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Abstract

Neural networks can be trained to solve regression problems by using gradient-based methods to
minimize the square loss. However, practitioners often prefer to reformulate regression as a classification
problem, observing that training on the cross entropy loss results in better performance. By focusing
on two-layer ReLU networks, which can be fully characterized by measures over their feature space, we
explore how the implicit bias induced by gradient-based optimization could partly explain the above
phenomenon. We provide theoretical evidence that the regression formulation yields a measure whose
support can differ greatly from that for classification, in the case of one-dimensional data. Our proposed
optimal supports correspond directly to the features learned by the input layer of the network. The
different nature of these supports sheds light on possible optimization difficulties the square loss could
encounter during training, and we present empirical results illustrating this phenomenon.

1 Introduction

Two of the most commonplace supervised learning tasks are regression and classification. The goal of the
former is to predict real-valued labels for data, whilst the goal of the latter is to predict discrete labels.
Regression models are conventionally trained using the squared error loss, whilst classification models are
typically trained using the cross-entropy loss.

Over the past years, neural networks have notably advanced scientific capabilities for classification and
regression problems (Goodfellow et al., 2016). In particular, neural networks have desirable attributes, such
as their ability to learn complex non-linear functions, as well as exhibiting adaptivity to low-dimensional
supports, smoothness and latent linear sub-spaces (see, Bach (2017)).

Some examples of advances in classification can be found in computer vision (Krizhevsky et al., 2012; He
et al., 2016; Szegedy et al., 2016; Tan and Le, 2019) and natural language processing (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017). Similarly, neural networks have achieved the state

1

lawrence.stewart@inria.fr
francis.bach@inria.fr
qberthet@google.com
jean-philippe.vert@m4x.org


of the art on regression problems, such as pose estimation (Sun et al., 2013; Toshev and Szegedy, 2014;
Belagiannis et al., 2015; Liu et al., 2016). Interestingly, it can be remarked that the amount of scientific
work applying neural networks to classification tasks significantly outweighs that for regression problems.

The predictive power of neural networks does not come without drawbacks. Unlike kernel methods
(Schölkopf and Smola, 2002; Berg et al., 1984), to which neural networks are closely related, there are
no optimization guarantees for finite neural networks, which may become stuck in local minima of the loss
function. The existence of such local minima is a consequence of the non-convexity of loss functions with
respect to the weights of deep neural networks that have non-linearities between layers.

The undesirable convergence to a local minimum of a loss function typically leads to under-fitting. Local
minima are often encountered in training even when the data are generated directly from teacher neural
networks (Safran and Shamir, 2018). Over-parametrization can sometimes help to alleviate this problem
(Neyshabur et al., 2015; Goodfellow et al., 2015), but this is not guaranteed (Nakkiran et al., 2021).

A commonly seen practise within the machine learning community is the transformation of regression
problems into classification problems. Instead of training a neural network using the square loss function
on the original regression problem, one instead trains the model using the cross entropy loss on a new
discretized classification task. Such a reformulation can often yield better performance, despite the cross
entropy loss having no notion of distance between classes.

There are several synonymous names referring to the above practise: discretizing; binning; quantizing
or digitizing a regression problem. Throughout this paper, we will refer to this practise as the binning
phenomenon. We provide some examples of literature utilizing this technique, but our list is certainly not
exhaustive.

Zhang et al. (2016) found discretizing the “ab” color-space yielded better predictions for image colorization.
Similarly, by binning the pixel space, Van Oord et al. (2016) improved upon previous regression-based
approaches (Theis and Bethge, 2015; Uria et al., 2014) for generative image modelling. Reformulation
of regression as classification has also led to state-of-the-art performance in the fields of age estimation
(Rothe et al., 2015), pose estimation (Rogez et al., 2017), and reinforcement learning (Akkaya et al., 2019;
Schrittwieser et al., 2020). The practise is also seen outside of academic research, for example in the
winning solution of the NOAA Right Whale Recognition Kaggle challenge1.

1.1 Contributions

The goal of this paper is to examine how the implicit bias obtained when training neural networks with
gradient-based methods could provide one possible explanation to the binning phenomenon. In order
to utilize recent results on optimization (Chizat and Bach, 2018) and implicit bias (Chizat and Bach,
2020; Boursier et al., 2022), we restrict ourselves to the case of two layer neural networks with the ReLU
non-linearity (Nair and Hinton, 2010). Our contributions are the following:

• We study two simplified problems which closely relate to the implicit biases induced when training
over-parameterized models on the square and cross entropy losses, in the case of one-dimensional
data. In particular, we provide supports of optimal measures for both of these problems. These
supports correspond directly to the features learnt by finite networks.

1https://deepsense.ai/deep-learning-right-whale-recognition-kaggle/
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• We postulate that a sparse optimal support for the regression implicit bias could result in optimization
difficulties, shedding light on one possible explanation for the binning phenomenon. We provide
synthetic experiments which exhibit this behaviour.

1.2 Limitations

Our analysis and empirical results only demonstrate the link between implicit biases and the binning
phenomenon for two-layer neural networks. Experimentation showed that deeper models did not suffer
under-fitting on our synthetic problem when trained on the square loss (see Appendix G). Secondly, the
optimal supports we propose are for problems that only resemble the implicit biases of Boursier et al.
(2022); Chizat and Bach (2020). The re-parameterization we invoke to simplify analysis of the feature
space introduces a factor into the total variation, which for simplicity we ignore. Finally, the link between
our proposed supports and optimization is only seen empirically. Producing theory to describe whether or
not a regression problem will encounter optimization difficulties as a consequence of implicit biases remains
a difficult open problem.

1.3 Notation

For any n ∈ N, let [n] = {1, . . . , n}. For a vector x ∈ Rd and l ∈ [d], let x[l] ∈ Rl denote the vector consisting

of the first l indices of x. Let ej denote the jth canonical basis vector of Rk. Let Sd−1 = {x ∈ Rd : ‖x‖2 = 1}.
Let (·)+ = max(·, 0) denote the ReLU non-linearity, where the maximum is taken element-wise. Let Ω∗
denote the dual norm of Ω, a norm on Rk. Let 1(x = v) denote the indicator function, taking the value
of 1 if x = v, otherwise 0 for x 6= v. Let IS : Rk → {0,∞} denote the characteristic function of convex
set S ⊆ Rk, where IS(y) = 0 if y ∈ S, otherwise IS(y) = ∞. Let σS denote the support function of
convex set S ⊆ Rk, defined as σS(y) = sup

w∈S
wT y. Let s : Rk → Rk denote the softmax function, where

(s(v))j = evj/
∑k

l=1 e
vl .

2 Formulating Regression as Classification

Let (x1, y1), . . . , (xn, yn) ∈ Rd × [0, 1] denote the train data set for a regression problem, where we have
assumed without loss of generality that the labels y1, . . . , yn have been normalized to the unit interval. To
discretize the regression data, divide the interval [0, 1] into k bins with midpoints given by λ ∈ Rk, where
0 = λ1 < · · · < λk = 1. The new discrete labels ỹi ∈ arg minj∈[k] |yi−λj | correspond to which of the k bins
each of the yi falls into, taking the left-most bin in case of ties. Figure 1 visually depicts this process.

The newly discretized data {(xi, ỹi)}ni=1 can then be used to train a classifier f : Rd → Rk. If obtaining a
real-valued prediction is imperative, one can take the expected value over the bins s (f(x))T λ ∈ R.
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Figure 1: Depiction of binning / discretizing regression data {(xi, yi)}6i=1 using k = 5 bins B1, · · · , Bk,
each of uniform size with midpoints 0 = λ1 < . . . < λk = 1. Here xi ∈ [−1, 1] and yi ∈ [0, 1]. The new
labels ỹi ∈ [k] correspond to which of the k bins B1, . . . , Bk the labels yi fall into.

3 Neural Networks

3.1 Finite Sized Neural Networks

Let x ∈ Rd be a vector whose final entry is one2, i.e., xd = 1 and x[d−1] ∈ Rd−1. Let a = (a1, . . . , am) ∈ Rm×d

and b = (b1, . . . , bm) ∈ Rm×k denote matrices which we refer to as the input layer and output layer
respectively. A two-layer ReLU neural network Fa,b : Rd → Rk is defined as:

∀x ∈ Rd , Fa,b(x) =
m∑
j=1

bj(a
T
j x)+ . (1)

The above equation is equivalent to the common convention of writing the linear and constant terms of
the model separately:

Fa,b(x) =

m∑
j=1

bj
(
aj,[d−1]︸ ︷︷ ︸

linear

Tx[d−1] + aj,d︸︷︷︸
constant

)
+
. (2)

A two-layer neural network can be thought of as a model that jointly learns a set of features
{

( aTj · )+

}m
j=1

and a linear weighting {bj}mj=1 over these features.

Since the ReLU is positively homogeneous, one can re-normalize the weights aj ← aj
‖aj‖ and bj ← bj ‖aj‖

so that aj ∈ Sd−1, without affecting Fa,b. Without loss of generality, we will assume throughout that Fa,b
has layers re-normalized in such fashion.

2This notation combines the constant terms of neural networks with the parameters instead of treating them separately by
appending one to the data vector.
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3.2 Infinite Width Neural Networks

An extension of the above is to consider models that learn a linear weighting over the set of all features
{(aT ·)+ : a ∈ Sd−1}. Such models are called infinite-width neural networks and are expressed via measures,
which now take the place of the output layer b.

Let M(Sd−1,Rk) be the set of signed Radon measures (Rudin, 1970; Evans and Garzepy, 1991) over Sd−1

taking values in Rk. An infinite width network characterized by ν ∈M(Sd−1,Rk) is defined as:

Fν(x) =

∫
Sd−1

(aTx)+dν(a) ∈ Rk. (3)

The finite models described by equation (1) can also be expressed in the infinite-width form by taking
ν(a,b) =

∑m
j=1 bjδaj . With a slight abuse of notation we can write Fa,b = Fν(a,b) to represent this.

4 Implicit Bias

Gradient-based optimization methods can result in a preference for certain solutions to a problem, known
as an implicit bias. Possibly the simplest example of this is logistic regression (with no regularization),
where training a linear predictor on a linearly separable dataset via stochastic gradient descent yields a
solution that converges to the max-margin solution (Soudry et al., 2018, Theorem 3). Similar results hold
for least-squares linear regression (Gunasekar et al., 2018a).

The implicit bias of both linear neural networks (Gunasekar et al., 2018b; Ji and Telgarsky, 2019; Nacson
et al., 2019) and homogeneous neural networks (Lyu and Li, 2020; Chizat and Bach, 2020) has been studied
for models trained to minimize a classification loss function with exponential tails, such as the cross entropy
and exponential loss. Similar results exist for finite width two-layer networks trained with the square loss
on regression problems (Boursier et al., 2022).

4.1 Regression

Let x1, . . . , xn ∈ Rd be data with labels y1, . . . , yn ∈ R. With assumptions on the data3, Boursier et al.
(2022, Section 3.2) show that the gradient flow for a two-layer ReLU network trained on the square loss
converges to a measure solving the following problem:

inf
ν∈M(Sd−1,R)

∫
Sd−1

|dν(a)|

subject to Fν(xi) = yi ∀i ∈ [n].

(4)

For finite sized neural networks, this implicit bias selects networks which have minimum `1-norm on their
output layer from the set of all networks achieving zero square loss on the train set.

3Whilst the implicit bias for models trained on the square loss is observed empirically in experiments, the proof is restricted
only to the case of orthonormal data.
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2) is a left-ramping feature with kink at 1
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4.2 Classification

Let x1, . . . , xn ∈ Rd be data with discrete labels y1, . . . , yn ∈ [k]. Extending Chizat and Bach (2020,
Theorems 3 and 5) from the logistic to soft-max loss (which corresponds to using Theorem 7 from Soudry
et al. (2018) instead of Theorem 3, see also Appendix A), the gradient flow for an infinitely sized neural
network trained on the cross entropy loss (multi-class classification) converges to a solution of:

inf
ν∈M(Sd−1,Rk)

∫
Sd−1

‖dν(u)‖

subject to (eyi − el)TFν(xi) ≥ 1(yi 6= l),

∀i ∈ [n], ∀l ∈ [k].

(5)

From the viewpoint of finite networks, the above implicit bias selects models whose output layer weight
matrix is of minimum `1/`2 group norm (Bach et al., 2012, Section 1.3) from the set of all networks who
satisfy a hard-margin constraint on class predictions for the train set.

5 Re-parameterizing the feature space

In this section, we re-parameterize the feature space of the infinite-width networks described by equation
(3), in the case of one-dimensional data. This allows us to study simplified problems that are closely related
to problems (4) and (5).

5.1 Re-parameterization

For the case of real valued data x ∈ R, we modify the notation of equation (3) to write:

Fν(x) =

∫
S1

(a1x+ a2)+ dν(a1, a2).
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By re-normalizing by |a1|, we know that a1
|a1| ∈ {−1, 1}, which simplifies analysis of the feature space but

leaves Fν unchanged:

Fν(x) =

∫
R2

(
1

|a1|
(a1x+ a2)

)
+

|a1|dν(a1, a2).

Defining W = {−1, 1} × R and performing a change of variable µ(s, c) = |a1| ν(a1, a2), where s = a1
|a1| ,

c = − a2
|a1| , we can obtain a new formulation:

fµ(x) =

∫
W

( s(x− c) )+ dµ(s, c) . (6)

One can think of c as the critical point (or “kink”) of an input weight, that is the point of discontinuity
in the corresponding feature. s can be thought of as the sign of the feature. When s = 1 / −1 the feature
ramps rightwards / leftwards. For short-hand, we write u = (s, c) and:

φu(x) = (s(x− c))+ . (7)

Figure 2 depicts an example of features in the re-parameterized form of equation (7). With this new
notation, equation (6) is simply:

fµ(x) =

∫
W
φu(x) dµ(u). (8)

The above shows a natural mapping from ν ∈M(S1,Rk) to µ ∈M(W,Rk), such that Fν = fµ.

5.2 Simplified Implicit Biases

Without loss of generality, we restrict our analysis to M(U,Rk), where U = {−1, 1} × [−1, 1] ⊂ W. Let
−1 = x1 < · · · < xn = 1 be ordered, real-valued data; such data can be obtained by max-min re-scaling.
We define the following two problems:

Regression:

inf
µ∈M(U,R)

∫
U
|dµ(u)|

subject to fµ(xi) = yi ∀i ∈ [n].

(9)

Classification:

inf
µ∈M(U,Rk)

∫
U
‖dµ(u)‖

subject to (eyi − el)T fµ(xi) ≥ 1(yi 6= l),

∀i ∈ [n], ∀l ∈ [k].

(10)

The above problems correspond to the implicit biases of equations (4) (regression) and (5) (classification).
Despite the equivalence fµ ↔ Fν , the problems are different due to the factor of |a1| introduced into the
total-variation when performing the change of variable. However, problems (9) and (10) are easier to work
with, since analysis is restricted to U instead of S1.
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Figure 3: Rreg and Rclass for regression data taken from the function x 7→ |x|.

5.3 Optimal Supports

Regression Support. Let −1 = x1 < · · · < xn = 1 be ordered data with corresponding real labels
y1, . . . , yn ∈ R. We define:

Rreg = {x1, xn} ∪
{
xi :

yi+1 − yi
xi+1 − xi

6= yi − yi−1

xi − xi−1

}
.

In words, Rreg contains {x1, xn} and any points which lie at the meeting of two line segments of the
piece-wise interpolant for the data {(xi, yi)}ni=1. A visual example of Rreg can be found in Figure 3. We
further define Freg = {−1, 1}×Rreg as the set of input weights whose features have kinks located at points
appearing in Rreg.

Classification Support. Let −1 = x1 < · · · < xn = 1 be ordered data with corresponding discrete labels
y1, . . . , yn ∈ [k]. We define the set Rclass as follows:

Rclass = {x1, xn} ∪ {xi : yi−1 6= yi or yi+1 6= yi}.
In words, Rclass contains {x1, xn} and all other xi which have a differing label from either of its two
adjacent neighbours in the sequence (xi)

n
i=1. An example of Rclass is depicted in Figure 3. Similarly, we

define Fclass = {−1, 1} × Rclass as the set of input weights whose features have kinks located at points
appearing in Rclass.

We are now ready to state our main theoretical result, which shows how the implicit biases of regression
(9) and classification (10) differ in support.

Theorem 1 For real-valued, ordered data −1 = x1 < · · · < xn = 1:

1. There exists µ ∈M(U,R) with supp(µ) ⊆ Freg which is optimal for problem (9) with labels y1, . . . , yn ∈
R.

2. There exists ν ∈ M(U,Rk) with supp(ν) ⊆ Fclass which is optimal for problem (10) with labels
y1, . . . , yn ∈ [k].

In order to prove Theorem (1) we first study a more general optimization problem that encompasses
problems (9) and (10).

8



5.4 Generalized Implicit Bias Problem

Let Ω be any norm on Rk. For a family of non-empty closed convex sets S1, . . . , Sn ⊆ Rk we define the
following optimization problem:

inf
µ∈M(U,Rk)

∫
U

Ω (dµ(u)) +

n∑
i=1

ISi(fµ(xi)). (11)

By setting Ω to be the Euclidean norm on Rk and choosing k and Si, one can recover both problems (9)
and (10). More precisely, by setting k = 1 and Si = {yi}, we obtain problem (9). On the other hand,
taking k > 1 and

Si = {v ∈ Rk : (eyi − el)T v ≥ 1(yi 6= l) ∀i ∈ [n], ∀l ∈ [k] },

we recover problem (10) where the data have discrete labels y1, . . . , yn ∈ [k].

Lemma 1 The dual of problem (11) is:

sup
α1...,αn∈Rk

−
n∑
i=1

σSi(αi)

subject to Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ U.

(12)

Proof The full proof is given in Appendix B. We provide a brief outline. By Fenchel duality (Moreau,
1966), we have:

n∑
i=1

ISi(fµ(xi)) =
n∑
i=1

sup
αi∈Rk

{〈αi, fµ(xi)〉 − σSi(αi)} ,

The dual problem can be obtained by substituting this into problem (11) and exchanging the order of the
supremum and infinum. In order to resolve the infinum, we use properties of the dual norm.

5.4.1 Restricting the support to the data

Let UX = {−1, 1}×{x1, . . . , xn} denote the set of input weights whose features have kinks at {x1, . . . , xn}.

Proposition 1 For real-valued, ordered data −1 = x1 < · · · < xn = 1:

1. There exists µ ∈M(UX ,R) which is optimal for problem (9) with labels y1, . . . , yn ∈ R.

2. There exists ν ∈M(UX ,Rk) which is optimal for problem (10) with labels y1, . . . , yn ∈ [k].

This proposition signifies that there exists finite neural networks with features {φu : u ∈ UX} that satisfy
the implicit biases (9) and (10), and will be useful later when proving Theorem (1).

To prove Proposition 1, we show a series of lemmas that combine to give the desired result.
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Lemma 2 Suppose α1, . . . , αn ∈ Rk satisfy:

Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ UX .

Then α1 . . . , αn are feasible for problem (12).

Proof The full proof is detailed in Appendix C, and relies on the convexity of Ω∗ combined with the fact
that

∑n
i=1 αiφu(xi) is piece-wise affine in c for both left and right-wards ramping features.

Corollary 1 Suppose there exists µ feasible for the following problem:

inf
µ∈M(UX ,Rk)

∫
U

Ω (dµ(u)) +

n∑
i=1

ISi (fµ(xi)) . (13)

Then there exists µ∗ ∈M(UX ,Rk) which is optimal for problem (11).

Proof Let P1, D1 denote respectively the primal and dual values for problem (11). Similarly let P2, D2

denote the primal and dual values for problem (13). Since M(UX ,Rk) ⊂M(U,Rk), it follows that P2 ≥ P1

and D2 ≥ D1.

Problem (13) is a norm minimization problem with convex constraints which has a feasible point µ, so
it attains strong duality (Boyd et al., 2004, Chapter 5). Let (µ∗, α∗) denote any primal-dual pair which
attains strong duality. By Lemma (2), α∗ is also dual-feasible for problem (12) so D2 = D1. We conclude
that:

P2 ≥ P1 ≥ D1 = D2 = P2 =⇒ P2 = P1,

so (µ∗, α∗) are optimal for problem (11).

Lemma 3 For real-valued, ordered data −1 = x1 < · · · < xn = 1:

1. There exists µ ∈M(UX ,R) which is feasible for problem (9) with labels y1, . . . , yn ∈ R.

2. There exists ν ∈M(UX ,Rk) which is feasible for problem (10) with labels y1, . . . , yn ∈ [k].

Proof The proof is constructive and detailed in Appendix D.

Proof of Proposition (1): Follows directly from combining (3) and Corollary (1).

Proof of Theorem 1: The proof is detailed in Appendix E. We will briefly provide an outline. Consider
problem (9) but for a new data set {(xi, yi)}i∈Rreg . By Proposition (1), there exists a primal-dual optimal
pair (µ∗, α∗) with supp(µ∗) ⊆ Freg which solves problem (9). We remark that µ∗ is feasible for problem
(9) with the full data set {(xi, yi)}ni=1. It remains to show ∃α ∈ Rn which is feasible and attains strong
duality with µ∗. For this, we extend α∗ ∈ Rm to α̃ ∈ Rn by appending zeroes to any new entries, where
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m = |Rreg|. It is clear that α̃ is dual-feasible, and by verifying that the pair (µ∗, α̃) attains strong duality
we conclude. A similar reasoning applies to classification.

Remark: The optimal support Rreg depends completely on the data set {(xi, yi)}ni=1, whilst Rclass depends
both on the data and the number of bins k used for discretization. In general, by increasing k, one can
increase the size of the Rclass

4. This additional dependence on k gives Rclass the potential to include more
points than Rreg. It is not hard to think of simple regression problems for which Rreg is sparse amongst
{x1, . . . , xn}, but where Rclass is not (for a suitable choice of k). We will explore this idea further in Section
6, and its relationship to the binning phenomenon.

6 Synthetic Regression Problem

We present a simple one-dimensional toy regression task, generated from a finite teacher neural network µT ,
which has 9 neurons in the hidden layer. The resulting target function fµT : [−1, 1] → [0, 1] is the sum
of two large-scale triangles and two small-scale triangles, depicted in Figure 4. As usual with supervised
learning problems, the task is to fit a model’s parameters using a train set to obtain minimum square error
on a separate validation set.

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

fµT
train data

Rreg

Figure 4: The train data set, consisting of 250 data points {(xi, fµT (xi))}250
i=1, is depicted by the blue

crosses. Rreg is depicted in orange, and is notably sparse, consisting of just 18 points. On the other-hand,
discretizing the data with k = 50 bins results in the set Rclass containing 230 of the data points.

6.1 Experiment Setup

Data: To generate discrete labels, we divided the y-axis into k = 50 bins of uniform size, so that the
midpoint of the first/last bin was 0/1. For both the train and validation sets, we sampled xi uniformly so
that each bin contained the same number of points (xi, fµT (xi)). The train and validation data sets both
consisted of 250 data points.

Models: We trained two over-parameterized models:

4Excluding trivial problems, for example, when the target regression function is very close to being constant.
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1. Regression Model: 10, 000 neurons in the hidden layer with scalar output, totalling 30, 000 weights.
Trained using the square loss.

2. Classification Model: 500 neurons in the hidden layer with vector output of dimension k = 50,
totalling 26, 000 weights. Trained using the cross-entropy loss.

Training: Both models were trained using gradient descent for thirty random initializations of their
weights, following the scheme given by Glorot and Bengio (2010). A hyper-parameter sweep was used
to find the optimal learning rate for each of the models. The stopping criterion was when neither the
train nor validation losses decreased from their best observed values over a duration of 1000 epochs. The
final model parameters were taken from the epoch that obtained lowest square validation error. To obtain
real-valued predictions from the classification model, we took the expected value over the bins as described
in Section 2.

6.2 Results

The validation RMSE for the thirty random intializations is displayed in Figure 5a and Table 5b. Our
regression task clearly exhibits the binning phenomenon; every classification models attained lower valida-
tion error than the best performing regression model. Moreover, the classification models were more stable
to train, exhibiting less variance in performance over the thirty random initializations.

Regression Classification

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
E

(a)

RMSE ×102

Best Worst Mean Std. Dev

Regression 3.70 6.85 4.55 1.38
Classification 0.86 1.54 1.21 0.19

(b)

Figure 5: Population statistics for the RMSE over 30 random initializations of model weights.

The predictions of the worst performing regression and classification models are depicted in Figures 6a and
6c respectively. It can be seen that the regression model was unable to fit the smaller-scale triangles from
the train data, converging to a local minima of the square loss.

Figures 6b and 6d depict the kinks cj corresponding to the model’s input weights aj , for both the regression
and classification model respectively. The support of the regression model is notably sparse, with the kinks
gathering at points corresponding to to the peaks of the larger-scale triangles. The model has struggled
during optimization to recover all of the necessary support, lacking the features whose kinks are located
at peaks of the smaller-scale triangles, and as a consequence suffers under-fitting.

On the other-hand, the classification model recovers a support which has features more evenly distributed
across the unit interval, aligning with the optimal support Rclass described in theorem (1). As a conse-
quence, the classification model does not suffer the same optimization problem as the regression model.
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Figure 6: Predictions for the worst performing regression / classification models are depicted in Figures 6a
/ 6c. Supports for the worst performing regression / classification models are depicted in Figures 6b / 6d.

6.3 Discussion

Chizat and Bach (2018) show that in the infinite width limit, the gradient flow of a two-layer neural network
converges to the global minimizer of the problem. Our experiment indicates that even simple problems
can result in global convergence only being guaranteed at extreme widths.

For regression data generated from a teacher network with m0 hidden-neurons and Gaussian weights,
Safran and Shamir (2018) show that training a model with m = m0 + 1 neurons helps alleviate under-
fitting, postulating that increasing m further aids optimization. Our results indicate that the implicit bias
can play a fundamental role in gradient based optimization, even when m >> m0.

Goodfellow et al. (2015) demonstrate that on a straight line between the optimal parameters and a random
initialization, various over-parameterized state of the art vision models encounter no local minima. We
provide evidence in Appendix F demonstrating that both the regression and classification models deviated
from a linear path during optimization.

7 Implicit Bias for Higher Dimensions

We provide an experiment that indicates that the properties of the supports provided in section 5.3 likely
apply for higher dimensions. We generated regression data (xi, fµT (xi)) ∈ [−1, 1]3 × R from a teacher
network µT with three neurons and random weights, where x3 = 1. Similar to section 6.1, we trained over-
parameterized regression and classification models on the regression data and binned data (using k = 25
uniform sized bins) respectively. The precise details of the experiment can be found in Appendix H.

Each feature aj is now characterized by the line where it ramps. That is to say, the points x ∈ R3 satisfying:

aj,1x1 + aj,2x2 + aj,3 = 0,

where x3 = 1. The critical lines characterizing the features of the regression and classification models are
depicted in Figure 7a and 7b, respectively. We see that the regression model recovers a sparse support,
whilst the classification model’s features are more evenly distributed over unit square corresponding to
(x1, x2). These observations are similar to Rreg and Rclass in the one-dimensional case, suggesting that the
difference in implicit bias between regression and classification support we identified in one-dimensional
problems is likely to hold in higher dimensions.
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Figure 7: Critical lines of the regression model’s features (left) and classification model’s features (right),
for two-dimensional input data.

8 Conclusion

We have presented supports Rreg, Rclass characterizing finite neural networks which are solutions to prob-
lems relating to known implicit biases for regression and classification, in the case of one-dimensional data.
We postulated that the differences between these two supports provided one explanation for the binning
phenomenon. This claim was supported by numerical experiments, demonstrating that over-parameterized
models learn features which notably coincide with the supports we proposed. Moreover, our synthetic
problem clearly exhibited the binning phenomenon, resulting from the inability of the regression model to
recover all of the sparse optimal support during training. Finally, we provided empirical evidence that the
characteristics of our proposed supports hold in higher dimensions.

Our results raise many questions, both from a practical perspective and from a theoretical stand-point.

Practise: For some problems, the cross-entropy loss outperforms the square loss on regression tasks,
despite it having no information about relationship between classes. Future works could investigate how
to best incorporate the notion of adjacency between the bins, building on existing works such as Evgeniou
et al. (2005). Other directions could include exploring different ways to discretize the data (e.g., jointly
learning bins of differing sizes), or how best to choose the number of bins k for discretization.

Theory: A natural progression would be to prove a Theorem similar to that of 1, but for the implicit
biases described in (Boursier et al., 2022; Chizat and Bach, 2020). Another option would be to extend the
results of Theorem 1 to the case of multi-dimensional data. Further works on the implicit bias of deep
models could help to explain the binning phenomenon reported in the literature mentioned in Section 1.
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Appendix

A Proof of Implicit Bias for Multi-Class Softmax Regression

We consider the set-up of Chizat and Bach (2020, Theorem 3), and can follow the exact same proof, except
that now the feature map is k-dimensional rather than 1-dimensional. Assumption (A1) is unchanged,
while Assumption (A3) is considered component-wise.

For Assumption (A2), we use the framework of Theorem 7 from Soudry et al. (2018) instead of the one in
Theorem 3.

We can then extend the informal argument from Chizat and Bach (2020) that when using a predictor∑m
i=1 bj(a

>
j x)+, we converge to the minimum `2-norms

∑m
i=1 ‖bj‖22 + ‖aj‖22, which is minimized by scaling

invariance as 2
∑m

i=1 ‖bj‖2‖aj‖2, and thus, writing the predictor as:

m∑
i=1

bj(a
>
j x)+ =

m∑
i=1

bj‖aj‖2((aj/‖aj‖2)>x)+ =

∫
Sd−1

(aTx)+dν(a) for ν =
m∑
j=1

bj‖aj‖δ aj
‖aj‖

,

the penalty is exactly proportional to the total variation norm with `2-penalties.

B Minimizing Total Variation of a Measure With Convex Lower Semi-
Continuous Constraints

Lemma 4 Let 〈·, ·〉 denote the Euclidean inner-product defined on Rk, and let Ω denote any norm on Rk.
Then for any measurable function g : U→ Rk:

sup
µ∈M(U,Rk)

∫
U

(
〈g(u), dµ(u)〉 − Ω (dµ(u))

)
=

{
0 if Ω∗ (g(u)) ≤ 1 ∀u ∈ U
∞ otherwise.

(14)

Proof Suppose that ∃u0 ∈ U such that Ω∗ (g(u0)) > 1. By definition of the dual norm, this implies:

〈v0, g(u0)〉 = sup
Ω(v)=1

〈v, g(u0)〉 > 1,

where we have used v0 ∈ Rk to denote the vector that attains the supremum. For t > 0, consider the
measure µ = tv0δu0 ∈M(U,Rk). Then:

∫
U

(
〈g(u), dµ(u)〉 − Ω (dµ(u))

)
= 〈g(u0), tv0〉 − Ω (tv0)

= t

〈g(u0), v0〉 − Ω (v0)︸ ︷︷ ︸
>1

 .
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Hence taking the limit as t→∞ leads to an unbounded supremum. Conversely, suppose that Ω∗ (g(u)) ≤
1 ∀u ∈ U. Then for any u ∈ U and v ∈ Rk one has:

〈g(u), v〉 = Ω(v)

〈
g(u),

v

Ω(v)

〉
≤ Ω(v) sup

Ω(w)=1
〈g(u), w〉

= Ω(v) Ω∗ (g(u)) ≤ Ω(v).

We conclude that
∫
U

(
〈g(u), dµ(u)〉 − Ω (dµ(u))

)
≤ 0, and hence:

Ω (g(u))∗ ≤ 1 ∀a ∈ A =⇒ sup
µ∈M(U,Rk)

∫
U

(
〈g(u), dµ(u)〉 − Ω (dµ(u))

)
= 0.

Lemma 5 The dual of problem (11) is:

sup
α1...,αn∈Rk

−
n∑
i=1

σSi(αi)

subject to Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ U.

Proof By Fenchel duality (Moreau, 1966) one has:

I∗∗Si
(fµ(xi)) = ISi (fµ(xi)) = sup

αi∈Rk

{〈αi, fµ(xi)〉 − σSi(αi)} .

Plugging this into the Lagrangian we obtain:
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L(µ) =

∫
U

Ω (dµ(u)) +

n∑
i=1

sup
αi∈Rk

{〈αi, fµ(xi)〉 − σSi(αi)}

=

∫
U

Ω (dµ(u)) + sup
α1,...,αn∈Rk

n∑
i=1

{〈αi, fµ(xi)〉 − σSi(αi)}

=

∫
U

Ω (dµ(u)) + sup
α1,...,αn∈Rk

{∫
U

〈 n∑
i=1

αiφu(xi), dµ(u)
〉
−

n∑
i=1

σSi(αi)

}

= sup
α1,...,αn∈Rk

−
∫
U

(〈
−

n∑
i=1

αiφu(xi)︸ ︷︷ ︸
g(u)

, dµ(u)
〉
− Ω (dµ(u))

)
−

n∑
i=1

σSi(αi)

 .

The primal value inf
µ∈M(U,Rk)

L(µ) is hence:

inf
µ∈M(U,Rk)

sup
α1,...,αn∈Rk

{
−
∫
U

(〈
g(u), dµ(u)

〉
− Ω (dµ(u))

)
−

n∑
i=1

σSi(αi)

}
.

The dual problem is obtained by switching the order of the supremum and infinum:

sup
α1,...,αn∈Rk

inf
µ∈M(U,Rk)

{
−
∫
U

(〈
g(u), dµ(u)

〉
− Ω (dµ(u))

)
−

n∑
i=1

σSi(αi)

}

= sup
α1,...,αn∈Rk

{
inf

µ∈M(U,Rk)

{
−
∫
U

(〈
g(u), dµ(u)

〉
− Ω (dµ(u))

) }
−

n∑
i=1

σSi(αi)

}
.

Applying Lemma (4) we conclude the dual problem is:

sup
α1...,αn∈Rk

−
n∑
i=1

σSi(αi)

subject to Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ U.
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C Proof of Lemma 2

Define:

U+ = {1} × [−1, 1]

U− = {−1} × [−1, 1],

and note that U = U+ ∪ U−. Similarly we define:

UX
+ = {1} × {x1, . . . , xn}

UX
− = {−1} × {x1, . . . , xn}.

Firstly, let us show that:

Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ U+. (15)

This is equivalent to showing that:

Ω∗

(
n∑
i=1

αi(xi − c)
)
≤ 1 ∀c ∈ [−1, 1]. (16)

By assumption, we know that:

Ω∗

(
n∑
i=1

αiφu(xi)

)
≤ 1 ∀u ∈ UX+

⇐⇒ Ω∗

(
n∑
i=1

αi(xi − c)+

)
≤ 1 ∀c ∈ {x1, . . . , xn}.

Let g(c) =
∑n

i=1 αi(xi − c)+ and remark that g is a piece-wise affine function with line segments meeting
at {x1, . . . , xn}. As a consequence, ∀c ∈ [−1, 1], ∃θ ∈ [0, 1] and i ∈ [n− 1] such that:

g(c) = θ g(xi) + (1− θ) g(xi+1).

By the convexity of the dual norm, we have:

Ω∗ (g(c)) ≤ θ Ω∗ (g(xi))︸ ︷︷ ︸
≤1

+(1− θ) Ω∗ (g(xi+1))︸ ︷︷ ︸
≤1

≤ 1.

We conclude that (16) (and hence (15)) hold. We conclude by repeating the same argument for U−, but
replacing g(c) with h(c) =

∑n
i=1 αi(c− xi)+.
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Figure 8: Graphical depiction of Rreg for six arbitrary data points (x1, y1), . . . , (x6, y6). In this example
Jreg = {1, 3, 4, 6}, resulting in a piece-wise interpolant with three line components L1, L2 and L3.

D Construction of Feasible Measures

D.1 Regression

Proof

As in the statement let −1 = x1 < · · · , xn = 1 and y1, · · · , yn ∈ R denote the regression data. We define:

Jreg = {i ∈ [n] : xi ∈ Rreg}, (17)

as the set of indices i which correspond to data points xi ∈ Rreg. Let m = |Jreg|, and note that {1, n} ⊆
Jreg =⇒ m ≥ 2. Without loss of generality we assume that the elements of Jreg are sorted in increasing
order 1 = j1 < . . . < jm = n.

For l ∈ [m−1], let Ll denote the line passing through (xjl , yjl) and
(
xjl+1

, yjl+1

)
. By definition, the equation

of each of the m− 1 lines will be:

Ll(x) = γl(x− xjl) + yjl , (18)

where:

γl =
yjl+1

− yjl
xjl+1

− xjl
. (19)

A graphical depiction of this above notation can be found in Figure 8. Finally, we write P to denote the
piece-wise linear interpolant of the data {(xi, yi)}ni=1, where:

x ∈ [xjl , xjl+1
] =⇒ P (x) = Ll(x) ∀l ∈ [m− 1]. (20)

It is sufficient to construct a measure µ ∈ M(UX ,R) such that fµ = P , since then fµ(xi) = P (xi) =
yi ∀i ∈ [n].
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We begin by first constructing a measure µ1 such that fµ1(x) = L1(x), which we will later build upon to
construct µ. From the definition of Rreg, the measure µ1 will satisfy fµ1(xi) = yi for all i ∈ [j2].

Let u1, un ∈ UX be defined as u1 = (1, x1) and un = (−1, xn). We claim that µ1 can be written in the
following form:

µ1 = wlδu1 + wrδun . (21)

To show this is true, we search for weights wr, wl ∈ R that satisfy:

L1(x) = γ1(x− x1) + y1 = fµ1(x)

=

∫
U
φu(x) dµ1(u)

= wlφu1(x) + wrφun(x)

= wl(x− x1)+ + wr(xn − x)+

= wl(x− (−1)) + wr(1− x)+

= wl(x+ 1)+ + wr(1− x)+.

Substituting x = 1 gives:

wl(2)+ + wr(0)+ = 2γ1 + y1

=⇒ wl = γ1 +
y1

2
.

Similarly, substituting x = −1 gives:

wl(0)+ + wr(2)+ = 0γ1 + y1

=⇒ wr =
y1

2
.

In the case that m = 2 we are done, since fµ1 = P . Otherwise, consider the measure:

µ =
y1

2
δun +

(y1

2
+ γ1

)
δu1︸ ︷︷ ︸

µ1

+

m−1∑
l=2

(γl+1 − γl) δujl ∈M(UX ,R), (22)

where ujl = (1, xjl). We claim that fµ = P , which is equivalent to saying that:

∀l ∈ [m− 1], fµ(x) = Ll(x) ∀x ∈ [xjl , xjl+1
]. (23)

We will show by induction that the above statement holds. The base case l = 1 is immediately verified,
as fµ(x) = L1(x) ∀x ∈ [xj1 , xj2 ]. To prove the inductive step, suppose for some q ∈ [m − 1] that the
following holds:
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∀l ∈ [q − 1], fµ(x) = Ll(x) ∀x ∈ [xjl , xjl+1
]. (24)

We need to show that:

∀l ∈ [q], fµ(x) = Ll(x) ∀x ∈ [xjl , xjl+1
]. (25)

To do this, we note that:

x ∈ [xjq−1 , xjq ] =⇒ fµ(x) = Lq−1(x) + (γq − γq−1)
(
x− xjq−1

)
+

= Lq(x).

D.2 Classification

Proof

As in the statement let −1 = x1 < · · · , xn = 1 and y1, · · · , yn ∈ [k] denote the classification data. We
define the one-hot labels Z ∈ {0, 1}n×k as:

Zi,l =

{
1 if yi = l

0 otherwise.
(26)

We define k regression data-sets D1, . . . , Dk, where:

Dl = {(xi, Zi,l)}ni=1 ∀l ∈ [k]. (27)

Applying the result obtained from Appendix D.1, ∃µ1, . . . , µk ∈M(UX ,R) such that:

fµl(xi) = Zi,l ∀i ∈ [n] ∀l ∈ [k]. (28)

By definition of Z, we conclude that µ = (µ1, . . . , µk) ∈M(UX ,Rk) is feasible for problem (10).

E Proof of Theorem (1)
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E.1 Regression

Let Jreg = {i ∈ [n] : xi ∈ Rreg} and let m = |Jreg|.
Consider the following problem:

inf
µ∈M(U,R)

∫
U
|dµ(u)|

subject to fµ(xj) = yj ∀j ∈ Jreg.
(29)

Let P1 and P2 be the primal values for problems (9) and (29) respectively. As problem (29) has less
constraints than problem (9), we can remark that P2 ≤ P1. By Proposition (1), ∃µ∗ ∈ M(UX ,R) and
α1
∗, . . . , αm

∗ ∈ R optimal for problem (29) satisfying supp(µ∗) ⊆ Freg.
Assume without loss of generality that Jreg is ordered, with 1 = j1 < . . . < jm = n. For i ∈ Jreg, let
ψ(i) ∈ [m] denote the position of i in the ordered list j1, . . . , jm. We construct α̃1, . . . , α̃n ∈ R as follows:

α̃i =

{
0 if i 6∈ Rreg
α∗ψ(i) if i ∈ Rreg.

(30)

α∗1, . . . , α
∗
m correspond to the m data points (xj1 , yj1), . . . , (xjm , yjm). Our constructed α̃1, . . . , α̃n is the

extension of the above to all of the train data (x1, y1), . . . , (xn, yn), where i 6∈ Rreg =⇒ α̃i = 0.

By construction, µ∗ and α̃1, . . . , α̃n attain strong duality for (9). However, it remains to verify that they
are indeed prime and dual feasible for problem (9) respectively. For this, it is enough to verify that:

−σSi(α̃i) = ISi (fµ∗(xi)) ∀i ∈ [n] \ Jreg,

where the sets Si are those corresponding to regression, described in Section 5.4. We remark that fµ∗ is
a piece-wise affine function with line segments meeting at {(xj , yj)}j∈Jreg . By definition, if i 6∈ Jreg then
fµ∗(xi) = yi =⇒ ISi (fµ∗(xi)) = 0. Finally, σSi(α̃i) = σSi(0) = 0 ∀i ∈ [n] \ Jreg.

E.2 Classification

Let Jclass = {i ∈ [n] : xi ∈ Rclass} and let m = |Jclass|.
Consider the following problem:

inf
µ∈M(U,Rk)

∫
U
‖dµ(u)‖

subject to (eyj − el)T fµ(xj) ≥ 1(yj 6= l),

∀j ∈ Jclass, ∀l ∈ [k].

(31)

Let P1 and P2 be the primal values for problems (10) and (31) respectively. As problem (31) has less
constraints than problem (10), we can remark that P2 ≤ P1. By Proposition (1), ∃µ∗ ∈ M(UX ,Rk) and
α1
∗, . . . , αm

∗ ∈ Rk optimal for problem (31) satisfying supp(µ∗) ⊆ Fclass.
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Assume without loss of generality that Jclass is ordered, with 1 = j1 < . . . < jm = n. For i ∈ Jclass, let
ψ(i) ∈ [m] denote the position of i in the ordered list j1, . . . , jm. We construct α̃1, . . . , α̃n ∈ Rk as follows:

α̃i =

{
0 if i 6∈ Rclass
α∗ψ(i) if i ∈ Rclass.

(32)

α∗1, . . . , α
∗
m correspond to the m data points (xj1 , yj1), . . . , (xjm , yjm). Our constructed α̃1, . . . , α̃n is the

extension of the above to all of the train data (x1, y1), . . . , (xn, yn), where i 6∈ Rclass =⇒ α̃i = 0.

By construction, µ∗ and α̃1, . . . , α̃n attain strong duality for (9). However, it remains to verify that they
are indeed prime and dual feasible for problem (9) respectively. For this, it is enough to verify that:

−σSi(α̃i) = ISi (fµ∗(xi)) ∀i ∈ [n] \ Jclass,

where the sets Si are those corresponding to classification, described in Section 5.4.

We begin by noting that ∀l ∈ [k], fµ∗(·)k is a piece-wise affine function with line segments meeting at
points contained in some subset of {(xj , yj)}j∈Jclass . By definition:

i 6∈ Jclass =⇒ fµ∗(xi)
T (eyi − el) ≥ 1(yi 6= 1) ∀l ∈ [k]

=⇒ ISi (fµ(xi)) = 0 ∀i ∈ [n] \ Jclass

Finally, σSi(α̃i) = σSi(0) = 0 ∀i ∈ [n] \ Jclass.

F Trajectory of Gradients

Figures 9a / 9b depict the angles formed between the first 1000 gradients obtained during training for the
worst performing regression / classification models. Despite both models being over-parameterized for the
problem, it is clear that the optimization route for the models was not a straight line. Similar results were
seen over all of the thirty random intializations.

G Experiments with Three-Layer Neural Networks

We provide results showing that the binning phenomenon observed in Section 6 only applies to two-layer
neural networks. In other words, three-layer networks did not suffer the under-fitting we observed in
Section 6.2.

We trained a regression model with two hidden layers consisting of 1000 and 250 neurons (totalling 252, 250
parameters) using the square loss. The model was trained for ten random initializations of its weights, in
the same manner as detailed in Section 6.1. The RMSE for the ten random initializations is depicted by
Figure 10a.

Figure 10b shows that the gradient descent route during the first 1000 epochs of training was not linear.
The predictions of the worst performing model over the 10 runs are depicted in Figure 11a. It can be seen
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Figure 9: Angle θ between the first 1000 gradients obtained during training for the regression model (left)
and the classification model (right).
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Figure 10: RMSE (left) and angle θ between the first 1000 gradients obtained during training (right) for
the three-layer neural network.
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Figure 11: Worst performing model predictions (left) and support (right), over the ten random initializa-
tions.
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that the network did not suffer the under-fitting observed for two-layer networks, detailed in Section 6.2.
The support of the model is depicted in Figure 11b.

H Two-dimensional Optimal Supports for Synthetic Data

We generated a regression problem from a random teacher model µT with three neurons, with weights being
initialized as in Glorot and Bengio (2010). Our train data set consisted of 625 data points {(xi, fµT (xi))},
where the xi ∈ [−1, 1]2 × {1} are spaced evenly over the 25× 25 unit grid. To generate discretized labels
we used k = 25 bins.

We trained two over-parameterized models:

1. Regression Model: 500 neurons in the hidden layer with scalar output. Trained using the square
loss.

2. Classification Model: 500 neurons in the hidden layer with vector output of dimension k = 25.
Trained using the cross-entropy loss.

As mentioned in Section 7, each feature aj is now characterized by the line where it ramps, which we will
refer to as the feature’s “critical line”. That is to say, the points x ∈ R3 satisfying:

aj,1x1 + aj,2x2 + aj,3 = 0,

where x3 = 1. These can be thought of as the equivalent of cj defined in Section 5, but for the two-
dimensional case.

The critical lines characterizing the features of the regression and classification models after training
are depicted in Figure 7a and 7b, respectively. Features with critical lines which do not cross the unit
square only correspond to affine transformations of the resulting prediction, and for this reason can be
ignored. Similarly, features killed by the output layer5 since their contributions to the model’s prediction
are irrelevant.

We see that the regression model recovers a sparse support, whilst the classification model’s features are
more evenly distributed over unit square corresponding to (x1, x2). These observations are similar to Rreg
and Rclass in the one-dimensional case, suggesting that the difference in implicit bias between regression
and classification support we identified in one-dimensional problems may hold in more general situations.

5That is to say the features aj such that ‖aj‖‖bj‖ is very small relative to other features.
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