
HAL Id: hal-03846834
https://hal.science/hal-03846834v1

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pull your treebank up by its own bootstraps
Ziqian Peng, Kim Gerdes, Kirian Guiller

To cite this version:
Ziqian Peng, Kim Gerdes, Kirian Guiller. Pull your treebank up by its own bootstraps. Journées
Jointes des Groupements de Recherche Linguistique Informatique, Formelle et de Terrain (LIFT) et
Traitement Automatique des Langues (TAL), Nov 2022, Marseille, France. pp.139-153. �hal-03846834�

https://hal.science/hal-03846834v1
https://hal.archives-ouvertes.fr

Pull your treebank up by its own bootstraps

Ziqian Peng1 Kim Gerdes1 Kirian Guiller2

(1) Lisn (CNRS), Université Paris-Saclay, France
(2) Modyco (CNRS), Université Paris-Nanterre, France

ziqian.peng@universite-paris-saclay.fr
kim.gerdes@universite-paris-saclay.fr

kguiller@parisnanterre.fr

RÉSUMÉ
Remontez les bretelles à votre treebank
Nous analysons la performance de récents analyseurs syntaxiques neuronaux dans la tâche
d’amorçage d’un treebank, c’est-à-dire l’entraînement et l’analyse itérative afin d’améliorer la
vitesse et la qualité de l’analyse syntaxique humaine. En effectuant une recherche extensive et
heuristiquement guidée dans la vaste grille d’options (analyseur syntaxique, plongement,
configuration, époques, taille du batch, taille de l’ensemble d’entraînement, schéma d’annotation,
langue, méthode d’évaluation...), nous déterminons les configurations d’analyseurs syntaxiques les
plus performantes : UDify et Trankit se partagent le podium en fonction de la taille de l’ensemble
d’entraînement. Nous montrons également comment ces résultats sont intégrés dans l’outil
d’annotation ArboratorGrew, et nous proposons quelques mesures préliminaires qui permettent de
prédire la qualité de l’analyse syntaxique pour une nouvelle langue.

ABSTRACT
We analyze the performance of recent neural syntactic parsers in the task of bootstrapping a
treebank, i.e. training and analyzing iteratively in order to enhance speed and quality of the human
syntactic analysis. By conducting an extensive and heuristically guided search in the vast grid of
options (parser, embedding, configuration, epochs, batch size, size of training set, annotation
scheme, language, evaluation method…), we determine the best performing parser configurations:
UDify and Trankit share the podium depending on the size of the training set. We also show how
these results are integrated into the annotation tool ArboratorGrew, and we propose some
preliminary measures that allow predicting the quality of the parse for a new language.

MOTS-CLÉS : treebanks, annotation, analyseurs syntaxiques, réseaux neuronaux, amorçage,
langues sous-ressourcées.
KEYWORDS: treebanks, annotation, syntactic parsers, neural networks, bootstrapping, under-
resourced languages.

1

1 Introduction
Treebanks are steadily gaining importance as a tool for conducting research in syntax but their
development is resource hungry in researcher’s working hours as well as in the development and
usage of recent neural network based tools. This is one of the reasons why the set of languages in
Universal Dependencies (UD) is heavily biased towards well-resourced languages although an
increasing number of, albeit often small, treebanks are developed for lower-resource languages (see
for example the TowerParse project, Glavaš and Vulić 2021). This fact limits the scope of
typological data-based studies on treebanks. In the context of the ANR project Autogramm (2022-
2025), we develop a set of new treebanks for low-resource languages in the SUD annotation scheme
(Gerdes et al. 2018, 2019, 2021). It is easier to annotate in SUD when no pre-established grammar
exists that would provide a distinction between content and function words, which is commonly the
case for less-resourced languages. Furthermore, SUD has been shown to be cognitively more
relevant (Yan and Liu 2019), and parser performance improves on function-word-as-head
annotation schemes (Rehbein et al. 2017)
We want to provide the usually less computer-inclined field linguists with state-of-the-art tools to
develop high-quality treebanks and thus fill some gaps in treebank-based typological studies. More
concretely, we want to answer the common questions of any syntactician wanting to start a new
treebank: How many sentences do I have to annotate before it makes sense to train a first model?
What parsing quality can I expect? How often should I retrain and reparse? What parser,
embedding, and configuration should I use? How long does it take on my GPU? Can we make
educated guesses on these questions based on raw or POS-tagged text?

2 Analysis and results
Although syntactic parsers are less relevant than they used to be for many NLP downstream tasks,
these tools are still under very active development, in particular in a linguistic or low-resource
perspective, and finding the parser best fitting for a given task is a quickly moving target. We chose
5 recent parsers: UDify (Kondratyuk and Straka 2019), Hopsparser (Grobol and Crabbé 2021),
Trankit (Nguyen et al. 2021), Stanza (Qi et al 2020), BertForDeprel (Guiller 2020) and we tested

their performance on 5
typologically diverse
languages, English (en), French
(fr), Chinese (zh), Japanese (ja)
and Arabic (ar). We tested the
parsers for six training sizes
with the number of sentences
[10, 30, 50, 100, 300, 500]
during 100 epochs with 10-fold
cross-validation, which gives
us 5x5x6x10=1500 models to
train and to evaluate. These
numbers of sentences seem to
us to be a reasonable grid for
bootstrapping during the
annotation process of a
treebank for a new language.

2

Figure 1: average parser performance for the 5 test languages:
Training size vs. Labeled Attachment Score (LAS)

To do this, we randomly selected from SUD v2.101 1500 sentences for each language, with 500 for
training and 1000 sentences as test files, to be parsed by each trained parser and evaluated with the
official UD evaluation script, so as to make the evaluation scores comparable.

Before diving into the details, let us have a look at the average LAS (Labeled Attachment Score)
results across our 5 languages: Figure 1 shows that UDify is clearly ahead when trained on a small
training set. Starting with 100 sentences, Trankit takes the lead. These results are corroborated in the
more detailed results below.

1 https://surfacesyntacticud.github.io/data/ In order to gather enough data, we had to merge
several treebanks of each language.

3

Figure 3: average parser performance for the 5 test languages: Training size vs. Labeled Attachment
Score (LAS) for Chinese (first row at left, the worst performance as LAS), Japanese (first row at right,
the best performance as LAS), French (second row at left) and the percent of functional words vs
max LAS F1 score per language per size.

Figure 2: average parser performance for the 5 test languages: Training size vs. Unlabeled
Attachment Score (UAS) at left and Training size vs. Universal POS tag (UPOS) at right

2.1 Detailed parsing results for the 5 base languages
Just as for LAS, UDify starts the race of Unlabeled Attachment Scores (UAS) trained on very few
sentences, but it is overtaken by Trankit only at 300 sentences. For precision during POS tagging,
Trankit already takes the lead with 30 sentences to train on. When distinguishing the results by
language, we first note that LAS takes more training data on Chinese than on other languages to
reach comparable scores. Japanese and French, on the contrary, have above-average performance in
LAS.
In the last graph of Figure 3 on the right, we ordered the languages by their percentage of function
words, from 45% for Chinese (zh) to 57% for French (fr). As expected, we observe a general
tendency of faster learning in languages with more function words, but the results for French are
less good than for Japanese although it has more function words. Note that differences between the
languages get less prominent the more training sentences we have.
2.2 Detailed parsing results for all available SUD treebanks
These first tests were based on the above-
mentioned 5 languages. Based on these results,
we repeated limited tests on the 69 languages of
SUD 2.10 where 1500 sentences are available:
We only tested on the two best-performing
parsers Trankit and UDify, and we did not
perform cross-validation.
When looking at Trankit’s and UDify’s
performance per simple dependency relation
(grouping subrelations, such as comp:ob under
comp, see confusion matrices in the Annex), we
see that the worst scores appear for the rare
relations such as orphan, reparandum, and list)
with a precision of 34%, 57% and 60%
respectively (36%, 26%, and 72% respectively
for UDify). Trankit’s highest confusion rate is
found for udep vs orphan with 18%. For UDify
it is reparandum vs. root that causes a 34%
confusion, pointing to a different tree spanning
algorithm to create the trees.
For LAS, UAS, and POS tagging, we measure
the average of both parsers. The results show
very high discrepancies between the languages,
ranging from 90% LAS for Greek to 22% for
Coptic. The ancient languages are characterized
by the fact that they are not easy to parse. It is
not readily possible to determine the cause of
these results, as it may be the genre of the texts,
the languages themselves, or the incoherent
annotation that the parser cannot pick up. It is
noticeable that no language group stands out as
being particularly easy to parse.

4

Figure 4: Average performance of Trankit and UDify
measured by LAS (left), UAS (middle), UPOS (right)
on dataset of size 500 for each of the 69 languages

Unsurprisingly, the LAS performance of the parsers is highly correlated with the POS accuracy. Put
differently, as soon as we know the performance on POS tagging, we can predict reasonably well
the LAS performance of the syntactic parser. Our data suggests that for 500 sentences in the
language L, the LAS score can be computed by
LAS(L)=1.55*POS-0.68.

The parser performance measured on the 69
languages confirms what we have observed
before on our 5 test languages: Trankit needs at
least 100 training sentences to catch up to
Udifiy, but then delivers better parser results.
See Figure A in Annex I for a graphical
representation of these measures.

3. Predicting parser
performance

The observed significant differences in parser
performance make it hard to give general
predictions on the parser performance during
treebank bootstrapping. Are there other
measures that can be performed on raw or POS-tagged texts that can help us make better
predictions? In this section we will show how the type/token ratio and the percentage of function
words influences the parser performance, which allows us to make predictions of parser
performance based on these measures. These findings are implemented as heuristics for
automatically tweaking the parser parameters to optimize parser performance in the ArboratorGrew
annotation tool (Guibon et al. 2020).
3.1 Can the type/token ratio predict parser performance?

The type/token ratio (TTR) is a measure of lexical richness of a text. As the TTR decreases for all
languages with the size of the text, we need to measure it on texts of approximately the same length
in order to make it comparable. The plot of Figure 6 shows large differences between the languages,
the lead being taken by agglutinating languages followed by Slavic languages, and Korean being the
“richest” language with a TTR of 43%. The large TTR difference between structurally similar
languages such as Korean and Japanese (at only 19% not shown above) can be explained by
different word segmentation rules underlying the treebanks: Japanese is separating the verbal and
nominal suffixes, resulting in many equal functional tokens, and Korean considers the suffixes as

5

Figure 5: average performance of Trankit and UDIfy
per language on dataset of size 500: Universal POS
tag (UPOS) vs labeled Attachment Score (LAS)

Figure 6: Type/Token ratio of the 69 languages, evaluated on the 1500 selected
sentences.

part of the word, resulting in many unique tokens.

As expected, we observe a negative correlation between TTR and LAS: The richer the language the
harder it is to parse. Also, the Spearman correlation coefficient decreases between scores for training
on 10 and on 500 sentences, respectively -0.33 and -0.17, indicating that the measure becomes less
relevant with larger training sets.
3.2 Can POS tags predict parser performance?

We have shown above that POS tagging performance
is a very good indicator of LAS performance. But
can the distribution of POS themselves be a
predictor? Our hypothesis is that the lexical vs.
function word distinction allows us to make
predictions: The more function words, the easier.
Taking nouns, verbs, adjectives, and adverbs as
lexical categories, we first observe a distribution
ranging from 20% function words in classical
Chinese to 76% in Coptic. Plotting these measures
against the LAS score, we observe the expected
positive correlation. The two languages with the
highest percentage of function words, Coptic and
Ancient Hebrew, are outliers of the general tendency.
The Spearman correlation coefficient is 0.4453 for
500 sentences.

6

Figure 9: Percentage of function words of the 69
languages computed with selected sentences VS
LAS F1 score on dataset of size 500

Figure 7: Type/Token Ration (TTR) vs LAS on dataset of size 10 (left) and that of size 500 (right), with blue lines
illustrating correlation between TTR and LAS (cf. Annex VI)

Figure 8: overview of the percentage of function words across languages, evaluated on the 1500 selected sentences.

3.3 Parser performance and language structure
Two other interesting results are the measures of language directionality and tree height: When
measuring tree directionality (the average dependency length, counting leftward relations
negatively), we observe that this measure has little influence on the parser results (Spearman
correlation 0.3230 with p-value 7.6% > 5% to accept the null hypothesis that the observed
correlation is due to chance). Inversely, the tree height has a very profound influence on the parser:
the higher the tree, the better the score (Spearman 0.5126). This latter correlation may be another
explanation for the better parser performance of SUD vs UD: SUD’s function word centric
approach simply results in higher trees. The integration of the parser results into the typometrics
platform https://typometrics.elizia.net allows for further study of the correlation between various
treebank measures and treebank performance.

4. Implementation in ArboratorGrew
ArboratorGrew is a new treebank annotation tool that
integrates Grew’s graph search and rewrite features into
Arborator’s collaborative online annotation platform.
The new train-and-parse option makes it possible to use
any of the five parsers to train a model on some samples,
and obtain the parse results on other samples. The parser
operates on a separate server equipped with a high-
performance graphics card.2 The interface proposes
simple options and makes predictions on the required
time to train and parse based on a logical regression, see
the Annex for a screenshot and for the time regression
lines.

2.The bootstrapping backend relies on a single Nvidia RTX A6000 card with 48Gb of RAM.
7

Figure 11: architecture of frontend
and backend.

Figure 10: Distance computed on SUD2.8 VS LAS F1 score on dataset of size 500 (left) and
treeheight computed on SUD2.8 VS LAS F1 score on dataset of size 500 (right)

https://typometrics.elizia.net/

5. Conclusion
The influence of annotating pre-analyzed text has been discussed in Fort & Sagot 2010, and we
should be aware that the syntactician is less likely to detect new peculiar constructions when
presented with a reasonably well pre-annotated text. On the other hand, the lower diversity of the
pre-analyzed treebank annotation naturally results in better parser performance.
The rather quick increase in LAS with the size of the training set suggests a very early and regular
bootstrapping approach, possibly best starting with 30 sentences. When exactly this makes sense
heavily depends on the language, and, of course, on the time measures on parse corrections
compared to an annotation from scratch. With such a measure, which remains to be done on a
variety of annotators’ profiles, it would be possible to answer for example whether a pre-annotation
with only 50% LAS is still useful or not.
We also see the need to improve the ArboratorGrew tool: The “diff” mode showing the difference
between two trees should show the certainty of proposed relations, so as to allow the annotator to
see directly the problematic relations that require scrutiny. Also, a single manual correction should
optionally trigger a recomputation of the minimum spanning tree so that the most likely structure,
given the new relation, can be proposed directly without further manual intervention. This would
significantly reduce the correction time spent on faulty parse results.

Acknowledgements
We would like to thank our anonymous reviewers for their interesting remarks and questions. Loïc
Grobol helped with the implementation of the Hops parser and pointed us to Trankit. Laurent
Pointal helped us to develop a secure parser backend, and the intensive parser training was done on
both the Lisn and the Lab-ia clusters at the University Paris-Saclay.

8

References
Fort, Karën, and Benoît Sagot. "Influence of pre-annotation on POS-tagged corpus development." In
The fourth ACL linguistic annotation workshop, pp. 56-63. 2010.
Kim Gerdes, Bruno Guillaume, Sylvain Kahane, Guy Perrier. Starting a new treebank? Go SUD!
Theoretical and practical benefits of the Surface-Syntactic distributional approach in DepLing 2021.
Kim Gerdes, Bruno Guillaume, Sylvain Kahane, Guy Perrier. Improving Surface-syntactic
Universal Dependencies (SUD): surface-syntactic relations and deep syntactic features in TLT
2019.
Kim Gerdes, Bruno Guillaume, Sylvain Kahane, Guy Perrier. SUD or Surface-Syntactic Universal
Dependencies: An annotation scheme near-isomorphic to UD in UDW 2018.
Goran Glavaš and Ivan Vulić, “Climbing the tower of treebanks: Improving low-resource
dependency parsing via hierarchical source selection,” in Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 4878–4888.
Lo c Grobol and Beno t Crabbéı̈ ı̂ , “Analyse en dépendances du français avec des plongements
contextualisés,” in TALN/RECITAL 2021, 2021.
Guibon, Gaël, Marine Courtin, Kim Gerdes, and Bruno Guillaume. "When collaborative treebank
curation meets graph grammars." In LREC 2020 -- 12th Language Resources and Evaluation
Conference. 2020.
Kirian Guiller. "Analyse syntaxique automatique du pidgin-créole du Nigeria à l’aide d’un
transformer (BERT): Méthodes et Résultats." Mémoire de Master, Sorbonne Nouvelle (2020).
Dan Kondratyuk and Milan Straka, “75 languages, 1 model: Parsing universal dependencies
universally,” arXiv preprint arXiv:1904.02099, 2019.
Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh, and Thien Huu Nguyen, “Trankit: A
light-weight transformer-based toolkit for multilingual natural language processing,” arXiv preprint
arXiv:2101.03289, 2021.
Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D Manning, “Stanza: A
python natural language processing toolkit for many human languages,” arXiv preprint
arXiv:2003.07082, 2020.
Rehbein, Ines, Julius Steen, Bich-Ngoc Do, and Anette Frank. "Universal Dependencies are hard to
parse–or are they?." In Proceedings of the Fourth International Conference on Dependency
Linguistics (Depling 2017), pp. 218-228. 2017.
Yan, Jianwei, and Haitao Liu. Which annotation scheme is more expedient to measure syntactic
difficulty and cognitive demand?. Presented at Quasy, SyntaxFest 2019.

9

https://universaldependencies.org/udw18/
https://hal.inria.fr/hal-01930614v1
https://hal.inria.fr/hal-01930614v1
https://syntaxfest.github.io/syntaxfest19/tlt2019/tlt2019.html
https://syntaxfest.github.io/syntaxfest19/tlt2019/tlt2019.html
https://hal.inria.fr/hal-02266003v1
https://hal.inria.fr/hal-02266003v1
http://depling.org/depling2021/
https://hal.inria.fr/hal-03509136v1
https://hal.inria.fr/hal-03509136v1

Annex
I. Statistic of LAS f1 score for Trankit and UDify

Figure A: Performance of UDify and Trankit for the 69 available languages in SUD2.10 : parser vs
Labeled Attachment Score (LAS) at left and Training size vs LAS at right

Statistic of LAS f1 score for Trankit (left) and UDify (right) on 69 languages

Languages with LAS less than 0.5 when the dataset contains 500 sentences: Trankit is more
universal than UDify so that only 2 languages got LAS less than 0.5 with dataset of size 500.

10

II. Confusion matrix for Precision
 II.1 Trankit:

For Trankit std < 0.08 (left), std > 0.15: (right)

This table shows the standard variation over the different training sizes from 10 to 500 for various
relations. E.g. The lowest standard variation is for cc which indicates that the analysis does not
improve significantly with a bigger training set. On the contrary, rare relations such as appos, conj,
list, parataxis, and referendum are still varying a lot and can be expected to improve with a larger
training set. Check also the last column of F1 score for Trankit and UDify in Annex III.

11

 II.2 UDify

Amount of different Deprel in the 69 languages:

We exclude goeswith from the confusion matrix since there are only 35 occurrences of this relation.

12

III. F1 score for Trankit(left) and UDify(right) by size

Note that we cannot train the Trankit pipeline for our dataset of language ga (Irish) with only 10
sentences. The last column of both tables reporte the improvement of F1 score with the
augmentation of data size from 50 to 500. The score for conj, appos and list have been improved
more than 30% with both parsers.

IV. List of the 69 languages :
Afrikaans, Akkadian, AncientGreek, AncientHebrew, Arabic, Armenian, Basque, Belarusian,
Bulgarian, Catalan, Chinese, ClassicalChinese, Coptic, Croatian, Czech, Danish, Dutch, English,
Erzya, Estonian, Faroese, Finnish, French, Gaelic, Galician, German, Gothic, Greek, Hebrew,
Hindi, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Korean, Latin, Latvian, Lithuanian,
Maltese, Manx, Naija, NorthSami, Norwegian, OldChurchSlavonic, OldEastSlavic, OldFrench,
Persian, Polish, Pomak, Portuguese, Romanian, Russian, Sanskrit, Serbian, Slovak, Slovenian,
Spanish, Swedish, Turkish, TurkishGerman, Ukrainian, Urdu, Uyghur, Vietnamese, Welsh,
WesternArmenian, Wolof

V. Parser configuration:
For all parsers 10% for the dev set after comparison between 10%, 20% and 30%.

13

VI. Correlation between metrics
 VI.1 Percent of functional words VS LAS for dataset of size 10 (left) and 500 (right)

 VI.2 Type-token ratio VS LAS for dataset of size 10 (left) and 500 (right)

 VI.3 UPOS VS LAS for dataset of size 10 (left) and 500 (right)

14

VII. The ArboratorGrew implementation
 Screenshot of AboratorGrew’s parse options panel:
Users can first choose the gold files as training set, the files to parse, then the parser type such as
trankitParser for Trankit and the number of epochs. The keep UPOS option indicates whether the
UPOS in selected files to parse need to be kept. If we click the ‘begin parse’ button, a log message
appears to show the current progress, such as data preparation, training and parsing.

A rough time estimation for each parser:
Empirically, the training and parsing time increases faster than logarithm but slower than a simple
line regression, so the logical regression is computed with the following parameters:

ftime = A*log(x + 1) + B*x + C.
Note that the effective consumed time may be less than estimated with larger training data.

15

