k·)‖L2(Ω) dt � M1

k3

for some constant M1.
Summing these two contributions gives (30).
Proof of (31). This follows from the same arguments, by simply observing that

V1,k(t, x) = −e−k2tθ′′(x) cos(kx).

Proof of (32). We once again split the expression and estimate separately∫ T

0

∥∥∥∥∂2h1
k(k2t, ·, k·)
∂x∂y

∥∥∥∥
L2(Ω)

dt and
1
k

∫ T

0

∥∥∥∥∂2h1
k(k2t, ·, k·)
∂x2

∥∥∥∥
L2(Ω)

dt.

We first observe that for any t ∈ (0; T ), we have

∂2h1
k(k2t, ·, k·)
∂x∂y

= −4k2t e−k2tθ′′(x) cos(y).

In particular, for any t ∈ (0; T )∥∥∥∥∂2h1
k(k2t, ·, k·)
∂x∂y

∥∥∥∥
L2(Ω)

� 4k2t e−k2t|Ω| · ‖θ′′‖L∞

so that the Laplace method (Im) with λ = 2 gives the bound∫ T

0

∥∥∥∥∂2h1
k(k2t, ·, k·)
∂x∂y

∥∥∥∥
L2(Ω)

dt � M2

k2
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for some constant M2. The proof of the control of the second term follows along exactly the
same lines. �

Let us now prove estimate (26). The equation on Rk rewrites

∂tRk −ΔRk − W0Rk = W0V0,k + V1,k + V2,k. (35)

Multiplying the equation by Rk and integrating by parts in space gives

1
2
∂t

∫
Ω

R2
k +

∫
Ω

|∇Rk|2 −
∫
Ω

W0R2
k � ‖Rk‖L2(Ω)

×
(
M0‖V0,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω)

)
.

In other words, bounding W0 by M0 and defining g(t) := ‖Rk(t, ·)‖2
L2(Ω)

we obtain

1
2

g′(t) � M0g(t) +
√

g(t)
(
M0‖V0,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω)

)
.

Furthermore, Rk(0, ·) = 0. We thus obtain, by the Gronwall lemma, for any t ∈ (0; T ),

√
g(t)e−M0t �

∫ t

0
e−M0s

(
M0‖V0,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω)

)
.

Hence, by lemma 2 we get for some constant N0 and any t ∈ (0; T ),

‖Rk(t, ·)‖L2(Ω) � N0

∫ T

0

(
‖V0,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω) + ‖V2,k(t, ·)‖L2(Ω)

)
� N0M̃

k2
.

�

2.3. Back to the proof

We turn back to the proof of theorem 1 and, more precisely, to the proof of (19).

Proof of theorem 1. We use the same θ as above and the same notation αk as in the
introduction of the proof (equation (18)). Let us now consider the initial perturbation
hk,0 := θ(x)(cos(kx) + αk). We recall that z is the solution of (8) with initial condition θ and
that hk is the solution of (8) with initial condition θ(·)cos(k·). Hence, since the equation is
linear,

hk = hk + αkz.

By parabolic regularity,

sup

(
sup
k∈IN

‖hk‖L2((0;T)×Ω), ‖z‖L2((0;T)×Ω)

)
< ∞. (36)

Since θ∈ C 4, the Riemann–Lebesgue lemma implies

αk = O
k→∞

(
1
k4

)
. (37)
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We define

F(t, x) := f ′′(u(t, x))p(t, x)

so that the second order derivative of JT in u0 rewrites as

〈∇2JT (u0), hk,0〉=
∫∫

(0;T)×Ω

Fhk
2

=

∫∫
(0;T)×Ω

Fh2
k + 2αk

∫∫
(0;T)×Ω

Fzhk + α2
k

∫∫
(0;T)×Ω

Fz2.

(38)

We focus on the first term:∫∫
(0;T)×Ω

Fh2
k =

∫∫
(0;T)×Ω

F(t, x)
(
Rk(t, x) + V0,k(t, x)

)2
dx dt,

=

∫∫
(0;T)×Ω

F(t, x)
(
Rk(t, x)2 + 2Rk(x, t)V0,k(t, x) + V0,k(t, x)2

)
dx dt.

(39)

From the assumptions on f and the estimates on u and p, it easy to see that

‖F‖L∞((0;T)×Ω) � M3. (40)

Gathering (40) and (27) it follows that∫∫
(0;T)×Ω

F(t, x)Rk(t, x)2 dx dt = O(k−4) (41)

and similarly, gathering (30) and (26) we obtain∫∫
(0;T)×Ω

F(t, x)Rk(t, x)V0,k(t, x)dx dt = O(k−4) (42)

Let us now study the term∫∫
(0;T)×Ω

F(t, x)V0,k(t, x)2 dx dt =
∫∫

(0;T)×Ω

F(t, x)

(
h0

k(t, x) +
1
k

h1
k(t, x)

)
2

=

∫∫
(0;T)×Ω

F(t, x)

(
h0

k(t, x)2 + 2
1
k

h0
k(t, x)h1

k(t, x)

+
1
k2

h1
k(t, x)2

)
dx dt

Once again we split the expression. Applying the Cauchy–Swchartz inequality, and using
estimates (33) and (34) it follows that the second term verifies∣∣∣∣2 1

k

∫∫
(0;T)×Ω

F(t, x)h0
k(t, x)h1

k(t, x)dx dt

∣∣∣∣ � 2
M3

k

∫ T

0
‖h0

k‖L2(Ω)‖h1
k‖L2(Ω) dt

� 2M4k
∫ T

0
t e−2k2t dt,

= O

(
1
k3

)
.

(43)
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The last step in the above expression follows directly from (Im) with m = 2.
We obtain in a similar way the following estimate on the third term:∣∣∣∣ 1

k2

∫∫
(0;T)×Ω

F(t, x)h1
k(t, x)2 dx dt

∣∣∣∣ � M3

k2

∫ T

0
‖h1

k‖2
L2(Ω) dt � M4k2

∫ T

0
t2 e−2k2t dt,

= O

(
1
k4

)
.

(44)

In this case we applied (Im) for m = 3.
Finally, let us study the first term which can be written as∫∫

(0;T)×Ω

F(t, x)h0
k(t, x)2 dx dt =

∫ T

0
e−2k2tG(t)dt (45)

where G(t) :=
∫
Ω F(t, x)θ(x)2 cos(kx)2 dx is a continuous function of time as a consequence of

parabolic regularity.
However, θ was chosen so that∫

Ω

f ′′(u0(·))p(0, ·)θ2 > 0.

As cos (k·)2 = 1
2 (1 + cos(2·)) ⇀

k→∞
1
2 , it follows that for any k large enough G(0) > 0.

Furthermore, from the Laplace method, when k →∞, one has∫∫
(0;T)×Ω

F(t, x)h0
k(t, x)2 dx dt ∼ 1

2k2
G(0). (46)

Gathering the estimates in (41), (42), (43), (44), (46) and plugging them into the second
derivative of the functional JT given by (38) it follows that∫∫

(0;T)×Ω

Fh2
k ∼

k→∞

1
2k2

G(0). (47)

We go back to (38). By (36), (37) and by (47) we have

〈∇2JT (u0), hk,0〉=
∫∫

(0;T)×Ω

Fh2
k + O

k→∞

(
1
k4

)
∼

k→∞

1
2k2

G(0). (48)

This means that for k sufficiently large,

k2〈∇2JT (u0), hk,0〉 > 0

which contradicts the fact that u0 is a maximiser of JT . The proof of the theorem is complete.
�

3. Proof of theorem 2

The proof follows essentially from the same arguments as in [6]. We thus only present the
main steps that are in order so as to apply the methods of [6]. We define g(u) := f (u) + cu,
with c > ‖ f ′‖L∞ , so that g is increasing.
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Reduction to a bang-bang maximiser. We recall that bang-bang functions are defined as
characteristic functions of subsets of Ω, that is, functions only taking values 0 and 1. First, as f
is convex, it follows from the same arguments as proposition 6 of [36] thatJT is convex. Hence,
one can restrict to maximisers among the extremal points of A. These are exactly bang-bang
function: u0 satisfies u0 = 0 or 1 almost everywhere on (0, π).

Reduction to a periodic problem. Next, for all t ∈ [0, T], we extend u(t, ·) to (−π;π) by
symmetrisation with respect to 0, and we then extend it to IRIR by 2π-periodicity. The Neu-
mann boundary conditions at x = 0 and x = π ensure that the extended function is of class C1,
and it thus satisfies the equation on the torus:⎧⎨

⎩
∂u
∂t

−Δu + cu = g(u) in (0; T) × T,

u(0, ·) = u0.

(49)

Let us also recall some basic facts about rearrangements.
Periodic rearrangements. We recall the definition of the periodic rearrangement: for any

periodic function u : T→ IR+ if we identify T with [−π;π] there exists a unique symmetric
(with respect to 0) non-increasing function u� : T→ IR that has the same distribution function
as u. u� is called the periodic rearrangement of u. We recall that the distribution function of u
is

μu(t) :=Vol
(
{u � t}

)
and that u�, the periodic rearrangement of u, is the left inverse of μu.

Proposition 2. Let v the solution of (49) associated with the initial datum u�
0. Then

∀ t ∈ (0; T), ∀ r ∈ (0;π),
∫ r

−r
v(t, x)dx �

∫ r

−r
u�(t, x)dx.

In particular, taking t = T and r = π:∫ π

−π

v(T, x)dx �
∫ π

−π

u�(T, x)dx =

∫ π

−π

u(T, x)dx. (50)

As explained in the introduction, proposition 2 follows simply by adapting minor points in
the proofs of [6], and so we will simply indicate the main steps. The core idea is the following:
the comparison results and Talenti-type inequalities one finds in the rearrangement literature
rely on integrating the solution of the equation we are working with on its level sets and using
the isoperimetric inequality. Thus, these proofs generally work only in the case of Dirichlet
boundary conditions (for a recent, analogous result in the case of Robin boundary conditions
we refer to [4]), as these conditions guarantee that, if the solution is non-negative, none of its
level sets intersects the boundary of the domain. However, in our case, since the Neumann
boundary conditions allow to symmetrise the solution u and to obtain a solution on the torus T,
the boundary of the domain is empty and the isoperimetric inequality holds, so that the proofs
are identical.

Proof of proposition 2. For the sake of readability, we break down the main steps in
establishing the inequality

∀ t ∈ (0; T), ∀ r ∈ (0;π),
∫ r

−r
v(t, x)dx �

∫ r

−r
u�(t, x)dx.
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• Comparison result for elliptic equations: the first step is to compare the solutions of two
elliptic problems. Let ε > 0, let ϕ ∈ L2(T), ϕ � 0, let ψ ∈ L2(T), ψ � 0 satisfying

∀ r ∈ (0;π),
∫ r

−r
ψ� �

∫ r

−r
ϕ�,

and let wϕ, zψ be the solutions to{−Δwϕ + εwϕ = ϕ in T,

wϕ ∈ W1,2(T),
(51)

and {−Δzψ + εzψ = ψ� in T,

zψ ∈ W1,2(T).
(52)

Then there holds:

∀ r ∈ (0;π),
∫ r

−r
zψ �

∫ r

−r
wϕ. (53)

To obtain (53), we may follow the standard steps of [42]: we assume that the level sets
of (51) have measure zero (to cover the case of level sets of positive measure, one can
argue as in [42], to which we refer for the sake of brevity). Let τ > 0 be a real number.
Integrating (51) on {wϕ � τ} yields

−
∫
{wϕ=τ}

∂wϕ

∂ν
=

∫
{wϕ�τ}

ϕ− ε

∫
{wϕ�τ}

wϕ �
∫ μwϕ (τ )

0
ϕ� − ε

∫ μwϕ (τ )

0
w�

ϕ,

where the last inequality comes from the Hardy–Littlewood inequality. We recall that from
the co-area formula

for a.e. τ ,μ′
wϕ

(τ ) = −
∫
{wϕ=τ}

1
|∇wϕ|

. (54)

From the Cauchy–Schwarz inequality and the isoperimetric inequality we obtain

4 � Per
(
{wϕ = τ}

)
�

∫
{wϕ=τ}

1
|∇wϕ|

∫
{wϕ=τ}

|∇wϕ|

� −μ′
wϕ

(τ )
∫
{wϕ=τ}

|∇wϕ| � −μ′
wϕ

(τ )

(∫ μwϕ (τ )

0
ϕ� − ε

∫ μwϕ (τ )

0
w�

ϕ

)
.

Since w�
ϕ is the left inverse of μwϕ , standard arguments [5] imply

∀ ξ ∈ (0;π), −4(w�
ϕ)′(ξ) �

∫ ξ

0
ϕ� − ε

∫ ξ

0
w�

ϕ. (55)

It should be noted that if we work with (52) instead of (51) every inequality becomes
an equality since zψ = z�ψ, and thus zψ satisfies

−4(z�ψ)′(ξ) =
∫ ξ

0
ψ� − ε

∫ ξ

0
z�ψ. (56)
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Defining Zϕ :=
∫ ξ

0 (zϕ − w�
ϕ) we hence have

−Z′′
ϕ +

ε

4
Zϕ � 0, Zϕ(0) = 0.

Furthermore, integrating (51) and (52) on the torus we obtain, by the equimeasurability
of a function and its rearrangement,

∫ π

0
w�

ϕ =
1
2

∫
T

wϕ =
1
2ε

∫
T

ϕ � 1
2ε

∫ π

0
ψ =

∫ π

0
z�ψ (57)

so that

Zϕ(π) � 0.

By the maximum principle, Zϕ � 0, which concludes the proof.
• Comparison result for parabolic equations: for this second step, we follow the strategy

of [6], which relies on a Picard iteration scheme. Namely, we discretise the parabolic
problem in time: let N ∈ IN∗ be a discretisation step. For u0 ∈ A, we define the sequences
{u0,k, vk}k=0,...,N as the solutions to

u0,0 = u0, ∀ k ∈ {0, . . . , N1},

⎧⎨
⎩−Δu0,k+1 +

1
N

u0,k+1 =
1
N

u0,k + g(u0,k) in T,

u0,k ∈ W1,2(T),
(58)

and

v0,0 = u�
0, ∀ k ∈ {0, . . . , N1},

⎧⎨
⎩−Δv0,k+1 +

1
N
v0,k+1 =

1
N
v0,k + g(v0,k) in T,

v0,k ∈ W1,2(T)
(59)

respectively. As g is convex and increasing, we have g(v)� = g(v�). Thus, we can prove
inductively that for every N and for every k ∈ {0, . . . , N} there holds

∀ r ∈ (0;π),
∫ r

−r
v0,k �

∫ r

−r
u�

0,k

and it remains to pass to the limit N →∞ to recover the result.
�

Conclusion. Assume that u0 is a bang-bang maximiser of problem (P f ). Symmetrise it and
extend it by periodicity. Consider the symmetric decreasing rearrangement u�

0 of its extension.
Then

∫ π

−πv(T, x)dx �
∫ π

−πu(T, x)dx by proposition 2, where v is the solution of the periodic
equation (49) associated with the initial datum u�

0. Clearly, v(t, ·) and u(t, ·) are symmetric
with respect to x = 0 for all time t > 0. Hence,

∫ π

0 v(T, x)dx �
∫ π

0 u(T, x)dx. Also, one eas-
ily remarks that v restricted to (0, π) is the solution of the parabolic equation with Neumann
boundary conditions (1), associated with the initial datum u�

0 restricted to (0, π). On the other
hand, as u0 is bang-bang, one has u�

0 = 𝟙(−m,m). Hence, 𝟙(0,m) increases the criterion in (P f ).
Thus, it is a solution of (P f ).
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4. Numerical analysis in the bistable framework

As we explained in the introduction, the behaviour of optimisers vary wildly depending on the
shape of the reaction term f . To exemplify this phenomenon, we use the bistable nonlinearity
that motivated [36], namely, f (u) := u(1 − u)(u − θ), with θ ∈ (0, 1).

When considering the optimisation problem (P f ), the fact that the set {p = c} may have
a positive measure or, in other words, that a solution may not be the characteristic function
of a set, leads to several difficulties in terms of numerical methods, because standard gradient
methods or fixed-point algorithms fail to capture what this so-called ‘singular arc’ should be
replaced with.

Let us first recall the main principles of the numerical algorithm introduced in [36] and
explain the difficulty related to {p = c} further. Given the initial condition at the n-step un

0, we
construct un+1

0 = un
0 + hn

0, where hn
0 maximises (4) and is an admissible perturbation. Since the

adjoint at the nth step pn
0 may have level sets of positive measure, one cannot directly apply the

bathtub principle and choose hn
0 as the difference of characteristic functions of two level sets of

pn
0; we must thus describe what happens on the singular arc, that is, on the level set {pn

0 = cn}
where cn is chosen so that

|{pn
0 > cn}| < m, |{pn

0 � cn}| > m, |{pn
0 = cn}| > 0. (60)

We first define, in this case, un+1
0 = 1 on {pn

0 > cn}, un+1
0 = 0 on {pn

0 < cn}, and it remains to
fix the value of un+1

0 on ωn. Defining ωn := {pn
0 = cn} and discretising equation (5) on ωn we

obtain, with an explicit finite difference scheme

−
(

pn
0(dt, x) − cn

dt

)
= f ′(un+1

0 )cn (61)

and the value on un+1
0 on ωn must be a root of (61). However, for bistable nonlinearities, this

equation may have two roots, say μn
1 and μn

2. In this case, these two roots can be distinguished
through the convexity of f . In other words, if we have two roots, up to relabelling,

f ′′(μn
1) > 0, f ′′(μn

2) < 0. (62)

In [36] this difficulty is overcome by examining the two different possibilities and choosing the
best one, which significantly lessens the performance of the algorithm, but theorem 1 allows
to overcome this difficulty by choosing directly the root μn

2, which is in the ‘concavity’ zone
of f .

4.1. Comparison of different numerical methods in the one-dimensional case

In this section, we want to study an example in order to compare the performances of our
numerical algorithm with other well known optimisation algorithms to solve general non-
linear problems under constraints. More precisely, we will consider the following numerical
methods:

• Method 1: the numerical algorithm introduced in [36], which we improve using theorem
1, and that will be referred to as our algorithm.

• Method 2: the interior-point method, which is used to solve optimisation problems with
linear equality and inequality constraints by applying the Newton method to a sequence
of equality constrained problems. For a more detailed description of this method see for
instance [10].
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• Method 3: the sequential quadratic programming (SQP), which solves a sequence of
optimisation sub-problems, each of which optimizes a quadratic model of the objective
function subject to a linearisation of the constraints, see for instance [38].

• Method 4: the simulated annealing method, which is a probabilistic technique used to
approximate global optimisation in a large search space. See for instance [21] for more
details on this technique.

We used the MATLAB platform to perform the simulations. Methods 2 and 3 are already
coded in the MATLAB function ‘fmincon’ while methods 1 and 4 were coded for the
experiment.
Setting the data. Let us considerΩ = (−50; 50), and m = 13; thus the admissible set is defined
as follows:

A13 =

{
u0 ∈ L1(Ω) : 0 � u0(x) � 1, and

∫
Ω

u0(x)dx = 13

}
.

Note that this set is defined by two inequalities and an equality constraint. We aim at max-
imising the quantity JT (u0) :=

∫
Ωu(T, x)dx for T = 25 and we use a bistable reaction term

f (u) := u(1 − u)(u − 0.25).
In order to compare the performance of the four algorithms under the same conditions, we

consider the same discretisation of Ω. Moreover, the solution of the equation is systematically
computed by the Crank–Nicolson method, and, for the initialisation we consider the same u0

0
given by a single block of mass 13. The value of the objective function at each iteration is
numerically approximated by the rectangle rule. In particular, for the initialisation we have
J25(u0

0) = 29.42.
The results of the simulations are shown in figure 1 and table 1. For this example, our

algorithm turns out to be faster than other well-known algorithms. Moreover, the evaluation of
the objective function differs in less than 1% with respect to the best result obtained with the
SQP method which takes more than twice the run-time of our algorithm.

Though the solution given by the SQP method is clearly more regular than the others, the
profile of the local optimisers found by simulated annealing and by our algorithm do not seem
to be far from this profile. Indeed, the solutions obtained through methods 1, 3 and 4 are qual-
itatively similar. On the other hand, the interior-point method gives a significantly different
optimum, which seems to point out the good performance of our algorithm. It is important,
however, to highlight that since uniqueness is not guaranteed in general, one cannot ensure
that the algorithms have converged to a global maximiser but only to a local one.

4.2. Numerical simulations in the two-dimensional case

We only considered in the present paper the one-dimensional case. We now display some
numerical results obtained in dimension 2, for which new patterns might arise.

To solve the reaction–diffusion equation in the two-dimensional case, we consider the alter-
nating direction implicit method which is a classical method to solve parabolic problems in two
or three dimensions. As in the one-dimensional case, the algorithm and routines were coded in
MATLAB.

We consider a square domainΩ = (−10; 10)× (−10; 10), discretised uniformly by squares
of side dx = 0.22. We fix T = 30 for all subsequent simulations. We first tackle the case of a
bistable reaction term

f (u) = u(1 − u)(u − 0.25).
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Figure 1. Optimum found by means of the four different numerical algorithms.
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Table 1. Comparing algorithms.

Algorithm Objective function J25(u0) Run-time (in seconds)

Our algorithm 77.9864 452
Interior point 65.6175 676
SQP 78.7672 1342
Simulated annealing 77.6238 4148

Figure 2. In the left-hand side, we show the input of the algorithm, given by the ball
of radius r =

√
5.8 centered at the origin. In the right-hand side, we display the local

optimum found by the numerical algorithm after 20 iterations, which looks radial, but is
no longer a bang-bang distribution: it does not only take values 1 and 0.

In a second paragraph, we study the monostable case

f (u) = (u + 0.25)u(1 − u).

The justification for this second case is that this is a non-concave monostable nonlinearity.
It is hence not covered by the theoretical results of [36].

4.2.1. The bistable case.

Example 1. The algorithm is initialised with a ball of full density located in the middle of
the domain Ω. The mass is fixed to m = 5.8π, see figure 2(a). After 20 iterations, the algorithm
converges to the local optimum showed in figure 2(b). The evolution of the objective function
J30 through iterations is showed in figure 3.

One might see that the local optimum found by the numerical algorithm is no longer a
bang-bang function but a circular ball with less mass in the middle and a slightly bigger ratio.
Looking at the adjoint state defined as the solution of equation (5), associated to this initial
data, one might see that the area in the middle of the circle corresponds to a set where the
adjoint state remains constant, see figure 4.

Example 2. In this case, we keep the same discretization and initial mass m of the previous
example, but we consider an initial data which is a stripe of full density dividing our domain into
two equal regions of zero density, see figure 5(a). The algorithm converges after 38 iterations
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Figure 3. Evolution of the objective function from the initialisation J30(u0
0) = 160.1 to

the last iteration J30(u20
0 ) = 214.4.

Figure 4. The figure shows the surface given by the solution p(0, x) of the adjoint
problem defined by the equation (5) associated to the initial data u0 found by
our algorithm. The plane colored in gray, is associated to the value c described
by (6) and thus for every x ∈ Ω such that p0(x) = c, one has 0 < u0(x) < 1,
see figure 2(b).

and the local optimum is displayed in figure 5(b). The corresponding variations of the objective
function is showed in figure 6.

We observe that, in this case, the value of the objective function remains very low during
the first 20 iterations. This fact, together with the radial geometry of the optimum found by
the algorithm suggests that this stripe geometry is not optimal. It should also be pointed out
that the geometry of the local optimum is interesting: indeed, it shows regions of zero density
(i.e. the optimum u0 found by the algorithm is equal to 0 in these regions) in the middle of
regions of full density (i.e. where u0 = 1), which exemplifies the phenomenon described in the
one-dimensional case in [15].
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Figure 5. In the left-hand side is showed the input of the algorithm, given by the stripe
of width r = 0.91 centred at the origin. In the right-hand side, the local optimum found
by the numerical algorithm after 38 iterations.

Figure 6. Evolution of the objective function from the initialisation J30(u0
0) = 5.5 ×

10−6 to the last iteration J30(u38
0 ) = 134.2.

Another relevant feature is that the optima found in the first and second examples are dif-
ferent, which indicates that our algorithm converge to local optima, and thus that the choice of
the initial distribution u0

0 is crucial.

Example 3. For this example we keep the settings of the previous one, but we consider a
higher initial mass m = 27. The geometry of the initial distribution is a stripe of full density
dividing the domain into two regions of zero density, like in the example 2, see figure 7(a).

The corresponding local optimum found by the numerical algorithm is showed in figure
7(b). As in the previous case, the optimiser reflects a low density zone ringed by a high density
region. This gap is clearly filled by diffusion as time evolves.

This example suggests once again the non optimality of stripe-like initial distributions.
Note from figure 8 that, despite the considerable increase of the initial mass with respect to
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Figure 7. In the left-hand side is showed the input of the algorithm, given by the stripe
of width r = 1.6 centered at the origin. In the right-hand side, the local optimum found
by the numerical algorithm after 50 iterations.

Figure 8. Evolution of the objective function from the initialisationJ30(u0
0) = 3 × 10−5

to the last iteration J30(u50
0 ) = 324.

example 2, the values of the objective function J30(u0
0) associated to the stripe is of the order

of 10−5, which is very low compared with the value associated to the final distribution.
Finally, let us mention that a possible approximation of the maximiser was discussed in the

appendix of [26]. Namely, in this thesis, the author replaced the maximiser u0 by its mean on
each of the connected components of {u0 > 0}. This gives pretty good results in several cases.
It would be good to manage to quantify analytically the difference of criterion between this
approximated initial datum and the global maximiser.

4.2.2. The non-concave monostable case. We now present some simulations in the case

f (u) = (u + 0.25)u(1 − u),
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Figure 9. In the left-hand side we display the input of the algorithm, given by a centered
ball. In the right-hand side, we show the local optimum found by the numerical algorithm
after 50 iterations.

Figure 10. Evolution of the objective function from the initialisation J30(u0
0) = 364.4

to the last iteration J30(u50
0 ) = 364.5.

still working under the constraint that 0 � u0 � 1. The motivation behind this case is that
this nonlinearity is monostable on (0; 1), i.e. it only has one stable equilibrium, but it is not
concave. As a consequence, the theoretical approach developed in [36] cannot guarantee that
the optimiser u0 is the characteristic function of a subset of Ω.

The parameters of the simulations are still the same: T = 30, and the initial configuration is
the same as in example 1: the initialisation is a ball of full density, with mass m = 5.8π located
in the middle of the domain Ω. We refer to figures 9 and 10. We should however point out
that in this simulation, the value of the objective function remains almost constant, despite the
fact that the final configuration is very different from the initial one. It is plausible that such
monostable nonlinearities converge too quickly to the equilibrium.
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5. Conclusion, open problems and possible extensions

We make, in this conclusion, several concluding remarks and comments about possible gen-
eralisations and extensions of the results presented in this paper. For each of them, we try to
present the arguments that have led us to the conclusion that other approaches were necessary
in general.

5.1. Regarding the regularity of the singular arc

One of the main drawbacks of theorem 1 is the regularity assumption on the singular arc.
Namely, we obtain, for a maximiser u0 of JT , the characterisation f ′′(u0) � 0 only on the
interior of the singular arc {0 < u0 < 1}. The method presented in this paper (two-scale
expansions) strongly relies on the smoothness properties of the cut-off function θ.

It may be tempting, in the one dimensional case, to overcome this difficulty arguing as in
[29]: if we simply assume that the singular arc ω is measurable, but has positive measure, one
can show that for every K ∈ IN there exists hK ∈ L2(Ω), supported in ω, that writes

hK =
∑
k�K

αk,K cos(k·), ‖hK‖L2 = 1. (63)

Using the fact that hK only has high Fourier modes, one may hop for a two-scale expansion of
the form

hK ≈
∑
k�K

αk,K

(
h0

k(k2t, x, kx) +
1
k

h1
k(k2t, x, kx)

)
.

This is however a priori prohibited by the problem of separation of phase: to obtain such
a description, one needs well-separated phases, in the sense of [2]. In the context of Fourier
series, this would require, at the very least, that hK should write as a lacunary Fourier series
(typically, hK =

∑∞
j=0α j,K cos(K jx)). However, for such lacunary Fourier series, Zygmund’s

theorem (see [18] for instance) prohibits that they have compact support, so that admissible
perturbations cannot have this structure. This is a major drawback, and it is unclear whether
or not one may be able to overcome this difficulty via a similar approach, or if an entirely new
strategy needs to be devised.

Another approach would be to prove some regularity on ω ensuring that almost every of its
point lie in its interior. This is satisfied for example if u0 is Riemann integrable (since, due to
Lebesgue’s characterisation of Riemann integrable functions, almost every point is a continuity
point of u0). Riemann integrability is satisfied by BV functions. Unfortunately, we were not
able to push the regularity further than L∞.

5.2. Monostable nonlinearities

As seen in subsection 4.2.2 of this paper, the numerical approach we propose, based on theorem
1, works for general monostable nonlinearities. The theoretical tools are, however, not suffi-
cient at this level to fully characterise optimisers. An interesting question would be to discuss
whether or not optimisers in the monostable case are always bang-bang, are if some degeneracy
zones can appear.

5.3. The singular arc in higher dimensions

It may be plausible to adapt the methods of theorem 1 to obtain a characterisation of the sin-
gular arc analogous to that of theorem 1 in the case Ω =

∏N
i=1[0; ai], ai > 0. To do so, the
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main difference with our proof would be to replace the initial perturbation θ(x)cos(kx) with∏N
i=1θ(x) cos(kxi).

5.4. Rearrangement inequalities for other types of boundary conditions

In this work, we mostly dealt with the case of Neumann boundary conditions in the one-
dimensional case. We ought to note two things: first, the proof of theorem 1 should hold in
the case of Dirichlet or of Robin boundary conditions, provided the functions cos(k·), in the
proof, are replaced with the Dirichlet or Robin eigenfunctions of the Laplacian in the interval.
Second, regarding theorem 2, the same type of results can be obtained in a straightforward man-
ner for the case of Dirichlet boundary conditions, by applying directly [6]. The case of Robin
boundary conditions may be encompassed by using the recent Talenti inequalities obtained in
this case in [4]. Addressing the problem on the full line IR is more tricky, since in this case
even the existence of a maximiser is unclear. We plan on investigating such matters in future
works.
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[24] Duprez Y P M, Hélie R and Vauchelet N 2021 Optimization of spatial control strategies for
population replacement, application to Wolbachia

[25] Maderna C, Salsa S and Pucci C 1979 Symmetrization in Neumann problems Appl. Anal. 9
247–56

[26] Marrero J I T 2021 Reaction–diffusion equations and applications to biological control of dengue
and inflammation PhD Thesis

[27] Masi A D, Ferrari P A and Lebowitz J L 1986 Reaction–diffusion equations for interacting particle
systems J. Stat. Phys. 44 589–644

[28] Mazari I 2021 Quantitative estimates for parabolic optimal control problems under l∞ and l1

constraints in the ball
[29] Mazari I, Nadin G and Privat Y 2021 in preparation
[30] Mazari I, Nadin G and Privat Y 2020 Optimal location of resources maximizing the total

population size in logistic models Journal de Mathématiques Pures et Appliquées 134
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