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Preface

This book is about Algorithms on Texts, also called Algorithmic Stringol-
ogy. Text (word, string, sequence) is one of the main unstructured data
types and the subject is of vital importance in Computer science.

The subject is versatile because it is a basic requirement in many
sciences, especially in Computer science and engineering. The treatment
of unstructured data is a very lively area and demands efficient methods
due both to their presence in highly repetitive instructions of operating
systems and to the vast amount of data that needs to be analysed on
digital networks and equipments. The latter is clear for Information
Technology companies that manage massive data in their data centres
but also holds for most scientific areas beyond Computer science.

The book presents a collection of the most interesting representative
problems in Stringology. They are introduced in a short and pleasant
way and open doors to more advanced topics. They were extracted from
hundreds of serious scientific publications, some of which are more than
hundred years old and some are very fresh and up to date. Most of
the problems are related to applications while others are more abstract.
The core part of most of them is an ingenious short algorithmic solution
except for a few introductory combinatorial problems.

This is not just yet another monograph on the subject but a series of
problems (puzzles and exercises). It is a complement to books dedicated
to the subject in which topics are introduced in a more academic and
comprehensive way. Nevertheless most concepts in the field are included
in the book, which fills a missing gap and is very expected and needed,
especially for students and teachers, as the first problem-solving textbook
of the domain.

The organisation of the book consists of seven chapters.

The very basics of stringology is a preliminary chapter introducing the
terminology, basic concepts and tools for the next chapters and that
reflects six main streams in the area.

Combinatorial puzzles is about Combinatorics on words, an important
topic since many algorithms are based on combinatorial properties of
their input.

Pattern matching deals with the most classical subject, text searching
and string matching.

Efficient data structures is about data structures for text indexing. They
are used as fundamental tools in a large amount of algorithms, like
special arrays and trees associated with texts.

Regularities in words concerns regularities that occur in texts, in partic-
ular repetitions and symmetries, that have a strong influence on the
efficiency of algorithms.

Text compression is devoted to several methods of the practically im-



ii

portant area of conservative text compression.

Miscellaneous contains various problems that do not fit in earlier chap-
ters but certainly deserve presentation.

Problems listed in the book have been accumulated and developed
over several years of teaching on string algorithms in our own different
institutions in France, Poland, UK and USA. They have been taught
mostly to Master’s students and are given with solutions as well as with
references for further readings. The content also profits from the expe-
rience authors gained in writing previous textbooks.

Anyone teaching graduate courses on data structures and algorithms
can select whatever they like from our book for their students. However
the overall book is not elementary and is intended as a reference for re-
searchers, PhD and Master students, as well as for academics teaching
courses on algorithms even if they are not directly related to text algo-
rithms. It should be viewed as a companion to standard textbooks on the
domain. The self-contained presentation of problems provides a rapid
access to their understanding and to their solutions without requiring a
deep background on the subject.

The book is useful for specialised courses on text algorithms, as well
as for more general courses on algorithms and data structures. It in-
troduces all required concepts and notions to solve problems but some
prerequisites in bachelor or sophomore-level academic courses on algo-
rithms, data structures and discrete mathematics certainly help grasping
the material more easily.

November 2019

M. Crochemore, T Lecroq, W. Rytter
London, Paris, Rouen, Warsaw
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The very basics of stringology

In this chapter we introduce basic notation and definitions on words,
and sketch several constructions used in text algorithms.

Texts are central in "word processing" systems, which provide facilities
for the manipulation of texts. Such systems usually process objects that
are quite large. Text algorithms occur in many areas of science and
information processing. Many text editors and programming languages
have facilities for processing texts. In molecular biology for example,
text algorithms arise in the analysis of biological molecular sequences.

Words

An alphabet is a non-empty set whose elements are called letters or
symbols. We typically use alphabets A = {a,b,c,...}, B =1{0,1} and
natural numbers. A word (mot, in French) or string on an alphabet A
is a sequence of elements of A.

1L MOT
|

The zero letter sequence is called the empty word and is denoted
by e. The set of all finite words on an alphabet A is denoted by A*, and

AT = A%\ {e}.
The length of a word z, length of the sequence, is denoted by |z|.
We denote by z[i], for i = 0,1,...,|z| — 1, the letter at position or

index i on a non-empty word x. Then x = z[0]z[1]---z[|z| — 1] also
denoted by z[0..|z| — 1]. The set of letters that occur in the word z is
denoted by alph(z). For the example © = abaaab we have || = 6 and
alph(z) = {a,b}.

The product or concatenation of two words = and y is the word
composed of the letters of = followed by the letters of y. It is denoted
by xy, or by -y to emphasise the decomposition of the resulting word.
The neutral element for the product is € and we denote respectively by
2y~ and 7'z the words x and y when z = xy.

A conjugate, rotation or cyclic shift of a word x is any word y that
factorises into vu where uv = x. This makes sense because the product of
words is obviously non commutative. For example, the set of conjugates
of abba, its conjugacy class because conjugacy is an equivalence relation,
is {aabb, abba, baab,bbaa} and that of abab is {abab, baba}.

A word z is a factor (sometimes called substring) of a word y if
y = uzv for two words u and v. When u = ¢, x is a prefix of y, and
when v = ¢, x is a suffix of y. Sets Fact(z), Pref (z) and Suff (x) denote
the sets of factors, prefixes and suffixes of x respectively

When z is a non-empty factor of y = y[0..n — 1] it is of the form
yli..1 + |z| — 1] for some i. An occurrence of x in y is an interval
[i..i 4 |z| — 1] for which @ = y[i..i + |z| — 1]. We say that ¢ is the
starting position (or left position) on y of this occurrence, and that



i+ |z| — 1 is its ending position (or right position). An occurrence of
x in y can also be defined as a triple (u,x,v) such that y = uxv. Then
the starting position of the occurrence is |u|. For example, the starting
and ending positions of x = aba on y = babaababa are:

i 01 2 3 4 5 6 7 8
yli] b a b a a b a b a
starting positions 1 4 6

ending positions 3 6 8

For words z and y, |y|, denotes the number of occurrences of z in y.
Then for instance |y| = X{|y|, : @ € alph(y)}.

The word z is a subsequence or subword of y if the latter decom-
poses into woz[0jwyz[1] ... z[[x] — 1jw),| for words wo, wi, ..., Wy
A factor or a subsequence x of a word y is said to be proper if z # y.

Periodicity

Let z be a non-empty word. An integer p, 0 < p < |z|, is called a
period of z if x[i] = x[i + p] for i = 0,1,...,|z| — p — 1. Note that the
length of a word is a period of this word, so every non-empty word has
at least one period. The period of x, denoted by per(x), is its smallest
period. For example, 3, 6, 7, and 8 are periods of the word aabaabaa,
and per(aabaabaa) = 3. Note that if p is a period of z, its multiples not
larger than |z| are also periods of z.

Here is a series of properties equivalent to the definition of a period
p of x. First, 2 can be factorised uniquely as (uv)*u, where u and v are
words, v is non-empty, k is a positive integer and p = |uv|. Second, x
is a prefix of uz for a word u of length p. Third, = is a factor of u¥,
where u is a word of length p and k a positive integer. Fourth, = can be
factorised as uw = wv for three words u, v and w verifying p = |u| = |v].

The last point leads to the notion of border. A border of x is a
proper factor of x that is both a prefix and a suffix of . The border
of z, denoted by Border(z), is its longest border. Thus, ¢, a, aa, and
aabaa are the borders of aabaabaa and Border(aabaabaa) = aabaa.

[2abaabaal

3 |Iaabaa.baa|

6 iaa.baabaa]

7 |a.abaabaa|

8 iaabaabaa|

Borders and periods of x are in one-to-one correspondence due to
the fourth point above: a period p of x is associated with the border
zlp..|z| —1].

Note that, when defined, the border of a border of z is also a border
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of 2. Then (Border(z), Border®(z), ..., Border®(x) = ¢) is the list of all
borders of . The (non-empty) word z is said to be border-free if its
only border is the empty word or equivalently if its only period is |z|.

Lemma 1 (Periodicity lemma)
If p and q are periods of a word x and satisfy p+ q — ged(p, ¢) < |z| then
ged(p, q) is also a period of x.

The proof of the lemma may be found in textbooks (see Notes). The
Weak Periodicity lemma refers to a variant of the lemma in which the
condition is strengthen to p+ ¢ < |z|. Its proof comes readily as follows.

0 i 1+p—gq 1+p
z | [a] [a] [a] |

p q

The conclusion obviously holds when p = q. Else, w.l.o.g. assume
p > q and let us show first that p — ¢ is a period of z. Indeed, let i be a
position on z for which i 4+ p < |z|. Then z[i] = z[i + p] = z[i + p — q]
because p and ¢ are periods. And if i + p > |z| the condition implies
i —q > 0. Then z[i| = z[i — ¢] = z[i + p — ¢] as before. Thus p—q is a
period of z. Iterating the reasoning or using a recurrence as for Euclid’s
algorithm, we conclude that ged(p, q) is a period of z.

To illustrate the Periodicity lemma, let us consider a word z that
admits 5 and 8 as periods. Then, if we assume moreover that x is
composed of at least two distinct letters, ged(5,8) = 1 is not a period
of x. Thus, the condition of the lemma cannot hold, that is, |z| <
548 —ged(5,8) = 12.

[ablabalababalababal

abaababaaba

[babalabaalbabaabalal

The extreme situation is displayed in the picture and shows (when gen-
eralised) that the condition required on periods in the statement of the
Periodicity lemma cannot be weakened.

Regularities

The powers of a word = are defined by 2° = ¢ and 2* = 2!z for a
positive integer . The kth power of x is z*. It is a square if k is a
positive even integer and a cube if k is a positive multiple of 3.

The next lemma states a first consequence of the Periodicity lemma.

Lemma 2

For words x and y, xy = yx if and only if x and y are (integer) powers of
the same word. The same conclusion holds when there exist two positive
integers k and ¢ for which z* = y¢.



The proofs of the two parts of the lemma are essentially the same (in
fact the conclusion derives from a more general statement on codes). For
example, if xy = yx, both = and y are borders of the word, then both
|z| and |y| are periods of it and ged(|z|,|y|) as well by the Periodicity
lemma. Since ged(|zl, |y|) divides also |zy|, the conclusion follows. The
converse implication is straightforward.

The non-empty word x is said to be primitive if it is not the power
of any other word. That is to say x is primitive if 2 = u*, for a word u
and a positive integer k, implies £ = 1 and then u = x. For example,
abaab is primitive, while ¢ and bababa = (ba)? are not.

It follows from Lemma 2 that a non-empty word has exactly one
primitive word it is a power of. When z = u* and u is primitive, u
is called the primitive root of x and k is its exponent, denoted by
exp(z). More generally, the exponent of x is the quantity exp(x) =
|z|/per(x), which is not necessarily an integer, and the word is said to
be periodic if its exponent is at least 2.

Note the number of conjugates of a word, the size of its conjugacy
class, is the length of its (primitive) root.

Another consequence of the Periodicity lemma follows.

Lemma 3 (Primitivity lemma, Synchronisation lemma)
A non-empty word x is primitive if and only if it is a factor of its square
only as a prefix and as a suffix, or equivalently if and only if per (z?) = |z|.

[p2bbabalabbabal [abiabablabiabab]

ababab

The picture illustrates the result of the lemma. The word abbaba is
primitive and there are only two occurrences of it in its square. While
ababab is not primitive and has 4 occurrences in its square.

The notion of run or maximal periodicity encompasses several
types of regularities occurring in words. A run in the word x is a maximal
occurrence of a periodic factor. To say it more formally, it is an interval
[i..7] of positions on x for which exp(z[i..j]) > 2 and both z[i — 1..j]
and z[i.. 7+ 1] have periods larger than that of x[i .. j] when they exist.
In this situation, since the occurrence is identified by 7 and j, we also
say abusively that z[i..j] is a run.

Another type of regularity consists in the appearance of reverse fac-
tors or of palindromes in words. The reverse or mirror image of the
word x is the word z® = z[|z| — 1]z[|z| — 2] - - - 2[0]. Associated with this
operation is the notion of palindrome: a word z for which z® = z.

For example, noon and testset are English palindromes. The first
is an even palindrome of the form uu® while the second is an odd palin-
drome of the form uau® with a letter a. Letter a can be replaced by
a short word leading to the notion of gapped palindromes useful when
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related to folding operations like those occurring in sequences of bio-
logical molecules. As another example, integers whose decimal expan-
sion is an even palindrome are multiple of 11, like 1661 = 11 x 151 or
175571 = 11 x 15961.

Ordering

Some algorithms benefit from the existence of an ordering on the alpha-
bet, denoted by <. The ordering induces the lexicographic ordering
or alphabetic ordering on words as follows. It is denoted by < like the
alphabet ordering. For z,y € A*, x <y if and only if, either z is a prefix
of y or x and y can be decomposed as z = uav and y = ubw for words
u, v and w, letters a and b, with a < b. Thus, ababb < abba < abbaab
when considering a < b and more generally the natural ordering on the
alphabet A.

We say that = is strongly less than y, denoted by = < y, when
x < y but x is not a prefix of y. Note that z <« y implies zu < yv for
any words u and v.

Concepts of Lyndon words and of necklaces are built from the
lexicographic ordering.

A Lyndon word z is a primitive word that is the smallest among its
conjugates. Equivalently but not entirely obvious, = is smaller than all
its proper non-empty suffixes, and as such is also called a self~minimal
word. As a consequence, x is border-free. It is known that any non-
empty word w factorises uniquely into zgx; - - - & where z;s are Lyndon
words and zg > x1 > --- > x. For example, the word aababaabaaba
factorises as aabab - aab - aab - a where aabab, aab and a are Lyndon
words.

A necklace or minimal word is a word that is the smallest in its
conjugacy class. It is an (integer) power of a Lyndon word. A Lyndon
word is a necklace but, for example, the word aabaab = aab? is a necklace
without being a Lyndon word.

Remarkable words

Besides Lyndon words, three sets of words have remarkable properties
and are often used in examples. They are Thue-Morse words, Fibonacci
words and de Bruijn words. The first two are prefixes of (one-way) infi-
nite words. Formally an infinite word on the alphabet A is a mapping
from natural numbers to A. Their set is denoted by A.

The notion of (monoid) morphism is central to define some infinite
sets of words or an associate infinite word. A morphism from A* to
itself (or another free monoid) is a mapping h : A* — A* satisfying
h(uv) = h(u)h(v) for all words u and v. Consequently, a morphism is
entirely defined by the images h(a) of letters a € A.



The Thue-Morse word is produced by iterating the Thue-Morse
morphism p from {a,b}* to itself defined by

{u(a) = ab,

wu(b) = ba.

Iterating the morphism from letter a gives the list of Thue-Morse words
p*(a), k > 0, that starts with:

n=p'(a) = a

7 =up'(a) = ab

7o =p?(a) = abba

73 =pu3(a) = abbabaab

T4 = ,u4(a) = abbabaabbaababba

75 = u’(a) = abbabaabbaababbabaababbaabbabaab

and eventually produces its infinite associate:

t= klim 11 (a) = abbabaabbaababbabaababbaabbabaab - - - .
— 00

An equivalent definition of Thue-Morse words is provided by the
following recurrence:

T0 — a
{Tk+1 = 1,7k, for k>0.

where the bar morphism is defined by @ = b and b = a. Note the length
of the kth Thue-Morse word is |73| = 2*.

A direct definition of t is as follows: the letter t[n] is b if the number
of occurrences of digit 1 in the binary representation of n is odd, and is
a otherwise.

The infinite Thue-Morse word is known to contain no overlap (factor
of the form auaua for a letter a and a word u), that is, no factor of
exponent larger than 2. It is said to be overlap-free.

The Fibonacci word is similarly produced by iterating a morphism,
the Fibonacci morphism ¢ from {a,b}* to itself defined by

=2

Iterating the morphism from letter a gives the list of Fibonacci words
#*(a), k > 0, that starts with:

fiby=¢"@a) = a

fiby =¢'(a) = ab

fiby = ?(a) — aba

fiby = ¢3(a) = abaab

fib, = ¢*(a) = abaababa

fiby = ¢°(a) = abaababaabaab

fibg = ¢°(a) = abaababaabaababaababa
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and eventually its infinite associate:

f= klim #*(a) = abaababaabaababaababaabaababaabaab - - - .
—00

An equivalent definition of Fibonacci words comes from the recur-
rence relation:

ﬁbO =a,
.ﬁbl = ab7
fiby g = fibfib,_y, for k> 1.

The sequence of lengths of these words is the sequence of Fibonacci
numbers, that is, |fib,| = Fr12. Recall that Fibonacci numbers are
defined by the recurrence:

F():O,
{Fl = 17
Fyi1 =Fp+ Fy—q, for k > 1.

Among many properties they satisfy:

o gcd(F,, F,—1) =1, forn > 2,

e [}, is the nearest integer of <I>”/\/5, where & = %(1—1—\/5) =1.61803---
is the golden ratio.

The interest in Fibonacci words comes from the combinatorial prop-
erties they satisfy and the large number of repeats they contain. However
the infinite Fibonacci word contains no factor of exponent larger than
®2 +1=3.61803---.

De Bruijn words are defined here on the alphabet A = {a,b} and
are parameterised by a positive integer k. A word x € A7 is a de Bruijn
word of order k if each word of A* occurs exactly once in x. A first
example: ab and ba are the only two de Bruijn words of order 1. A
second example: the word aaababbbaa is a de Bruijn word of order 3
since its eight factors of length 3 are the eight words of A%, that is, aaa,
aab, aba, abb, baa, bab, bba, and bbb.

The existence of a de Bruijn word of order k£ > 2 can be verified with
the help of the de Bruijn automaton defined by:

e states are the words of A1,
e arcs are of the form (av,b,vb) with a,b € A and v € A*~2.

The picture displays the automaton for de
Bruijn words of order 3. Note that exactly

two arcs exit each of the states, one labelled 5 @
by a, the other by b; and that exactly two b

arcs enter each of the states, both labelled by a a |b
the same letter. The graph associated with b
the automaton thus satisfies the Euler con- a

dition: every vertex has an even degree. It follows that there exists an



Eulerian circuit in the graph. Its label is a circular de Bruijn word.
Appending to it its prefix of length k£ — 1 gives an ordinary de Bruijn
word.

It can also be verified that the number of de Bruijn words of order &
is exponential in k.

De Bruijn words can be defined on larger alphabets and are often
used as examples of limit cases because they contain all the factors of a
given length.

Automata

A finite automaton M on the finite alphabet A is composed of a finite
set @ of states, of an initial state qg, of a set T' C @ of terminal states
and of a set FF C @Q x A x Q of labelled edges or arcs corresponding
to state transitions. We denote the automaton M by the quadruplet
(Q,q0, T, F) or sometimes by just (Q, F') when for example qp is implicit
and T = . We say of an arc (p,a,q) that it leaves state p and enters
state g¢; state p is the source of the arc, letter a its label, and state q its
target. A graphic representation of an automaton is displayed below.

The number of arcs outgoing a given state is called the outgoing
degree of the state. The incoming degree of a state is defined in a
dual way. By analogy with graphs, the state ¢ is a successor by the
letter a of the state p when (p,a,q) € F; in the same case, we say that
the pair (a,q) is a labelled successor of state p.

A path of length n in the automaton M = (Q, qo, T, F’) is a sequence
of n consecutive arcs ((po, a0, pp), (P1,a1,01); -+ (Pr—1,an-1,p,_1)) that
satisfies pj, = pr4+1 for £ =0,1,...,n — 2. The label of the path is the
word apay ...an—1, its origin the state pp and its end the state p,_;.
A path in the automaton M is successful if its origin is the initial state
qo and if its end is in T. A word is recognised or accepted by the
automaton if it is the label of a successful path. The language composed
of the words recognised by the automaton M is denoted by Lang(M).

An automaton M = (Q, qo, T, F) is deterministic if for every pair
(p,a) € Q x A there exists at most one state ¢ € Q for which (p,a,q) €
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F. In such a case, it is natural to consider the transition function
0:@Q x A = Q of the automaton defined for every arc (p,a,q) € F by
0(p,a) = ¢ and undefined elsewhere. The function ¢ merely extends to
words.

It is known that any language accepted by an automaton is also
accepted by a deterministic automaton and that there is a unique (up
to state naming) minimal deterministic automaton accepting it.

Trie

A trie T on the alphabet A, kind of digital tree, is an automaton whose
paths from the initial state, the root, do not converge. A trie is used
mostly to represent finite sets of words. If no word of the set is a prefix
of another word of the set, words are associated with the leaves of the
trie.

Below is the trie 7 ({aa,aba,abaaa,abab}). States correspond to
prefixes of words in the set. For example, state 3 corresponds to the
prefix of length 2 of both abaaa and abab. Terminal states (doubly-
circled) 2, 4, 6 and 7 correspond to the words in the set.

Suffix structures

Suffix structures that store the suffixes of a word are important data
structures used to produce efficient indexes. Tries can be used as such
but their size can be quadratic. One solution to cope with that is to
compact the trie, resulting in the Suffix tree of the word. It consists
in eliminating non-terminal nodes with only one outgoing edge and in
labelling arcs by factors of the word accordingly. Eliminated nodes are
sometimes called implicit nodes of the Suffix tree and remaining nodes
called explicit nodes.

Below are the trie T (Suff (aabab)) of suffixes of aabab (on the left)
and its Suffix tree ST (aabab) (on the right). To get a complete linear-
size structure, each factor of the word that labels an arc needs to be
represented by a pair of integers like (position, length).
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A second solution to reduce the size of the Suffix trie is to minimise it,
which means to consider the minimal deterministic automaton accepting

the suffixes of the word, its Suffix automaton. Below (left) is S(aabab)
the Suffix automaton of aabab.

It is known that S(x) possesses less than 2|x| states and less than 3|x|
arcs, for a total size O(|z|), i.e. linear in |z|. The Factor automaton F(z)
of the word, minimal deterministic automaton accepting its factors, can
even be smaller because all its states are terminal. Above (right) is the
Factor automaton of aabab in which state 6 of S(aabab) is merged with
state 3.

Suffix array

The Suffix array of a word is also used to produce indexes but pro-
ceeds differently than with trees or automata. It consists primarily in
sorting the suffixes of the word to allow binary search for its factors. To
get actually efficient searches another feature is considered: the longest
common prefixes of successive suffixes in the sorted list.

The information is stored in two arrays SA and LCP. The array
SA is the inverse of the array Rank that gives the rank of each suffix
attached at its starting position.

Below are the tables associated with the example word aababa. Its
sorted list of suffixes is a, aababa, aba, ababa, ba and baba whose start-
ing positions are 5, 0, 3, 1, 4 and 2. This latter list is stored in SA
indexed by suffix ranks.

1 01 2 3 4 5
x[i] a a b a b a
Rank(] 1 3 5 2 40
T 01 2 3 4 5 6 7 8 9 10 11 12
SA[r] 5 0 3 1 4 2
LCP[r] 0113 020010000

The table LCP essentially contains longest common prefixes stored
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as maximal lengths of common prefixes between successive suffixes:
LCP[r] = |lep(z[SA[r — 1]..|z| — 1], z[SA[r] .. |z| — 1])|,

where Icp denotes the longest common prefix between two words. This
gives LCP[0. . 6] for the example. Next values in LCP[7..12] correspond
to the same information for suffixes starting at positions d and f when
the pair (d, f) appears in the binary search. Formally, for such a pair,
the value is stored at position |z| + 14 |(d+ f)/2]. For example, in the
above LCP array the value 1 corresponding to the pair (0,2), maximal
length of prefixes between z[5..5] and z[3..5], is stored at position 8.

The table Rank is used in applications of the Suffix array mainly
other than searching.

Compression

The most powerful compression methods for general texts are based
either on the Ziv-Lempel factorisation of words or on easier techniques
on top of the Burrows-Wheeler transform of words. We give a glimpse
of both.

When processing a word on-line, the goal of Ziv-Lempel compres-
sion scheme is to capture information that has been met before. The
associated factorisation of a word x is uguy - - - ur where u; is the longest
prefix of wu; - --ug that appears before this occurrence in . When it is
empty, the first letter of u; - - - ug, which does not occur in ug - - u;—1, is
chosen. The factor u; is sometimes called abusively the longest previ-
ous factor at position |ug - - u;—1] on x.

For example, the factorisation of the word abaabababaaababb is:
a-b-a-aba-baba-aabab-b.

There are several variations to define the factors of the decompo-
sition, here are a few of them. The factor u; may include the letter
immediately following the occurrence of the longest previous factor at
position |ug - - - u;—1|, which amounts to extend a factor occurring be-
fore. Previous occurrences of factors may be chosen among the factors
Ug, - -+, Uj—1 or among all the factors of ug - --u;—1 (to avoid an overlap
between occurrences) or among all factors occurring before. This results
in a large variety of text compression software based on the method.

When designing word algorithms the factorisation is also used to
reduce some on-line processing by storing what has already been done
on previous occurrences of factors.

The Burrows-Wheeler transform of a word x is a reversible map-
ping that transforms 2 € A* into BW(z) € A*. The effect is mostly to
group together letters having the same context in . The encoding pro-
ceeds as follows. Let us consider the sorted list of rotations (conjugates)
of z. Then BW(z) is the word composed of the last letters of sorted
rotations, referred to as the last column of the corresponding table.
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For the example word banana, rotations are listed below on the left
and their sorted list on the right. Then BW(banana) = nnbaaa.

0 b a n a n a 5 a b a n a n
1 a n a n a b 3 a n a b a n
2 n a n a b a 1 a n a n a b
3 a n a b a n 0 b a n a n a
4 n a b a n a 4 n a b a n a
5 a b a n a n 2 n a n a b a

Two conjugate words have the same image by the mapping. Choosing
the Lyndon word as a representative of the class of a primitive word, the
mapping becomes bijective. To recover the original word x other than a
Lyndon word, it is sufficient to keep the position on BW(z) of the first
letter of z.

The main property of the transformation is that occurrences of a
given letter are in the same relative order in BW(z) and in the sorted
list of all letters. This is used to decode BW(x).

To do it on nnbaaa from the above example, we first sort the letters
getting the word aaabnn. Knowing that the first letter of the initial
word appears at position 2 on nnbaaa we can start the decoding: the
first letter is b followed by letter a at the same position 2 on aaabnn.
This is the third occurrence of a in aaabnn corresponding to its third
occurrence in nnbaaa, which is followed by n, and so on.

The decoding process is similar to following the cycle in the graph
below from the correct letter. Starting from a different letter produces
a conjugate of the initial word.

BW(banana) n

Y
sorted letters a

Writing conventions of algorithms

The style of the algorithmic language used here is relatively close to real
programming languages but at a higher abstraction level. We adopt the
following conventions:

¢ Indentation means the structure of blocks inherent to compound in-
structions.

e Lines of code are numbered in order to be referred to in the text.
e The symbol > introduces a comment.

e The access to a specific attribute of an object is signified by the name
of the attribute followed by the identifier associated with the object
between brackets.

e A variable that represents a given object (table, queue, tree, word,
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automaton) is a pointer to this object.

e The arguments given to procedures or to functions are managed by
the “call by value” rule.

e Variables of procedures and functions are local to them unless other-
wise mentioned.

e The evaluation of boolean expressions is performed from left to right
in a lazy way.

e Instructions of the form (my,ma,...) < (exp1,exps,...) abbreviate
the sequence of assignments m; < exp;, mo < exps, ....

Algorithm TRIE below is an example of how algorithms are written.
It produces the trie of a dictionary X, finite set of words X. It succes-
sively considers each word of X during the for loop of lines 2-10 and
inserts them into the structure letter by letter during execution of the
for loop of lines 4-9. When the latter loop is over, the last considered
state t, ending the path from the initial state and labelled by the current
word, is set as terminal at line 10.

TRIE(X finite set of words)
1 M <+ NEW-AUTOMATON()

2 for each string z € X do
3 t < initial (M)

4 for each letter a of x, sequentially do
5 p < TARGET(t, a)
6 if p = NIL then
7 p < NEW-STATE()
8 Succlt] < Succ[t] U{(a,p)}
9 t<p

10 terminal[t] < TRUE

11 return M

Notes

Basic elements on words introduced in this section follow their presen-
tation in [74]. They can be found in other textbooks on text algo-
rithms, like those by Crochemore and Rytter [96], by Gusfield [134],
by Crochemore and Rytter [98] and by Smyth [228]. The notions are
also introduced in some textbooks dealing with the wider topics of com-
binatorics on words, like those by Lothaire [175, 176, 177], or in the
tutorial by Berstel and Karhumaki [34].
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