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Highlights 

 

• A rigorous dimensional analysis (DA) was performed on bifluid spray properties 

• Two characteristic spray diameters and a polydispersity index were considered 

• Models were established with conventional equation shapes and machine-learning (ML) 

• Spray properties could be accurately modelled through a DA/ML approach 

• Particle Size Distributions could also be predicted using this methodology 

 

Abstract 
 

 This work focuses on the study of sprays generated through a bifluid nozzle and the modelling 

of characteristic spray properties (two characteristic diameters and a polydispersity index) using 

dimensional analysis. Two types of dimensionless models were identified for each spray target 

property from the 75 experimental points considered. The first type used a conventional monomial-

exponential shape equation, and the second applied shape identification through machine-learning. 

Although conventional models of the first type were mostly satisfactory when considering the 

characteristic diameters, they nevertheless showed clear limitations addressed by the machine-

learning identified models. The conventional approach also failed to identify a satisfactory equation 

for the polydispersity index. The machine-learning approach provided an equation identifying this 

index to the main dimensionless parameters governing atomization. This identification provides a 

foundation for proposing a two-parameters dimensionless model that predicts spray particle size 

distribution. The combination of dimensional analysis with machine-learning equation identification 

thus paves the way to physically rigorous and easy-to-use models capable of predicting characteristic 

properties and full distributions. 
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1. Introduction 
 

Atomization remains essential in chemical engineering and is frequently used in many 

domains, functioning as a key step in processes such as, for example, fuel combustion [1] and probiotic 

encapsulation [2]. Atomization corresponds to the disintegration of a liquid in a surrounding gas that 

can be still or in motion. This disintegration occurs through a nozzle and generates a spray. This spray 

can then be used in its dispersed liquid form or transformed (frozen or dried) to obtain the product of 

interest. The dried usage is applied in spray-drying, where atomization is the first step in the formation 

of solid particles (e.g., for milk powder production).  

Among the diversity of nozzles that can be employed, two categories are commonly used in industrial 

applications: pressure nozzles (where the fragmentation results from a kinetic energy dissipation 

inside the slots [3]) and bifluid nozzles (where atomization is air-assisted and comes from the shearing 

occurring at the air-liquid interface [4]). With both types of nozzles, two spray properties are 

particularly interesting in atomization: a characteristic diameter and the size distribution (PSD) of 

generated droplets. While the knowledge of a diameter gives general information about the spray 

quality (coarse or fine spray), the droplet size distribution itself is also of full relevance, especially in 

the case of spray-drying. The spray PSD will indeed directly impact that of the resulting powder 

particles as well as their behavior during drying with an impact on the final powder properties 

(flowability, packing properties, wettability) which are highly dependent on the PSD [5].  The prediction 

of these two spray properties is thus of great interest for the experimenter working with various fluids 

to efficiently pilot the atomization process to the needs. 

Concerning characteristic diameter, “ready-to-use” correlations predicting diameters depending on 

fluid and process parameters flourish in the literature [4,6–9]. While of great interest and use in the 

parameter range in which they are established, these correlations however fail at representing the 

complexity of a size distribution. Generally speaking, when determining a PSD through modeling, 

Population Balance Equations (PBE) are often invoked to predict time-dependent and steady-state 

distributions of the dispersed medium [10,11]. While robust and efficient, PBE requires both kinetic 

information (aggregation/coalescence, rupture kernels) and computational power (especially when 

coupled with CFD) making them difficult to use effectively. Simple correlations capable of estimating a 

PSD, as it is the case for characteristic diameter, could thus be of great interest.  

For such complex phenomena, dimensional analysis is an interesting tool to consider. Dimensional 

analysis is a methodology of prime importance in chemical engineering as it offers both a means to 

semi-empirically model complex phenomena for which full numerical approaches are too complex and 

time-consuming, and a way to qualitatively understand the prevalence of the phenomena at stake. 

Among some of the applications for which this approach is of high relevance, one can mention mass 

transfer in stirred tanks [12], mixing inside a novel mixing device [13], or size prediction when atomizing 

[4,6]. Recent developments in this field also proposed a method to combine design of experiments 

with dimensional analysis to optimize the number of experiments to be performed, with satisfactory 

preliminary results [14].  

This article focuses on bifluid nozzle atomization, and specifically on establishing new correlations 

predicting characteristic diameters for the experimental bifluid setup of this study. These kinds of 

correlations already exist in the literature and use monomial/exponential terms. Unfortunately, they 

often lack precision due to the shape of the equation used. We will thus overcome this obstacle by 

proposing a comprehensive dimensional analysis study combined with a symbolic regression software 

for the identification of the best fitting equation shape. The results of both approaches 
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(monomial/exponential and symbolic regression) will be compared and discussed extensively. A 

methodology to quickly estimate the PSD of a spray depending on the fluid properties and operating 

conditions will then be proposed. This methodology relies on the liquid fragmentation theory proposed 

by Villermaux [15]. This theory leads to a two-parameters mathematical function describing the spray 

size distribution (a characteristic diameter and a polydispersity index). Dimensional analysis will be 

used to predict the parameters of this PSD function. The article concludes by discussing the robustness 

and utility of the PSD prediction. 

 

2. Materials and methods 
 

2.1 Sprayed liquids 
 

Five mixtures of water-glycerol-ethanol were formulated based on the spraying experiments 

performed by Mandato et al. [6] in order to get five model liquids with a large variety of viscosity, 

surface tension and density (Table 1). Glycerol (CAS Number 56-81-5, purity ≥ 97%) was purchased 

from VWR Chemicals (Belgium) and ethanol (CAS number 64-17-5, purity = 96%) from Sigma Aldrich 

(USA). Type II deionized water was also used for the mixtures. 

Glycerol was mainly used in this study to change the dynamic viscosity of the solutions. Ethanol was 

also added in solutions 4 and 5 in order to tune the surface tension while keeping dynamic viscosities 

almost identical to those of solutions 2 and 3. These formulations were also chosen to ensure adequate 

liquid flowrate when pumping and user safety (relative to the spraying of ethanol) when performing 

the experiments. The results obtained with the five solutions were afterwards used to feed the 

dimensionless models proposed and identify the correlations (training data set). The robustness of the 

models was afterwards tested using a 30% w./w. reconstituted skimmed milk solution (validation data 

set). The milk powder used for reconstitution was bought from a local store (Cora, France). Skimmed 

milk is a product of particular relevance for this study, as it exhibits a Newtonian behavior [4] while 

being widely used industrially to produce milk powder with spraying nozzles. 

 

Table 1 : Composition and physical properties at 20°C of the sprayed liquids 

 

Solution 
% Water 
(w./w.) 

% Glycerol 
(w./w.) 

% Ethanol 
(w./w.) 

μ 
 (mPa.s) 

ρ  
(kg.m-3) 

σ  
(mN.m-1) 

1 100 0 0 1.1  998  65.1  

2 20 80 0 58.4  1200.6 59.8 

3 15 85 0 107.0  1202.3  58.6 

4 14.75 75.25 10 55.5  1147.6 35.8 

5 9.9 81.1 9 107.3  1162.2 36.3 

Milk 
 (30% w./w.) 

- - - 18.7 1105 41.9 
 

 

The viscosity, density, and surface tension of the liquids used (Table 1) were estimated as follows. The 

dynamic viscosity and Newtonian behavior of the solutions was experimentally assessed on a Anton 

Paar MCR 301 (Anton Paar, Austria) rheometer by varying the shear rate between 1 and 200 s-1 with a 
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logarithmic ramp of duration 320 s inside a Couette geometry. The measurements were performed at 

a temperature of 20°C (spraying experiments temperature) in triplicate. Liquid density ρl was also 

determined three times by measuring the mass corresponding to 10 mL of solution at 20°C with a scale 

of precision +/- 0.001 g. Ultimately, surface tension σ at equilibrium was measured in triplicate on a 

Teclis tensiometer (Teclis Scientific, France) using the rising drop method. The maximal coefficients of 

variation assessed were respectively 1.4%, 0.16%, and 0.82% for the dynamic viscosity, density, and 

surface tension measurements. 

 

2.2 Spraying set-up and process conditions explored 
 

2.2.1  Bifluid nozzle and related geometrical parameters 
 

The nozzle used for the experiments was a co-current bifluid nozzle with external mixing 

(Minor Mobile bifluid nozzle, GEA, Germany), as presented in Figure 1. Characteristic diameters of the 

nozzle (dl, da,int, da,ext) were measured using the software Image J on nozzle cap snapshots taken with 

an optical microscope. These measurements were done three times, and the average measured values 

are reported in Table 2. 

 

 
Figure 1: Bifluid nozzle used with the pilot set-up 

 

Table 2: Nozzle geometric parameters value with coefficient of variation over 3 measurements 

 

 dl da,int da,ext 

Value (mm) 1.06 3.62 4.97 

Var coef. (%) 0.55 0.69 0.12 
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2.2.2  Pilot set-up and process operating conditions 
 

The pilot-scale set-up used for the experiments is detailed in Figure 2: Spraying and image 

acquisition set-up. The sprayed solutions were firstly mechanically stirred inside a double-jacketed 

tank of volume V = 5 L thermally regulated at T = 20°C. The liquid flowrate inside the nozzle was set by 

a peristaltic pump (Masterflex L/S -EasyLoad head pump, Cole-Parmer, USA), and the mass liquid 

flowrate was calculated using a scale recording the mass variation through time when spraying. Air 

volumetric flowrate was imposed with a manual gas flowmeter (FR4500 Gas flowmeter, Key 

Instruments, USA) and air properties (temperature and humidity) were systematically controlled 

before spraying. The corresponding air density value used for the calculation was ρa = 1.204 kg.m-3. 

A vacuum system was also set up to avoid as much as possible spray visualization issues (mist 

accumulation inside the experiment room, droplet deposal on the camera, spurious recirculation of 

drops in the camera field of observation). Tests were performed before the experimental campaign 

and showed that this system does not disturbs the liquid flow at the measurement position. 

 

 

Table 3 summarizes the process conditions explored for each of the six solutions during the 

experimental campaign. Three air flow rates were investigated per solution, and five liquid flowrates 

were swept per air flowrate considered. In total, 15 experimental points per fluid were thus obtained, 

leading to 75 experimental points for the training data set and 15 for the validation data set 

(reconstituted skimmed milk). The maximal flowrate achievable with a peristaltic pump is highly 

influenced by the liquid dynamic viscosity. For the solutions with the highest viscosity (solutions 3 and 

5), the mass flowrate range explored was thus of a lesser magnitude than for the other four solutions. 

 
 

 

 
Figure 2: Spraying and image acquisition set-up 
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Table 3: Air and sprayed liquid flowrate values chosen for atomization experiments (20°C) 

 
 
 
 
 
 
 
 
 
 
 
 

Solution 
Liquid mass flowrates  

(g.min-1) 
Air volumetric flowrates  

(L.min-1) 

1 50; 90; 130; 170; 210 90; 110; 130 

2 50; 90; 130; 170; 210 90; 110; 130 

3 50; 70; 90; 110; 130 90; 110; 130 

4 50; 90; 130; 170; 210 90; 110; 130 

5 50; 70; 90; 110; 130 90; 110; 130 

Milk (30% w./w.) 50; 90; 130; 170; 210 90; 110; 130 

 

2.3 Image acquisition and exploitation 
 

2.3.1 Image acquisition 
 

Images of the sprayed droplets were recorded using a laser image acquisition system designed 

by R&D Vision (R&D Vision, France), allowing to capture images of a maximum resolution 3296*2472 

pixels with a maximal 16 Hz frequency. The acquisition camera (VA-8M, Vieworks, South Korea) is 

synchronized with a pulsed laser of wavelength 640 nm to illuminate the zone to photography. The 

laser and camera were mounted on a metallic frame whose position can be adjusted on the X, Y, and 

Z axes through micromotors (A-LST, Zaber Technologies, Canada), ensuring a precise and reproducible 

camera position.  

The acquisition was performed at a distance L = 15 mm from the nozzle outlet. At this position, steady-

state was experimentally observed after a few seconds. The acquisition was thus triggered after 

spraying for 30 seconds (to ensure steady-state) and made for another 30 seconds.  Approximately 400 

processed images per operating condition were recorded. Figure 3 shows examples of images obtained 

when spraying solution 2 in two operating conditions:  air volumetric flowrate = 90 L.min-1 - liquid mass 

flowrate = 50 g.min-1 (left) and air volumetric flowrate = 90 L.min-1 - liquid mass flowrate = 90 g.min-1 

(right). 
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Figure 3: Example of images acquired during spraying of solution 2. Left: air flowrate = 90 L.min-1, liquid flowrate = 50 
g.min-1; right: air flowrate = 90 L.min-1, liquid flowrate = 90 g.min-1 

 

2.3.2 Data treatment and statistical analysis 
 

Each image obtained was then processed using the software HIRIS 5.1.4 (R&D Vision, France) 

to determine the diameter of each droplet in the observation field. Drops lying outside the depth of 

field (blurred) or appearing superimposed or only partially on the images were automatically 

eliminated using shape and contrast filters. Figure 4 shows an example of the result of image 

processing using HIRIS after selecting the right set of filters. For clarity concerns, only a fraction of the 

treated image is presented in this figure. Among all the particles in the initial picture (on the left), only 

the ones circled in red on the processed image (on the right) were taken into account by the software. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Example of HIRIS image processing 
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The diameter of each droplet considered by image processing was calculated from the measured 

surface area as the equivalent sphere surface diameter. To naturally account for the instantaneous 

acquisition variability in the final values used, we calculated the characteristic diameter and size 

distribution for each single spraying condition by gathering all the particles analyzed on the 400 

images.  

The subsequent calculations and optimizations were performed using the matrix calculation software 

MATLAB (MATLAB 9.4.0.813, MathWorks, USA). We respectively used fminsearch, integer, diff, and 

interp1 functions for least-squares optimization, numerical integration, differential calculation, and 

linear data interpolation. Monomial and exponential relations were linearized applying logarithm, 

allowing coefficient identification from the experimental data through a multiple linear regression 

based on the singular value decomposition method (function fitlm). The calculated coefficients 

significance was assessed through a Student test. The variance analysis was also checked to follow a F 

test. The machine-learning software Eureqa was used to identify relations through symbolic regression 

algorithms. The input variables selected for the symbolic regression were the set of experimental 

dimensionless numbers identified by the dimensional analysis (detailed in 3.2). All basic mathematical 

functions were considered, so as exponential, root-square, logarithm and power functions. 

Trigonometric functions were however not considered because very unlikely to seize the physics at 

stake. Among the relation shapes estimated by the software, we systematically kept the equation with 

the smallest number of coefficients as the increase in complexity in the equations identified by the 

software did not brought significant improvements in terms of fitness quality (R² value), while making 

the equation less easy to use. 

 

3. Dimensional analysis 
 

A correct and comprehensive dimensional analysis must follow some rules to be correctly 

established. The dimensional analysis presented in this study thus strictly follows the steps described 

by Delaplace et al. [16] :  

• Listing of the independent parameters/variables related to the target parameter; 

• Determination of the dimension of each parameter in terms of fundamental dimensions; 

• Application of the Vashy-Buckingham theorem; 

• Construction of the resulting dimensionless numbers; 

• Eventually, reorganization of these numbers to make appear more relevant ones. 

 

3.1 Target variable and related parameters 
 

When it comes to atomization, the main information the experimentalist usually needs to 

estimate is a characteristic diameter of the droplet size distribution. In order to detail the mathematical 

process employed in a generic way, a characteristic droplet diameter dchar is introduced in the 

subsequent sections. This characteristic diameter will be impacted by several parameters and 

variables: 

• Material-related variables (sprayed liquid and air, at 20°C): ρl, ρa, μl, μa, σ; 

• Process-related variables: ul, ua, L; 

• Nozzle geometric parameters: dl, da,int, da,ext; 
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• Physical constants: g. 

Among the process-related variables, L (the distance between the nozzle outlet and the position where 

the droplet size is measured) must be taken into consideration since droplet fragmentation and 

coalescence phenomena may occur in the spray. 

Assuming that the variables and parameters of influence are extensively listed, one can then state the 

existence of the following relation, where f stands for an unknown function (Equation 1): 

𝑑𝑐ℎ𝑎𝑟 = 𝑓(𝜌𝑙 , 𝜌𝑎 , 𝜇𝑙 , 𝜇𝑎 , 𝜎, 𝑢𝑙 , 𝑢𝑎 , 𝐿, 𝑑𝑙 , 𝑑𝑎,𝑖𝑛𝑡, 𝑑𝑎,𝑒𝑥𝑡, 𝑔) Equation 1 

 

This relation will subsequently be simplified by making appear relevant dimensionless numbers and 

removing the constant parameters. 

3.2 From dimensions to relevant dimensionless numbers 
 

The above-mentioned parameters embody three fundamental dimensions: the mass 

dimension M, the length dimension L, and the time dimension T. The corresponding dimensional 

matrix is presented in Table 4. 

Table 4: Dimension matrix D, with central matrix C (dark grey) and Residual matrix R (white) 

 dchar ρl ρa µl σ ul ua dl da,int da,ext µa L 𝒈 

M 0 1 1 1 1 0 0 0 0 0 1 0 0 

L 1 -3 -3 -1 0 1 1 1 1 1 -1 1 1 

T 0 0 0 -1 -2 -1 -1 0 0 0 -1 0 -2 
 

 

The repeated variables used in this study (µa, L, and g in the central matrix) were chosen accordingly 

to Petit et al. [4], which demonstrated the relevance of such a base while studying a similar atomization 

set-up. When applied, the Vashy-Buckingham theorem gives the relation between dimensionless 

numbers presented by Equation 2, where F stands for the mathematical function relating the causal 

dimensionless numbers to the target dimensionless number dchar/L. 

𝑑𝑐ℎ𝑎𝑟
𝐿

= 𝐹 (
𝜌𝑙

𝜇𝑎 . 𝐿
−1.5. 𝑔−0.5

,
𝜌𝑎

𝜇𝑎 . 𝐿
−1.5. 𝑔−0.5

,
𝜇𝑙
𝜇𝑎

,
𝜎

𝜇𝑎 . 𝐿
0.5. 𝑔0.5

,
𝑢𝑙

𝐿0.5. 𝑔0.5
,

𝑢𝑎
𝐿0.5. 𝑔0.5

,
𝑑𝑙
𝐿
,
𝑑𝑎,𝑖𝑛𝑡
𝐿

,
𝑑𝑎,𝑒𝑥𝑡
𝐿

) Equation 2 

 

These initial dimensionless numbers can afterward be rearranged to make appear more intuitive 

dimensionless numbers regarding the phenomena studied. In this case, the aerodynamic Weber 

number We (Equation 3), the Bond number Bo (Equation 4), and the Air-to-Liquid Ratio ALR (Equation 

5) were chosen as of particular relevance when studying atomization: 

𝑊𝑒 =
𝜌𝑙  (𝑢𝑎 − 𝑢𝑙)

2𝑑𝑙
𝜎

 Equation 3 

 

𝐵𝑜 =
(𝜌𝑙 − 𝜌𝑎). 𝑔. 𝑑𝑙

2

𝜎
 Equation 4 

 

𝐴𝐿𝑅 =
�̇�𝑎

�̇�𝑙
=
𝜌𝑎 . (𝑑𝑎,𝑒𝑥𝑡² − 𝑑𝑎,𝑖𝑛𝑡²). 𝑢𝑎

𝜌𝑙 . 𝑑𝑙
2. 𝑢𝑙

 Equation 5 
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At low viscosity, the deformation of a drop inside an air stream is mostly controlled by the aerodynamic 

and surface tension forces. The ratio between these forces leads to the expression introduced in 

Equation 3 (Weber number) that compares process conditions to the physico-chemical properties of 

the liquid sprayed. Due to its nature, the Weber number is naturally used in a lot of studies involving 

droplets. The higher the We value, the more the deforming aerodynamic forces overcome the 

reforming surface tension forces, ultimately leading to smaller droplets [17].  

The Air-to-Liquid Ratio (ALR), also called Gas-to-Liquid Ratio, is defined as the ratio between the air 

and liquid mass flowrates. This dimensionless number is of typical use in the case of bifluid atomization, 

and frequently considered in droplet atomization models as it embodies the influence of the 

atomization process conditions [17,18]. The higher the ALR, the smaller the droplets generated. 

The Bond number Bo is also commonly used when studying bubbles and drops as it allows their shape 

characterization. By comparing the gravitational forces to the surface tension ones (and thus 

measuring the influence of surface tension independently of the process conditions, unlike We), this 

number also gives an indication of the influence of the surface tension on the flow studied [19].  

Extensive details of the mathematical operations leading to Equation 2 can be found in a previous 

article [3], and the extensive number reorganization giving birth to We, Bo, and ALR is detailed in the 

work of Petit et al. [4]. The work presented in this article focuses on a single nozzle geometry. The 

dimensionless numbers 
𝑑𝑙

𝐿
,
𝑑𝑎,𝑖𝑛𝑡

𝐿
,
𝑑𝑎,𝑒𝑥𝑡

𝐿
 are thus constant. Also, 

𝜌𝑎

𝜇𝑎.𝐿
−1.5.𝑔−0.5

 is constant as we did not 

consider any variation in the air properties and position of the observation zone. The relation between 

the ten dimensionless parameters introduced in Equation 2 thus simplifies to the relation between six 

parameters depicted in Equation 6: 

𝑑𝑐ℎ𝑎𝑟
𝐿

= 𝐹′(𝐵𝑜,
𝜇𝑙
𝜇𝑎

, 𝐴𝐿𝑅,𝑊𝑒,
𝜌𝑙
𝜌𝑎
) Equation 6 

 

3.3 Shape of the process relation and range of the numbers considered 
 

When established, the dimensionless numbers are related through the Vashy-Buckingham 

theorem. However, the theorem does not state the shape of the relation between the parameters. 

When this relation is not known, a monomial function (that minimizes the number of constants to 

identify) is usually considered [20]. This equation shape is widely found in chemical engineering studies 

(as for example, when studying foaming ability of surfactants in a mechanical stirrer [20], axial 

dispersion in a rotary kiln [21]…). Sometimes, a combination of monomial and exponential terms can 

also be found in the literature [6]. When it comes to atomization, the dimensional analysis models 

proposed by Mandato et al. [6] and Petit et al. [4] are among the most comprehensive that currently 

exists. The authors respectively used monomial-exponential relation and fully monomial relation for 

their models. For this reason, we considered monomial and exponential terms for the conventional 

approach. More specifically, we used monomial terms for all the dimensionless numbers to identify 

characteristic diameters, except for We which influence was found to be better seized by an 

exponential term. For these correlations, coefficient identification was performed through multilinear 

regression after applying logarithm. 

The overall range explored for the established dimensionless number in the conditions of this 

study is presented in Figure , which also indicates the range of validity of the established correlations.  
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Figure 5: Dimensionless number range explored 

 

4. Results 
 

Based on the experimental results of the spraying trials with model solutions and reconstituted 

skimmed milk, different models were identified to characterize the liquid spray. 

Sections 4.1 and 4.2 are dedicated to the identification of the correlation presented in Equation 6 in 

the case of two characteristic diameters of frequent use: the median volumetric diameter dv,50 and the 

average number diameter dn,av. The grey dots in the subsequent figures (75 experimental conditions) 

represent the results obtained with the spraying of water-ethanol-glycerol mixtures (solutions 1 to 5, 

extensively presented in Table 1) under the process conditions introduced in Table 3. The grey dots 

are used to identify the equations proposed. The red dots correspond to the results obtained when 

spraying reconstituted milk (15 points), which are used as model validation points. 

Section 4.3 is dedicated to the prediction of the droplet size distribution. First, in Section 4.3.1, the 

atomization physical ground detailed by Villermaux is introduced. Then, using this theory, sections 

4.3.2 and subsequent discuss a strategy to model a size probability distribution through dimensional 

analysis. 

 

4.1 Median volumetric diameter correlations 
 

The median volumetric diameter dv,50, also called mass median diameter (MMD) can be 

defined as the diameter under which half of the total volume (or mass) of the sample is accumulated. 

A first modelling attempt for this diameter was performed with the 75 results obtained spraying the 

five model solutions (trained data), taking into account all the dimensionless numbers introduced in 

Equation 6. However, the p-value of the coefficient associated to the density ratio 
𝜌𝑙

𝜌𝑎
 turned to be 

higher than 0.05, making this variable statistically insignificant. The narrow density ratio range 

explored here (Figure ) might explain why the model is not able to convey a clear influence of this 

parameter over the results. The same density ratio insignificance was found by Petit et al. [4] with the 
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model established at the smallest distance from the nozzle. The authors explain that at small distances 

from the nozzle, physico-chemistry might not have a significant impact on the atomization process. 

We consequently chose to remove the density ratio from the dimensionless parameters of interest for 

the dv,50 modelling. Coefficient identification on the correlation led to Equation 7,  with corresponding 

adjusted coefficient of correlation R² = 0.85 and root-mean-square error RMSE = 0.0009: 

 
𝑑𝑣,50

𝐿
= 0.001 ∗ (𝐵𝑜)0.98 ∗ (

𝜇𝐿

𝜇𝐴
)
0.14

.(𝐴𝐿𝑅)−0.52. 𝑒−5.3∗10
−4.𝑊𝑒 Equation 7 

 

The adjustment between the experimental data and the estimated values are graphically represented 

on Figure 6, with dashed lines corresponding to the +- 20% relative error interval. The magnitude of 

the coefficient associated to each dimensionless number gives some essential guidance about the 

phenomena’ prevalence in this process. Process related numbers (ALR and We, including the air and 

liquid velocities) have a significant impact on the diameter calculation: the higher these velocities-

related numbers, the lower the droplet diameter. This result is expected, considering that the main 

rupture driving force in this type of nozzle is the liquid shearing through the air flow. Nevertheless, it 

is surprising to see that the fluid-related numbers (viscosity ratio for the liquid viscosity and Bond 

number for the surface tension) have such a high impact on the diameter, particularly the Bond 

number. Two reasons for this high impact can be invoked. The first reason is related to the distance L 

considered in this study, relatively close to the nozzle outlet (15 mm). At this distance and depending 

on the conditions, the liquid ligaments might not be fully sheared. In that case, it would not be 

surprising that liquid physico-chemical properties would still have a significant impact on the average 

droplet size. The second possibility is linked to the air volumetric flowrate values chosen. The lowest 

air flowrate value selected for the experiments (90 L.h-1) is slightly under the working 

recommendations of the nozzle provider. For this flowrate, results that are not fully process-driven 

might appear, explaining the high impact of the liquid physico-chemistry (through Bo) predicted by the 

model on dv,50. 

Considering the range of conditions studied, the model fitness is rather satisfactory, as it reasonably 

predicts the diameters over the whole range of conditions considered (52 over 75 points predicted in 

the 20% relative error range). However, the predicted value for diameters in the range 40-60 µm is 

almost systematically higher than the experimental value. This deviation indicates that the 

mathematical equation of the model cannot perfectly account for cases in which the resulting diameter 

is intermediate in size. The milk validation points (red dots) confirm this hypothesis: the quality of the 

prediction for these experiments is similar to model solutions in this diameter range. The model 

depicted by Equation 7 also underpredicts the dv,50 values over 100 µm when spraying milk, failing at 

seizing the complexity of interactions at stake for these operating conditions. The validation data set 

thus clearly reveals the limits of the model. 
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 Figure 6: Calculated vs. experimental dv,50 for the conventional model  

 

The generation of a spray comes with three phenomena whose prevalence is highly dependent on the 

distance from the nozzle outlet. Following ligament formation, fine droplets are stripped from these 

ligaments, which then establishes coalescence/rupture equilibrium. Petit et al. [4] found that the 

higher the distance from the nozzle, the higher the impact of the physico-chemistry due to the 

contribution of coalescence to PSD. Whereas Petit et al. studied atomization at distances from the 

nozzle outlet of 5 and 14 cm, the data in this study was recorded closer to the nozzle outlet (1.5 cm). 

An unexpected consequence of this shorter distance is that our models consequently place significant 

importance on physico-chemistry. Our results thus prove that bifluid atomization is highly sensitive to 

the distance from the nozzle outlet, and researchers should take high precaution before applying a 

correlation from the literature in order to ensure reliable results. 

Although the model introduced in Equation 7 is generally satisfactory, it nevertheless has some 

apparent flaws. One of the most problematic flaws involves how the model overestimates sizes from 

the validation data set between 40-60 µm and underestimates them over 100 µm. Resolving this issue 

required identifiying a new model using the software Eureqa (accordingly to the procedure mentioned 

in 2.3.1). Among the equations proposed by the software, we chose the one offering the best fitting 

result while keeping the number of identified constants as low as possible for practical ease of use. 

Equation 8 introduces the identified equation, and Figure 7: Calculated vs. experimental dv,50 for the 

model identified with symbolic regression represents the accordance between experimental data and 

modelled diameters. 
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𝑑𝑣,50
𝐿

= 0.0002 ∗ 𝐴𝐿𝑅 + 2.5 ∗ 10−7.
𝜇𝐿
𝜇𝐴

+
24.7 ∗ 𝐵𝑜 − 2.88

0.013.
𝜇𝐿
𝜇𝐴

+𝑊𝑒 ∗ 𝐴𝐿𝑅
 Equation 8 

 

 

 
Figure 7: Calculated vs. experimental dv,50 for the model identified with symbolic regression 

 

The coefficient of correlation R² and the root-mean squared error RMSE calculated for this model are 

respectively R² = 0.92 and RMSE = 0.0006. 58 over 75 points for the training data are within the 20% 

relative error range. This new correlation thus clearly improves the overall quality prediction (higher 

R²). The prediction deviations observed for the lower range of sizes are still present but dampened. 

The largest particles of the validation data set, which are poorly predicted with Equation 7, are now 

almost perfectly calculated by the model developed with the Equation 8. 

As was the case in Equation 7, the density ratio remains insignificant in this model. This redundancy 

gives confidence to the notion that such insignificance is due to physical and experimental concerns 

and not related to the shape of the relation. The model depicted by Equation 8 displays complex 

physio-chemical and process operating parameters interactions. The influence of the Bo number 

(gravitational forces to surface tension ones) and We number (aerodynamic forces to surface tension 

forces) should probably not be considered independently. These models also should include the 

viscous forces influence to offer a satisfactory prediction in a large range of diameters. The equation 

shape identified by the machine-learning approach offers an interesting representation of how 

physical properties can interact when spraying a fluid. 
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4.2 Average number diameter correlations 
 

Under some conditions, estimating the average number diameter can also be of great interest. 

This diameter is usually introduced as the ratio between the moments of order 1 and 0 of the number 

PSD. Equation 9 presents the monomial/exponential correlation identified from our experimental 

results with MATLAB for dn,av. 

𝑑𝑛,𝑎𝑣
𝐿

= 2 ∗ 10−9 ∗ (𝐵𝑜)0.48 ∗ (
𝜌𝐿
𝜌𝐴
)
2.11

∗ (𝐴𝐿𝑅)−0.08 ∗ 𝑒−9.8∗10
−5∗𝑊𝑒 Equation 9 

 

All the dimensionless numbers were found to be statistically significant (p-values > 0.05), with the 

exception of the viscosity ratio 
𝜇𝐿

𝜇𝐴
. Equation 9 was thus obtained after removing the viscosity ratio for 

the identification. The adjusted coefficient of correlation R² and the root mean square error RMSE for 

this modelling were respectively R² = 0.92 and RMSE = 0.00011. The adequacy between the 

experimental and model values is presented in Figure , and milk points are plotted with red dots. 

 

 
Figure 8: Calculated vs. experimental dn,av  for the conventional model 

 
The adjustment observed in Figure 8: Calculated vs. experimental dn, is excellent, with 74 of the 75 

experimental points predicted within the 20% relative interval and almost all the validation points lying 

within this interval. The validation data also seems correctly predicted, even though a deviation starts 

to be visible on the largest particles. 
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The use of the same monomial modelling structure for dn,av and dv,50 also allows some points of 

comparison between the prevalence of the phenomena at stake by comparing the relative 

contribution of the dimensionless numbers considered to the estimated diameter. The Bo number and 

ALR influences are significantly less pronounced in this correlation, indicating some apparent 

differences with the previous case in the physical phenomena impacting dn,av. 

By choosing the estimation of a characteristic diameter like dn,av (related to a number distribution), the 

interactions between the physico-chemistry of the product and the process seem to be less 

complicated for simple monomial-exponential models to account for. An explanation could be that 

number distributions give significantly less importance to the largest particles than volume 

distributions, where a single large particle can have a massive impact on the distribution (as the volume 

is proportional to the size power three, assuming sphericity). Therefore, largest particles moderately 

impact characteristic diameters in the case number distributions. It would mean that complex physico-

chemistry/process interactions mainly impact the largest particles, explaining the deviation observed 

for the “middle size” particles for dv,50 models. This poor diameter prediction on midrange values could 

indeed be related to the fact that large median volumetric droplets hold significant importance when 

identifying the model, thus impacting the overall prediction quality of median volumetric diameter. 

As we previously did for dv,50, a symbolic regression correlation was also searched for dn,av using the 

software Eureqa considering all the dimensionless numbers established by the dimensional analysis. 

The equation obtained is presented in Equation 10, while the graphical representation of the 

prediction for trained and validation data sets is shown in Figure . 

𝑑𝑛,𝑎𝑣
𝐿

= 0.0046 + 3.9 ∗ 10−5 ∗ 𝐵𝑜 ∗
𝜌𝐿
𝜌𝐴

+
11,4 ∗ 𝐵𝑜3

𝑊𝑒 ∗ 𝐴𝐿𝑅
− 3.5 ∗ 10−6 ∗

𝜌𝐿
𝜌𝐴

− 0.036 ∗ 𝐵𝑜 Equation 10 

 

For this model, R² = 0.93 and the RMSE = 0.00010; 73 points over 75 are predicted in the 20% error 

interval. The software also found the viscosity ratio to be insignificant for the dn,av prediction, as was 

the case with the conventional model.  As seen in Figure , the viscosity ratio interval considered is 

rather large; the magnitude of the values considered is thus unlikely to explain this insignificance, 

which is thus most likely due to the physics of the phenomena involved. The overall quality prediction 

for the trained data is very similar to the one obtained with Equation 9. However, clear differences are 

observed when considering the validation data set: the 20-30 µm points are now almost perfectly 

predicted, while a lesser deviation is observed for the largest particles.  

When observing the shape of the relation proposed by Eureqa, it seems that We is only involved inside 

an interaction term somewhat similar to the one obtained with Equation 8, with Bo on the numerator 

and We*ALR on the denominator. This interesting fact thus gives some leads on how to accurately 

account for the impact of the interactions while modelling an atomization characteristic diameter. 
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Figure 9: Calculated vs. experimental dn,av for the model identified with symbolic regression 

 

Based on the models obtained for dv,50 and dn,av, some general guidelines can be drawn. While the 

simple monomial/exponential relations were satisfactory overall, the ones obtained through a 

machine-learning approach were systematically more accurate while keeping the same number of 

parameters (5 in total) to be adjusted. The comparison between the relations also highlighted that 

depending on the distribution considered (number or volume), the physical phenomena at stake would 

not have the same impact on the final property estimation, probably due to the relative accountancy 

of the largest droplets of the distribution. The formulas proposed by the machine-learning approach 

thus highlighted some way to better seize these complex interactions from a numerical point of view. 

The comparison between the diameters and the methods (conventional and symbolic regression) thus 

offers an interesting way to make atomization modelling more complex while shedding some light on 

the physical interactions at stake. 

 

4.3 Particle Size Distribution modelling 
 

4.3.1 The physics of sprays and jets 

 
Liquid fragmentation is a long-time studied physical phenomenon that continues to fascinate 

engineers and physicists [22–25]. Recent studies of Villermaux et al. [15,23,26] shed light on the 

mechanisms involved during coaxial liquid atomization, and proposed a fragmentation theory known 

as ligament-mediated spray theory. Their theoretical background remains used in recent atomization 

modelling research [22,25]. According to this theory, when sprayed, the liquid bulk undergoes 
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instabilities due to shearing at the liquid/gas interface (Kelvin-Helmholtz type, then Raileigh-Taylor 

when the amplitude of the first waves is large enough). These Rayleigh-Taylor instabilities combined 

with the influence of the air flow generate ligaments (elongated liquid fractions stemming from the 

bulk due to the surface disturbances), which are comprised of elements called blobs. 

Villermaux [15] showed that the distribution of these blobs follows a fragmentation-

coalescence dynamics, which number probability distribution can be described with a Gamma 

distribution such as (Equation 11): 

 

𝑃 (𝑥 =
𝑑

𝑑𝑛,𝑎𝑣
) = ℾ(𝑛, 𝑥) = [

𝑛𝑛

ℾ(𝑛)
] 𝑥𝑛−1𝑒−𝑛𝑥 Equation 11 

 

Where 𝑑𝑛,𝑎𝑣 is the average number diameter of the blob distribution and n is a parameter indicating 

the broadness of the distribution: the lower is n, the broader is the distribution (Figure 10). Villermaux 

successfully fitted this distribution shape to the droplets stripped from the ligaments, validating its 

relevance in the case of bifluid atomization. However, for some atomization conditions, a significant 

ligament population can also appear in the final spray distribution. In that case, the final spray 

distribution is a convolution of the large ligament distribution and small droplets distribution, resulting 

in an exponential tail displaying the same n value as the blob distribution. 

 

 
Figure 10: Gamma distribution for various n values. 

 

 

 

4.3.2 Adequation of the Gamma function to the experimental droplet size 

distributions 
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Two parameters appear in Equation 11: the average number diameter of the distribution 𝑑𝑛,𝑎𝑣 

and the polydispersity index n. 𝑑𝑛,𝑎𝑣 is also the ratio between the first-order moment and zero-order 

moment of the distribution, and is thus easy to estimate knowing the diameter of each droplet. After 

estimating 𝑑𝑛,𝑎𝑣, n is adjusted by fitting the numerical integral of the Gamma function to the 

cumulative distribution experimentally obtained through a least-squares optimization. By defining p 

as the number of the droplet considered (sorted by increasing size), ptot as the total number of droplets 

considered and xp as the normalized particle size related to the particle p, the least-squares function 

numerically assessed is described by Equation 12: 

 

𝐿𝑆 = 𝑚𝑖𝑛 [∑(
𝑝

𝑝𝑡𝑜𝑡
−∫ [

𝑛𝑛

ℾ(𝑛)
] 𝑥𝑝

𝑛−1𝑒−𝑛.𝑥𝑝
𝑥𝑝

0

. 𝑑𝑥𝑝)

2𝑝𝑡𝑜𝑡

𝑝=1

] Equation 12 

 

The results obtained for two different experimental conditions (sprayed solution 1) are represented in 

Figure 1. The experimental distributions (dashed lines) were reconstituted from the cumulative 

experimental data by linearly interpolating the results over 1000 equidistant points relatively to size 

(interp1 function), then numerically differentiating the interpolated data (diff function). Modelled 

distributions were obtained by plotting Equation 11 with the value of n optimized through least-

squares function minimization computed by Equation 12. 

 

 

 
Figure 11: Experimental distribution (dashed line) and Gamma function (solid line) for two spraying conditions with 
solution 1 

 

The agreement between the experimental distribution and the theoretical function is good for large n 

values (left graph, n = 13.5). While the peak height is underestimated, the Gamma function accounts 

well for the global shape of the distribution. More precautions should be taken when using the Gamma 

function for small n values, as the function clearly tends to overestimate the probability distribution in 
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the regions near the peak while underestimating its intensity. This result is actually expected, since it 

has been reported elsewhere [22,27]. More precisely, it is mentioned that when the ligament 

distribution is narrowly distributed inside the droplet population (corresponding to large n values), 

Equation 11 is indeed suited to describe the spray distribution. Nevertheless, for cases in which air 

momentum is such as the ligaments exhibits more corrugation, the global size distribution tends to 

turn into an incomplete Gamma function. Also, the shape of the distribution can be considered 

relatively simple (2 fitting parameters) considering the complexity of the physical phenomena involved 

(air shearing, entrainment, coalescence, and rupture). 3-parameters PSD functions are usually more 

efficient in taking into account both the maximal height of the peak and the polydispersity in the case 

of atomization [28]. However, these functions could not be recommended for this study, since the 

primary goal is to provide the experimentalist a quick way to assess a size distribution over an extensive 

range of experimental conditions. A fast estimation of n is interesting to estimate the relevance of 

using the simple two-parameters approach proposed in this study. For small n values, the 

reconstitution of the distribution should be carefully managed, and more complex modelling options 

should be considered. 

 

4.3.3 Determining a correlation for n 

 
 The physical parameters impacting the characteristic diameter will also impact the 

polydispersity index n, which is a dimensionless number. The dimensionless numbers quantifying the 

dimensionless characteristic diameter are thus also relevant for modelling n. A first attempt to identify 

n through a monomial equation was performed, which is shown in Equation 13. 

𝑛 = 𝑎0. (𝐵𝑜)
𝑎1 . (

𝜇𝐿

𝜇𝐴
)
𝑎2

.(𝐴𝐿𝑅)𝑎3 . (𝑊𝑒)𝑎4 . (
𝜌𝐿

𝜌𝐴
)
𝑎5

 Equation 13 

 

After removing the non-significant parameters, the coefficient of correlation between the 

model/experiment and the root mean-squared error were calculated and found to be R² = 0.57 and 

RMSE = 2.09. The monomial form is thus unable to account for the complex interaction parameters at 

stake in the polydispersity of the system, and is not recommended to estimate n.  

 

The use of a machine-learning approach is especially relevant here. The equation obtained with the 

software Eureqa is presented in Equation 14, and the graphical representation of the adequation 

between the experimental results and the model is shown in Figure 32: Calculated vs. experimental n 

for the model identified with symbolic regression2. 

 

𝑛 = 16.4 + 0.012 ∗
𝜇𝐿
𝜇𝐴

+ 0.027 ∗ 𝐵𝑜 ∗𝑊𝑒 −
32.2 ∗ 𝐵𝑜

𝐵𝑜 + 𝐴𝐿𝑅
− 32.87 ∗ 𝐵𝑜 − 1.4 ∗ 10−6 ∗ 𝑊𝑒 ∗

𝜇𝐿
𝜇𝐴

 Equation 14 
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Figure 32: Calculated vs. experimental n for the model identified with symbolic regression 

 

For this correlation, R²=0.87, and the RMSE is of 1.1. 67 of the 75 points of the training data are in the 

20% relative error interval. The obtained model can be considered to be good, as it correctly predicts 

the value of n for the validation data set. The shape of Equation 14 clearly exhibits strong interaction 

terms accounting for the cases in which the polydispersity is not fully process-driven. We can observe 

that the higher the value of the process parameters (mainly air velocity), the higher the value of ALR 

and We number and the higher the value of n, indicating a lesser polydispersity (Bo*We and 
𝐵𝑜

𝐵𝑜+𝐴𝐿𝑅
). 

This influence is however attenuated by the viscous forces, which can be expected to exert some 

resistance to the air shearing, and thus increase the polydispersity (lowering n): the term  𝑊𝑒 ∗
𝜇𝐿

𝜇𝐴
  is 

indeed negative. These interpretations should be carefully considered, as the dimensionless numbers 

do not account for one single effect (as for example, surface tension is also part of the Weber number). 

However, this equation and these interpretations give key parameters governing the phenomena to 

account for when modelling polydispersity and some guidance about the way to simply consider 

complex interactions for atomization. 

 

4.3.4. Particle size distribution prediction 

 

The prediction quality of the PSD modelling was then tested by using the previously established 

models. Firstly, the prediction of n by Equation 14 was used in combination with the Gamma function 

(Equation 12) to predict the normalized number PSD for milk spraying (validation data set). Two results, 

corresponding to calculated n values respectively equal to 13.2 and 18.4 are presented in Figure 43: 

Experimental and predicted Gamma functions for milk3. 
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Figure 43 shows that the quality of the model for the normalized distribution is similar to the one found 

when assessing the relevance of using the Gamma function (Figure ): the overall distribution shape is 

seized by the model, but the main peak intensity is underpredicted. In the case of milk, for high n 

numbers, both the shape of the distribution and the n prediction are thus relevant to have an indication 

about the expected size distribution when atomizing the solution. For low n values (not represented 

here), the same behavior as in Figure  was observed. In these cases, while the value of n is a precious 

indication of polydispersity degree that can be expected, distribution reconstitution should be 

processed with care. 

The real number PSD were also fully reconstructed using the dn,av modelled (Equation 10) inside the 

Gamma function. The results obtained for the same conditions as earlier are plotted in Figure 54. The 

addition of this model does not have a significant impact on the global quality of the model: no 

significant diameter offset of the main mode is indeed observed. For the reconstruction performed, 

the quality of the dn,av and n models obtained with machine-learning is thus satisfactory enough not to 

degrade the Gamma function quality of prediction. While not perfect, this attempt of reconstituting a 

full PSD based on simple correlations shows what can be expected from such relations and gives some 

solid leads for improvement. 

 
Figure 43: Experimental and predicted Gamma functions for milk 



  Page 23 

 
Figure 54: Size distribution prediction for two milk spraying conditions 

 

 

Conclusion 
 

 The modelling of complex physical phenomena often involves high complexity in the applied 

mathematical approach. Atomization is no exception to that, as both process conditions and physico-

chemistry have a significant impact on the shearing, coalescence, and rupture phenomena involved. 

Using a rigorous dimensional analysis methodology, this article explores a way to model characteristic 

diameters related to volume and number distributions in the case of bifluid nozzle atomization. More 

precisely, two models are proposed per diameter: one based on the conventional 

monomial/exponential function shape and the other one obtained identifying a relation between 

relevant dimensionless numbers using a machine-learning software. The models found with the 

symbolic regression approach predict the droplet diameters for the milk validation data set 

systematically better. However, while some clear limitations are visible for the conventional models, 

they can overall be qualified as good. Comparing the models’ terms for the two diameters also allowed 

to see that, depending on the distribution type (volume or number), the phenomena involved do not 

have the same impact on the characteristic diameter, possibly due to the magnitude of the 

contribution of the largest particles. 

A methodology is also proposed to estimate a number PSD, based on the fragmentation theory 

introduced by Villermaux [15]. The identification of a correlation relating the polydispersity index n to 

the process parameters indeed allows, through the use of a Gamma function, to predict number PSD 

for milk spraying. The distribution reconstruction at large n values is overall satisfactory while the PSD 

prediction at low n numbers is more questionable (due to the Gamma function relevance itself more 

than to the models accuracy). However, the value of n in itself contains very interesting information 

about the polydispersity that can be expected, and the need or not to consider a more complex 

modelling. 
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Nomenclature 
 

Bo Bond number (-) 
da,int Internal diameter for air section(m) 
da,ext External diameter for air section (m) 
dchar Characteristic droplet diameter (m) 
dl Internal diameter for liquid section (m) 
dn,av Average number diameter (m) 
dv,50 Median volumetric diameter (m) 
f Process function (with dimensions) (-) 
F Dimensionless process function (-) 
L Distance of the observation zone to the nozzle outlet (m) 
�̇� Mass flowrate (kg.m-3) 
n Probability distribution parameter (-) 
p Droplet number (-) 
ptot Total droplet numbers for a sprayed condition (-) 
u Average velocity (m.s-1) 
V Tank volume (m3) 
We Weber number (-) 
x 
 

Greek letters 
 

Normalized droplet size (-) 

ξ Ligament thickness before breakup (m) 
µ      Dynamic viscosity (Pa.s) 
σ Surface tension (N.m-1) 
ρ   Density (kg.m-3) 

 

 Abbreviations 

ALR Air-to-Liquid Ratio (-) 
DA Dimensional Analysis 
LS Least-Squares function (-) 
ML Machine-learning 
MMD Mass Median Diameter (m) 
PSD    Particle Size Distribution  
RMSE Root-Mean-Square Error (-) 
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