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ABSTRACT

Context. The most successful scenario for the origin of astrophysical jets requires a large-scale magnetic field anchored in a rotating
object (black hole or star) and/or its surrounding accretion disk. Platform jet simulations, where the mass load onto the magnetic field
is not computed by solving the vertical equilibrium of the disk but is imposed as a boundary condition, are very useful for probing
the jet acceleration and collimation mechanisms. The drawback of such simulations is the very large parameter space: despite many
previous attempts, it is very difficult to determine the generic results that can be derived from them.
Aims. We wish to establish a firm link between jet simulations and analytical studies of magnetically driven steady-state jets from
Keplerian accretion disks. In particular, the latter have predicted the existence of recollimation shocks – due to the dominant hoop
stress –, which have so far never been observed in platform simulations.
Methods. We performed a set of axisymmetric magnetohydrodynamics (MHD) simulations of nonrelativistic jets using the PLUTO
code. The simulations are designed to reproduce the boundary conditions generally expected in analytical studies. We vary two
parameters: the magnetic flux radial exponent α and the jet mass load κ. In order to reach the huge unprecedented spatial scales
implied by the analytical solutions, we used a new method allowing us to boost the temporal evolution.
Results. We confirm the existence of standing recollimation shocks at large distances. As in self-similar studies, their altitude evolves
with the mass load κ. The shocks are weak and correspond to oblique shocks in a moderately high, fast magnetosonic flow. The jet
emitted from the disk is focused toward the inner axial spine, which is the outflow connected to the central object. The presence of
this spine is shown to have a strong influence on jet asymptotics. We also argue that steady-state solutions with α ≥ 1 are numerically
out of range.
Conclusions. Internal recollimation shocks may produce observable features such as standing knots of enhanced emission and a
decrease in the flow rotation rate. However, more realistic simulations (e.g. fully three-dimensional) must be carried out in order to
investigate nonaxisymmetric instabilities and with ejection only from a finite zone in the disk, so as to to verify whether these MHD
recollimation shocks and their properties are maintained.
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1. Introduction

Astrophysical jets are commonly observed in most, if not all,
types of accreting sources. They are emitted from young stellar
objects (YSOs; Bally et al. 2007; Ray et al. 2007; Ray & Ferreira
2021), active galactic nuclei (AGNs) and quasars (Boccardi et al.
2017), close interacting binary systems (Fender & Gallo 2014;
Tudor et al. 2017), and even post-AGB stars (Bollen et al. 2017).
Despite the different central objects (be it a black hole, a pro-
tostar, a white dwarf, or a neutron star), these jets share several
properties: (i) they are supersonic collimated outflows with small
opening angles, (ii) the asymptotic speeds scale with the escape
speed from the potential well of the central object, and (iii) they
carry away a sizeable fraction of the power released in the accre-
tion disk. As the only common feature shared by all these dif-
ferent astrophysical objects is the existence of an accretion disk,
it is natural to seek a jet model that is related to the disk and
not to the central engine. This universal approach is further con-
sistent with the accretion–ejection correlations observed in these
objects (see e.g., Merloni & Fabian 2003; Corbel et al. 2003;

Gallo et al. 2004; Coriat et al. 2011; Ferreira et al. 2006; Cabrit
2007 and references therein).

Despite these general common trends, astrophysical jets
do show some differences in their collimation properties. For
instance, the core-brightened extragalactic jets, classified as FRI
jets after Fanaroff & Riley (1974), appear conical and show
large-scale wiggles (see e.g., Laing & Bridle 2013, 2014 and
references therein). On the contrary, the edge-brightened FRII
jets appear nearly cylindrical, with a terminal hotspot (Laing
et al. 1994; Boccardi et al. 2017). Most of the jets imaged with
very long baseline interferometry do not appear as continuous
flows, but can be modeled as a sum of discrete features, known
as blobs or knots, usually associated with shocks (Zensus 1997).
Those shocks are assumed to originate either from pressure mis-
matches at the jet boundary with the external medium or from
major changes at the base of the flow (e.g., new plasma ejections
or directional changes), with some of these knots being station-
ary features (e.g., Lister et al. 2009, 2013; Walker et al. 2018;
Doi et al. 2018; Park et al. 2019).
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On the other hand, jets from young forming stars do not
seem to have such a clear FRI/FRII dichotomy and often display
evidence of a conflictual interaction (shocks) with the ambi-
ent cloud medium (Reipurth & Bally 2001). This might be
consistent with the suspicion that the FR dichotomy would only
be a consequence of the jet interaction with its environment, with
low-power jets remaining undisrupted and forming hotspots in
lower mass hosts (Mingo et al. 2019). However, protostellar jets
might also have intrinsic collimation properties different from
those of extragalactic jets, possibly because they are nonrela-
tivistic outflows. This is an open question.

Since the seminal model of Blandford & Payne (1982; here-
after BP82), it is known that a large-scale vertical magnetic field
threading an accretion disk is capable of accelerating the loaded
disk material up to super-fast magnetosonic speeds. This accel-
eration, usually termed magneto-centrifugal, goes along with an
asymptotic collimation of the ejected plasma thanks to the mag-
netic tension associated with the toroidal magnetic field (hoop
stress). In this semi-analytical model, a self-similar ansatz has
been used allowing the full set of stationary ideal magneto-
hydrodynamic (MHD) equations to be solved. Later, this self-
similar jet model was generalized in different ways by altering
the magnetic field distribution (Contopoulos & Lovelace 1994;
Ostriker 1997), thermal effects (Vlahakis et al. 2000; Ceccobello
et al. 2018) and was even extended to the relativistic regime (Li
et al. 1992; Vlahakis & Königl 2003; Polko et al. 2010, 2014).
However, it is unclear whether or not self-similarity affects the
overall jet collimation properties. Not only are both the axis and
the jet-ambient medium region not taken into account, but the
final outcome of the jets (i.e., acceleration efficiency, jet kine-
matics and opening angle, presence of radial oscillations, or even
shocks) may well also be impacted by the imposed geometry.

Using the only class of self-similar jet models smoothly con-
nected to a quasi-Keplerian accretion disk, Ferreira (1997; here-
after F97) showed that these super-fast magnetosonic jets sys-
tematically undergo a refocusing toward the axis (see also Polko
et al. 2010). Such a recollimation is due to the dominant effect
of the internal hoop stress and has nothing to do with a pres-
sure mismatch at the jet–ambient medium interface proposed to
explain knotty features in extragalactic jets (Komissarov & Falle
1998; Perucho & Martí 2007; Perucho 2020). According to F97,
recollimation would be generic to MHD jets anchored over a
large range of Keplerian accretion disks. This is indeed verified
for warm outflows (Casse & Ferreira 2000a) and weak magnetic
fields (Jacquemin-Ide et al. 2019).

While MHD recollimation is also seen in nonself-similar
works (e.g., Pelletier & Pudritz 1992), other strong assumptions
are usually made, leaving the question of the jet asymptotics
open. Heyvaerts & Norman (1989) used another approach based
on the electric poloidal current (or Poynting flux) still present
at infinity. These authors showed that any stationary axisym-
metric magnetized jet will collimate at large distances from the
source to paraboloids or cylinders, depending on whether or not
the asymptotic electric current vanishes. This important theorem
was later generalized (Heyvaerts & Norman 2003a) by taking
into account the issue of current closure and its effect on the
geometry of the solution (Okamoto 2001, 2003). However, the
theorem only addresses the asymptotic electric current, and it is
unclear how much of this current is actually left as no simple
connection with the source can be made.

Connecting the asymptotic electric current to the source is
naturally done with time-dependent MHD simulations. Those
reaching the largest spatial scales treat the accretion disk as
a boundary condition, allowing the jet dynamics to be studied
independently of the disk (Ustyugova et al. 1995, 1999; Ouyed

& Pudritz 1997a,b, 1999; Krasnopolsky et al. 1999, 2003; Ouyed
et al. 2003; Anderson et al. 2005, 2006; Fendt 2006; Pudritz
et al. 2006; Porth & Fendt 2010; Porth & Komissarov 2015; Staff
et al. 2010, 2015; Stute et al. 2014; Barniol Duran et al. 2017;
Tesileanu et al. 2014; Tchekhovskoy & Bromberg 2016; Ramsey
& Clarke 2019). The drawback of these platform jet simulations
is their huge degree of freedom, which is attributable to the fact
that several distributions must be specified at the lower injection
boundary. It has thereforebeenverydifficult todetermine theexact
generic results on jet collimation that can be derived from them.

In summary, despite many theoretical and numerical stud-
ies, no connection has been firmly established between the
jet-launching conditions and the jet-collimation properties at
observable scales. This work is the first of a series designed to
bridge this gap. Our approach here is to assess whether the gen-
eral results obtained within the self-similar framework still hold
in full 2D time-dependent simulations. We will address in par-
ticular whether the existence of recollimation shocks is indeed
unavoidable for the physical conditions expected in Keplerian
accretion disks, as proposed by F97.

As a consequence of this approach, we focus only on steady-
state jets, allowing us to directly confront our simulations with
MHD jet theory. It is clear that most if not all astrophysical
jets exhibit time-dependant features; see for example Cheung
et al. (2007) for M87 or Bally et al. (2007) for young stars.
However, our goal is not to reproduce a specific astrophysical jet,
but instead to deduce the generic behaviors of MHD jets emitted
from Keplerian accretion disks.

The paper is organized as follows. Section 2 describes our
numerical setup and boundary conditions, which mimic an axial
spine (related to the central object) surrounded by a self-similar
cold jet. As analytical studies require huge spatial and temporal
scales, a special temporal numerical scheme has been designed.
Our reference simulation, which corresponds to a typical BP82
jet, is described in length in Sect. 3. We show that recollima-
tion shocks are indeed obtained in agreement with the analytical
theory. This is the first time that such shocks are obtained self-
consistently, showing that these are not artificial biases due to the
mathematical ansatz used, but consequences of the jet-launching
conditions. A parametric study is presented in Sect. 4, where
we vary the magnetic flux exponent α and the jet mass load κ,
confirming the striking qualitative correspondance between our
numerical simulations and analytical solutions. In particular, we
show that the asymptotic jet collimation depends mostly on the
exponent α. However, the existence of an axial spine introduces
quantitative differences hinting at a possible role of the central
object in affecting the collimation properties of the jets emitted
by the surrounding disk. Our results are finally confronted to the
wealth of previous 2D numerical simulations in Sect. 5 and we
conclude in Sect. 6.

2. MHD simulations of jets from Keplerian disks

2.1. Physical framework and governing equations

We intend to study the collimation properties of magnetically
driven jets emitted from Keplerian accretion disks, as depicted
in Fig. 1. The disk is settled from an inner radius Rd to an outer
radius Rext = 5650.4Rd and is assumed to be orbiting around a
central object of mass M located at the center of our coordinate
system. The disk itself is not computed and we assume that it
behaves like a JED, with consistent prescribed boundary condi-
tions. As we use a spherical grid, the central object as well as
its interaction with the disk are assumed to occur inside a sphere
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Fig. 1. Sketch of our computational domain. The central object and its
interaction with the innermost disk are located below the inner boundary
at Rd (green region), the near-Keplerian jet-emitting disk (JED) being
established from Rd to the end of the domain Rext. An axial outflow (the
spine) is emitted from the central regions (in red) and the jet is emitted
from the JED (in blue). The solid purple line represents a recollima-
tion shock surface starting on the axis at a height Zc. For each point N
lying on this surface, we use local poloidal unit vectors (e⊥, e‖), respec-
tively perpendicular and parallel to the shock surface. Also, at any point
M inside the domain, we either use spherical (eR,eθ,eφ) or cylindrical
(er,eφ,ez) coordinates.

of radius Rd (the green zone in Fig. 1). This sphere defines the
inner boundary discussed below.

We further assume that a large-scale magnetic field is thread-
ing both the disk and the central object. The existence of this
field allows the production of two outflows, one from the disk
(blue region in Fig. 1) and one from the central spherical region
(red region in Fig. 1). Hereafter, we always refer to the disk-
emitted outflow as the “jet”, and to the outflow emitted from the
spherical region (green zone in Fig. 1) as the “spine”. As our
goal is to focus on the dynamics of the jet itself, we try to limit
the influence of the spine as much as possible.

Two systems of coordinates centered on the mass M are used,
spherical (R, θ, φ) and cylindrical (r, φ, z). Both the spine and the
jet are assumed to be in ideal MHD and we numerically solve the
usual set of MHD equations. This includes mass conservation
∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

where ρ is the density and u the flow velocity, and the momentum
equation is

∂ρu
∂t

+ ∇ ·

[
ρuu +

(
P +

B · B
2µo

)
−

BB
µo

]
= −ρ∇ΦG, (2)

where P is the thermal pressure, B the magnetic field, and ΦG =
−GM/R the gravitational potential due to the central mass.

The evolution of the magnetic field is determined by the
induction equation,
∂B
∂t

+ ∇ × (B × u) = 0. (3)

As we focus on highly supersonic flows, we decided to derive the
pressure P and internal energy by solving the entropy equation,
∂ρS
∂t

+ ∇ · (ρS u) = 0, (4)

where S = P/ρΓ is the specific entropy and Γ = 1.25 is the
polytropic index (the same for all our simulations). This simple
advection equation guarantees that the pressure does not assume
nonphysical (e.g., negative) values. But on the other hand, it does
fail to provide the correct entropy jump in the shocks. However,
as long as the thermal energy of the flow remains negligible com-
pared to the kinetic and magnetic energy, this should not present
a problem.

Thanks to axisymmetry, the poloidal magnetic field can be
computed using the magnetic flux function Ψ (which corre-
sponds to R sin θ Aφ, where A is the vector potential),

BR =
1

R2 sin θ
∂Ψ

∂θ
Bθ = −

1
R sin θ

∂Ψ

∂R
, (5)

which already verifies∇·B = 0. An axisymmetric magnetized jet
can therefore be seen as a bunch of poloidal magnetic surfaces
defined by Ψ(R, θ) = constant, nested around each other and
anchored on the disk for the jet and in the central object for the
spine.

In steady state, Eqs. (1) to (4) lead to the existence of the
following five MHD invariants, namely quantities that remain
constant along each magnetic surface (Weber & Davis 1967):

– the mass flux to magnetic flux ratio η(Ψ) = µoρup/Bp,
– the rotation rate of the magnetic surface Ω∗(Ψ) = Ω −
ηBφ/(µ0ρr),

– the total specific angular momentum carried away by that
surface L(Ψ) = Ωr2 − rBφ/η,

– the Bernoulli invariant E(Ψ) = u2

2 + H + ΦG −Ω∗rBφ/η,
– the specific entropy S (Ψ) = P/ρΓ,

where Ω = uφ/r and H = Γ
Γ−1

P
ρ

is the specific enthalpy. We make
use of these relations when designing boundary conditions.

2.2. Numerical setup

We solve the above set of equations using the MHD code
PLUTO1 (Mignone et al. 2007). We configured PLUTO to use a
second-order linear spatial reconstruction with a monotonized-
centered limiter on all the variables. This method provides
the steeper linear reconstruction compatible with the stability
requirements of the scheme. A flatter and more diffusive lin-
ear reconstruction is employed in a few cells around the rotation
axis to dampen numerical spurious effects that typically appear
in these zones due to the discretization of the equations around
the geometrical singularity of the axis. The HLLD Riemann
solver of Miyoshi & Kusano (2005) is employed to compute the
intercell fluxes. This solver is one of the best suited to properly
capture Alfvén waves, a crucial element in properly modeling
trans-Alfvénic flows. So as to match the order of the spatial
reconstruction, we chose a second-order Runge-Kutta scheme to
advance the equations in time. The ∇·B = 0 condition is ensured
by employing a constrained transport (CT) scheme, enforcing
that constraint at machine accuracy.

The two-dimensional computational domain is discretized
using spherical coordinates (R, θ) assuming axisymmetry around
the rotation axis of the disk. The domain encompasses a spheri-
cal sector going from the polar axis (θ = 0) to the surface of the
disk that is assumed to be θ = π/2 for simplicity, and is resolved
with Nθ = 266 points in the θ direction. The cell size in the θ
direction is mostly uniform, but decreases on a few cells near
the axis. This is essential to our setup, as the expected collima-
tion shocks are formed near the axis: an overly low resolution in

1 PLUTO is freely available at http://plutocode.ph.unito.it
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this zone would prevent their formation. In the radial direction,
the grid goes from Rd to Rext = 5650.4Rd with NR = 1408 points
in a logarithmic spacing (∆R ∝ R) so as to make sure the cells
remain approximately square (∆R ≈ R∆θ) far from the axis.

We choose such a huge numerical domain because our goal is
to capture the recollimation shocks predicted in the self-similar
solutions of F97. According to their Fig. 6, those shocks may
occur at altitudes spanning from several hundred to a thousand
times the jet launching radius. Our spherical grid with a ratio
of 5650.4 therefore provides a suitable range to observe such
shocks. The drawback of these huge spatial scales is of course
the terrible contrast in timescales. The Keplerian time scaling in
r3/2 means that in order to compute a full orbit at the outer disk
edge, the inner one should have completed over 4 × 105 orbits.
This would be barely affordable if we were to use a standard evo-
lutionary scheme. In order to achieve such long timescales, we
designed a specific method that accelerates the numerical inte-
gration using larger and larger time steps to evolve the equations
as the solution starts to converge towards a steady-state. This
method is very successful and allowed us to significantly boost
the evolution of our jets (see Appendix A).

2.3. Initial conditions

Our initial magnetic field is assumed to be potential, which leads
to a second-order partial differential equation on Ψ(R, θ). In order
to represent suitable self-similar solutions, we solve this equa-
tion by assuming

Ψ = Ψd(R/Rd)αΦ(θ) , (6)

where the function Φ (θ) has been determined assuming that the
initial field is potential, that is, current-free and force-free (Jφ =
0).

The exponent α is a free parameter of the model leading to
BR ∝ Bθ ∝ Rα−2. For α = 0, field lines are conical, for α = 1 they
are parabolic, and α = 2 describes a constant (straight) vertical
field. The seminal BP82 solution is for α = 3/4.

As the magnetic field is potential, no magnetic force is
initially imposed on the plasma. It is therefore assumed to
be in spherically symmetric hydrostatic equilibrium (u = 0)
with dP/dR = −ρGM/R2. We choose the following trivial
solution:

ρ = ρa

(
R
Rd

)2α−3

P =
1

4 − 2α
ρaGM

Rd

(
R
Rd

)2α−4

.

(7)

The sound speed Cs is defined as C2
s = ∂P/∂ρ = ΓP/ρ. In the

following, ρa refers to the density at the axis immediately above
the central sphere.

2.4. Boundary conditions

Boundary conditions must be imposed at the polar axis (θ = 0, R
from Rd to Rext), at the outer frontier (R = Rext, θ from 0 to π/2),
at the JED surface (θ = π/2, R from Rd to Rext), and at the spine
boundary (R = Rd, θ from 0 to π/2). On the polar axis, usual
proper reflecting boundary conditions are imposed on all quan-
tities. The special treatment done for the other three boundaries
is described, especially for the JED and spine boundaries where
mass is being injected.

2.4.1. Outer boundary (R = Rext)

“Outflow” conditions are imposed at the outer frontier: for ρ, P,
BR, Bθ, RBφ, uR, uθ and uφ, the gradient along the radial direction
is conserved, and we use the Van Leer slope limiter to avoid spu-
rious oscillations. Additionally, we enforce a positive toroidal
Lorentz force on the subalfvénic part of this boundary.

2.4.2. Jet generation: the jet-emitting disk (θ = π/2)

We need to specify eight quantities (ρ,u, B, P) that must be rep-
resentative of the fields expected at the surface of a JED. As
the lifted material gets accelerated along a field line, its poloidal
velocity will become larger than the slow magnetosonic Vsm,
poloidal Alfvén VAp, and fast magnetosonic Vfm phase speeds.
Crossing each of these critical speeds defines a regularity con-
dition that determines one quantity at the jet basis, therefore
leaving five free functions to be specified. However, we wish
to control the mass loss from the JED, which requires that the
injected outflow be already super-slow magnetosonic (hereafter
super-SM). We therefore have to impose six functions at the JED
boundary, leaving two free to adjust over time, Bφ and BR, the
latter controlling the magnetic field bending.

Our choice of boundary conditions at θ = π/2 (so that R = r)
is therefore as follows:

ρ = ρd

(
R
Rd

)2α−3

P = ρd
C2

sd

Γ

(
R
Rd

)2α−4

Bθ = −Bd

(
R
Rd

)α−2

uθ = −ud

(
R
Rd

)−1/2

uR = uθ
BR

Bθ

uφ = Ω∗r + uθ
Bφ
Bθ
,

(8)

where Ω∗ is the angular velocity of the magnetic surfaces (an
MHD invariant in steady-state). We assume Ω∗ = ΩK =√

GM/r3, in agreement with a near Keplerian accretion disk,
leaving four normalizing quantities, ρd,Csd , Bd, and ud, to be
specified at Rd. These distributions are consistent with a self-
similar JED and describe an ideal steady MHD flow with up ‖

Bp
2, anchored on a disk that imposes magnetic field lines rotat-

ing at the Keplerian angular velocity ΩK . We note that the fixed
component of the magnetic field threading the disk (Bθ) is actu-
ally the initial condition to conserve the magnetic flux injected
into the computational domain, and only BR is allowed to vary
in response to the jet dynamics.

In order to pick up values at Rd that are consistent with the
jet calculations performed by BP82 or F97, we express the JED
boundary conditions as a function of four dimensionless param-
eters: (1) the jet density ρd is fixed with respect to the density at
the polar axis using ρd = δρa; (2) the disk sound speed (tempera-
ture) is defined relative to the Keplerian speed with ε = Csd/VKd;
(3) the magnetic field strength Bd is controlled by measuring the
θ component of the poloidal Aflvén speed with respect to the

2 With this condition, the φ component of the electric field E = −u×B
is zero and the magnetic flux distribution does not change in time.
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Keplerian speed, namely µ = VAd/VKd = Bd
√

Rd/(µoρdGM);
and (4) the (vertical) injection velocity ud can be determined
with the well-known mass-loading parameter κ introduced by
BP82 using

κ =
µoρdudVKd

B2
d

=
udVKd

V2
Ad

=
ud

VKd

1
µ2 . (9)

By fixing ud/VKd = 0.1 for all the simulations, we obtain
κ = 0.1/µ2. In order to be able to fix the value of the injec-
tion speed ud and therefore the JED mass flux, we must require
that up > Vsm. As we are mostly interested in producing cold
MHD outflows, we assume ε = 0.01 so that the θ component of
the sonic Mach number is Msθ = ud/Cs = ud/VKdε = 10. As the
total poloidal speed at the jet boundary is larger than ud, the sonic
Mach number Ms = up/Cs > 10. As the poloidal Alfvén speed
at the disk surface is much larger than the sound speed, Cs > Vsm
and Ms > 1 is enough to warrant a super-SM condition.

We decided to vary the mass load and the disk Alfvén speed
by only changing the disk density ρd (and keeping the injec-
tion speed ud and the disk magnetic field Bd constant for all
the simulations). As a consequence, the density contrast δ can
be expressed as a function of µ (or κ). We assume the rela-
tion δ = 100/µ2 = 1000κ. We highlight the fact that with our
parametrization the JED boundary conditions are determined by
only one dimensionless parameter, typically κ, while the other
two free parameters µ and δ are determined as a function of κ,
and ε is fixed for all the simulations.

2.4.3. Spine generation: the central object (R = Rd)

In the spine, we follow a similar methodology to that in the JED
and specify six quantities along the inner spherical boundary at
Rd. This again leaves two quantities that are free to evolve, Bφ
and Bθ. In order to conserve the magnetic flux injected into the
computational domain, we fix BR(θ) to its initial value. We note
that, as the Bθ(R) profile is fixed along the JED boundary (θ =
π/2) and BR(θ) is kept constant in time along the spine boundary
(R = Rd), the total poloidal field and its inclination BR/Bθ do not
change with time at the inner radius of the disk (R = Rd, θ =
π/2). The strength of the magnetic field is already determined
by the value of µ chosen in the JED. As the outflowing material
leaving the central region is in ideal MHD and we are looking
for a steady jet, one has uθ = uRBθ/BR. This leaves us with the
four distributions ρ,Cs, uR, and uφ to be specified along θ.

If the central object possesses its own magnetosphere, then
Rd might be considered as the disk truncation radius. What
would be encapsulated within Rd could then be a complex com-
bination of a stellar wind plus any type of magnetospheric wind
(steady or not; see for instance Zanni & Ferreira 2013 and refer-
ences therein). If the central object is instead a black hole, then
Rd might be considered as the innermost stable circular orbit and
what is hidden inside Rd would highly depend on the black hole
spin. While a nonrotating black hole would provide no outflow,
a rather strong magnetic flux concentration is seen to occur in
GRMHD simulations of spinning black holes, leading to the gen-
eration of powerful outflows through the Blandford-Znajek pro-
cess (see e.g., Blandford & Znajek 1977; Tchekhovskoy et al.
2010; Liska et al. 2018 and references therein).

However, our goal is to study the outcome of the jet emitted
from the disk. We therefore decided to minimize the influence of
the spine as much as possible. This was found to be an almost
impossible task; details are given below. As pointed out in early
works on magnetized rotating objects (e.g., Ferreira & Pelletier

1995), the jet power depends on the available electromotive force
(emf) e =

∫
Em · dl =

∫
(u × Bp) · dl. While the disk provides

an emf edisk '
∫

ΩKrBzdr, the central region provides eobj '∫
ΩrBRRddθ. An obvious way to decrease eobj is therefore to

allow Ω to decrease as one goes from the disk to the pole. We
therefore use (in agreement with steady-state ideal MHD) uφ =
Ω∗r + uRBφ/BR, with magnetic surfaces rotating as

Ω∗ = Ωa(1 − f (θ)) + ΩKd f (θ), (10)

where f (θ) is a spline function varying smoothly from zero at
θ = 0 to unity θ = π/2 (see Appendix B). Most of the simulations
presented in this paper were done with Ωa = 0 (but not all, see
Sect. 4.3). This choice is consistent with a nonrotating black hole
but also with an innermost disk radius (our Rd) well below the
co-rotation radius in the case of a star.

The fixed radial speed is defined through the sonic Mach
number MsR, by uR = MsRCs. For MsR we assume a constant
value along θ that can be derived from the JED boundary con-
ditions by assuming its continuity at the inner disk radius Rd,
MsR = Msθ|BR/Bθ|d = 10|BR/Bθ|d > 1. As the field inclination
at the inner disk radius |BR/Bθ|d is constant, also MsR does not
change with time. The sound speed at the base of the spine is
computed as

Cs = Csa(1 − f (θ)) + Csd f (θ), (11)

where the sound speed on the axis Csa is computed so as to verify
the Bernoulli integral Ea = E(θ = 0) at the axis. As the MHD
contribution vanishes on the axis, one directly obtains

C2
sa =

GM
Rd

1 + ea
1
2 M2

sR + 1
Γ−1

(12)

and

u2
Ra =

GM
Rd

1 + ea
1
2 + 1

M2
sR(Γ−1)

, (13)

where uRa is the injection radial speed on the axis and ea =
EaRd/GM is the Bernoulli integral normalized to the gravita-
tional energy at Rd and will be used as a parameter to fix the
axial spine temperature. We note that the normalized Bernoulli
integral for the jet at Rd writes ed = λd − 3/2 + ε2/(Γ− 1), where
λ = L(Ψ)/

√
GMro is the magnetic lever arm parameter, mea-

sured here at the anchoring radius ro = Rd. As our jets are cold,
enthalpy plays no role and ed is mostly determined by λ (which is
known only once the simulation has converged to a steady state).
For our simulations, we expect a λ of around 10 (see our param-
eter space Fig. 15). We therefore fix ea = 2 in order to obtain a
spine with a smaller energetic content than the surrounding jet.
We note that, with our choice of parameters, the injection speed
along the axis, set in Eq. (13), is higher than the escape speed.
As the flow is cold and there is no magneto-centrifugal accel-
eration along the symmetry axis, the flow will gradually slow
down along R in the spine from this very high speed in its core.
The spine flow can cross the Alfvén and fast-magnetosonic crit-
ical points due to a decrease of the magnetic field intensity, not
thanks to a flow acceleration.

Finally, for the density, we need to smoothly connect its axial
value ρa to the much larger value injected at the disk surface ρd.
We choose to do this by computing ρ(θ) = ηBR/(µouR), with the
MHD invariant η following

η = ηa(1 − f (θ)) + ηd f (θ), (14)
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with ηa and ηd being fully determined (see Appendix B). This
method ensures that the mass flux to magnetic flux ratio has a
smooth variation from the disk to the axis. For numerical sta-
bility reasons, as the strongest magnetic field is on the axis, the
density in the code is normalized to ρa, providing a dimension-
less density at the axis of 1.

2.5. Summary of parameters and normalization

Each simulation is entirely determined by the following dimen-
sionless parameters and quantities: the radial exponent of the
magnetic field α; the Bernoulli parameter ea (equal to 2 for most
cases) and the spine angular frequency on the axis Ωa (equal to 0
in most simulations); and the cold jet parameters: κ, µ =

√
0.1/κ,

δ = 1000κ, ε = 0.01.
With our choices, we ensure that the injected flow is every-

where super-SM and that the main emf is due the JED, which is
magnetically launching a cold jet. The profiles of several quan-
tities along the magnetic flux near the lower boundary (inner
spherical boundary and disk) reached by our reference simula-
tion K2 at the final time can be seen in Fig. B.1.

This leaves us with only two free parameters, α and κ. We
do not explore their whole range here but keep them within the
parameter space of jets from JEDs as obtained by F97 but also
by the solutions of Contopoulos & Lovelace (1994) and the sim-
ulations of Ouyed & Pudritz (1997a). The radial exponent α is
varied from 10/16 to 15/16. In a strict self-similarity, this expo-
nent must be consistent with the underlying disk, namely α =
(12 + 8ξ)/16, where ξ is the disk ejection efficiency defined with
the disk accretion rate as Ṁa(r) ∝ rξ (Ferreira & Pelletier 1995).
However, our simulations are not strictly self-similar because of
the presence of the axis and its spine, and so we also explore a
slightly smaller α than the fiducial BP82 value α = 12/16. As
discussed further below, values of α ≥ 1 are numerically prob-
lematic. The mass load parameter κ is varied between 0.05 and
1, which is a range globally consistent with BP82 and F97 jets,
both solutions leading to a flow recollimation toward the axis.

The MHD equations have been solved with PLUTO and the
results will be presented in dimensionless units. Unless other-
wise specified, lengths are given in units of Rd, velocities in
units of VKd =

√
GM/Rd, time in units of Td = Rd/VKd, den-

sities in units of ρa, magnetic fields in units of Bd = VKd
√
µoρa,

mass fluxes in units of Ṁd = ρaR2
dVKd and powers in units of

Pd = ρaR2
dV3

Kd. In order to be more specific, we translate these
quantities for the case of a young star, assuming a star of one
solar mass with an innermost disk radius Rd = 0.1 au, namely

VKd = 94.3
(

M
M�

)1/2 ( Rd

0.1 × au

)−1/2

km s−1

Ṁd = 3.3 × 10−10
(

ρa

10−15g cm−3

) (
M
M�

)1/2 ( Rd

0.1 au

)3/2

M� yr−1

Pjet = 6.7 × 1041
(

ρa

10−15g cm−3

) (
M
M�

)3/2 ( Rd

0.1 au

)1/2

W

Bd = 10.6
(

ρa

10−15g cm−3

)1/2 (
M
M�

)1/2 ( Rd

0.1 au

)−1/2

G

Td = 1.8
(

M
M�

)−1/2 ( Rd

0.1 au

)3/2

days. (15)

The list of all the simulations performed in this paper is pro-
vided in Table 1, with their input parameters α and κ and several
quantities that are measured at the final stage tend of the sim-

ulation. As explained in Sect. 2.4.1, the values of µ and δ are
dictated by the values of κ. As discussed below, all our simula-
tions display several recollimation shocks. In the table, we pro-
vide only the altitude (measured at the axis) of the first main
recollimation shock Zshock. As stationary jets require them to
become super-Afvénic and super-fast magnetosonic (hereafter
super-A and super-FM, respectively), we also display the colati-
tudes θext

A and θext
FM of the intersection of the outer boundary Rext

and the Alfvén and FM surfaces, respectively. The last super-
FM magnetic surface (defining the jet) can then be followed
down to the disk, allowing us to identify the largest anchoring
radius ro,FM that we consider in the JED. This allows us to mea-
sure the mass flux emitted from the JED as Ṁjet =

∫ ro,FM

Rd
ρu · dS

and compare it with the mass loss emitted from the spine only
Ṁspine =

∫ π/2
0 ρu · dS. We also compute the power emanating

from the jet Pjet =
∫ ro,FM

Rd
ρEu · dS and compare it to the power

emanating from the spine Pspine =
∫ π/2

0 ρEu · dS.
Simulations K1 to A5 were performed with a nonrotating

spine, namely Ωa = 0 and ea = 2. Our reference simulation K2 is
extensively analyzed in the following section. This reference was
repeated with a lower resolution in K2l –all other things being
equal– to verify numerical convergence. Section 4 addresses the
influence of κ (simulations K1 to K5) and α (simulations A1 to
A5). In Sect. 4.3, the effect of a rotating spine (simulation SP) is
briefly addressed.

3. The Blandford & Payne case

3.1. Overview

In this section, we discuss our reference simulation K2 per-
formed for the BP82 α = 3/4 magnetic field distribution and
a mass-loading parameter κ = 0.1. It was run up to tend =
6.5 105 Td and has reached a steady-state in a sizable fraction of
our computational domain (a quarter of an orbit has been done
at ro = Rext).

Figure 2 displays the final stage reached by K2 at tend. The
black solid lines are the poloidal field lines, the dotted red
line is the Alfvén surface (where the Alfvénic Mach number
m = up/VAp is equal to unity) and the dashed red line is the
FM surface (where the FM Mach number n = up/Vfm = 1).
The left panel shows our simulation on the full computational
domain, with a close-up view on the scale used by (Fendt 2006)
in the right panel. The background color is the logarithm of n on
the left and the logarithm of the density on the right. The last
magnetic surface characterizing the super-FM jet is anchored
at ro,FM = 323 in the JED, and the critical surfaces (A and
FM) both achieve a conical shape over a sizable fraction of the
domain, which is characteristic of a self-similar steady-state sit-
uation. Our spine also achieves super-FM speed at an altitude of
z ∼ 260.

The poloidal velocity vectors can be seen in Fig. 3. The
velocity decreases radially very rapidly, mirroring the injection
conditions, going from 3.5 at the spine to 0.2 at the edge of the
super-FM zone (in VKd units). The white lines show streamlines
inside which 50%, 75%, and 100% (from left to right) of the
total super-FM mass outflow (spine + jet) rate is being carried
in. These lines are anchored in the disk at r0 = 10, ro = 66,
and ro,FM = 323, respectively. As dṀ/dR = 2πRVz falls off
very rapidly, this plot shows that even ejection from a very large
radial domain may be observationally dominated by the inner-
most, highly collimated regions up to ro ∼ 10, with the outer
“wide angle wind” probably remaining barely detectable.
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Fig. 2. Snapshot at tend of our Blandford & Payne simulation K2. Left: global view with field lines anchored on the disk at ro =
3; 15; 40; 80; 160; 320; 600; 1000; 1500, where the background is the logarithm of the FM mach number n. Right: close-up view of the inner-
most regions, where the background is the logarithm of the density. In both panels, black solid lines are the poloidal magnetic surfaces, the yellow
solid lines are isocontours of the poloidal electrical current, and the red dashed (resp. dotted) line is the FM (resp. Alfvén) critical surface.

Fig. 3. Snapshot of our reference simulation K2 at tend. We use the same
color coding as in Fig. 2, left. The black arrows show the poloidal veloc-
ity. The white lines are streamlines inside which (from left to right)
50%, 75%, and 100% of the super-FM (spine+jet) mass outflow rate is
carried in.

The yellow solid lines are isocontours of the poloidal elec-
tric current I = 2πrBφ/µo. These contours are very useful as they
allow us to grasp several important features of the simulation: (1)
The typical butterfly shape of the initial accelerating closed elec-
tric circuit can be seen up to a spherical radius R ∼ 3000. (2) For
disk radii ro & 2000, the electric current flowing out of the disk
reaches the outer boundary (most of it in the sub-A regime at
high colatitudes) and re-enters in the jet at smaller colatitudes,
in the super-FM regime. (3) More importantly, several current
sheets can be clearly seen (as an accumulation of current lines),
highlighting the existence of several standing (stationary) rec-
ollimation shocks. To our knowledge, this is the first time that

simulations of super-FM jets exhibit the patterns predicted in
analytical jet studies. Justifications for this assessment are pro-
vided in Sect. 5.2.

These shocks are best seen in Fig. 4, which presents a zoom
onto the region of interest. Five shocks (highlighted in colors)
can be seen starting near the polar axis, following approximately
the expected shape of the MHD characteristics in self-similar jets
(see Figs. 3 in Vlahakis et al. 2000; Ferreira & Casse 2004). They
are located at Z1 = 1850,Z2 = 2000,Z3 = 2160,Z4 = 2372, and
Z5 = 2634. Only two of these shocks span a significant lateral
portion of the jet (those best seen also in the left panel in Fig. 2).
The first one (in red) leaves the axis at an altitude Z1 = 1850
(labeled Zshock in Table 1) and stays within our domain, finally
merging with the FM surface (red dashed curve) around (r =
2500, z = 3800). The second shock starts at Z5 and leaves the
simulation domain at (r = 1800, z = 5200), and is therefore not
fully captured by our simulation. For this reason, only the first
shock is extensively described here.

It can be seen that all shocks do occur only after the mag-
netic surface has started to bend toward the axis (with a decreas-
ing cylindrical component Br), and give rise to a sudden outward
refraction of the surface with its ouflowing material. This, plus
the fact that their positions remain steady in time (see below),
justifies our use of the name “standing recollimation shocks” to
describe them. While these standing recollimation shocks appear
quite generic for our set of simulations, we stress that fantasti-
cally large spatial and temporal scales are required to see them.

This simulation was also performed with a two-times-
smaller resolution (see K2l in Table 1). We also observed stand-
ing recollimation shocks that are similar, although with less com-
plexity.

3.2. Quasi steady-state jet and spine

Jet production is a very rapid process that scales with the local
Keplerian timescale (especially As µ is constant with the radius).
It is therefore an inside-out build-up of the jet with its associ-
ated electric circuit, until the innermost jet regions (including
the spine) reach the outer boundary. This will take a time of
typically text(ro = 1) ∼ Rext/Vz, with the maximal jet speed
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Fig. 4. Close-up view of our reference simulation K2 at tend show-
ing the shock forming region, with field lines anchored at ro =
1.2; 2; 3; 4; 5; 7; 9. The five shocks are highlighted in red, orange, cyan,
blue, and purple. We use the same color coding as in the left panel of
Fig. 2.

Vz '
√

2λ − 3VK . According to BP82, cold outflows with mod-
erate inclinations and κ = 0.1 reach λ ∼ 10 (see their Fig. 2),
which is exactly what we also obtain (see Fig. 15, with a min-
imum value λ = 11). This leads to a dynamical time text ∼

1.3 × 103 (in Td units) and so the innermost jet regions achieve
an asymptotic state very early. However, the transverse (radial)
equilibrium of the outflowing plasma is still slowly adjusting,
because, as time increases, more and more of the outer magnetic
surfaces achieve their asymptotic state, providing an outer pres-
sure and modifying the global jet transverse equilibrium. This,
in turn, necessarily modifies the shape of the magnetic surfaces
as well as the associated poloidal electric circuit.

This means that the MHD invariants along each magnetic
surface can always be defined (each surface is quasi-steady), but
that they are also slowly evolving in time as the global mag-
netic structure evolves. For our simulation K2, the last super-FM
magnetic surface is anchored at ro,FM = 323, defining a local
Keplerian time TK = 5.8 × 103. At that distance, the boundary
is located at Zext ∼ Rext cos θFM ∼ 4430, leading to a dynamical
time text(ro,FM) ∼ Zext/Vz(ro,FM) ∼ 1.6 × 104 (with λ = 14) as
the speed distribution on the disk is Keplerian. We can therefore
expect MHD invariants within our jet to evolve much less only
after a time ∼104.

This slight evolution of the jet quantities over time is illus-
trated in Fig. 5. We chose to look at global quantities, such as
the radius ro,FM of the last super-FM surface, the jet mass-loss
rate Ṁjet, and the two colatitudes θext

A and θext
FM that define the

position of the two critical surfaces. We pick up their values at
t = 5.1×105 and plot their evolution by normalizing them to this
“initial” value. It can be seen from Fig. 5 that their evolution is
quite obvious: ro,FM keeps on increasing, leading to an increase
in Ṁjet and a decrease in both θext

A and θext
FM. But the relative vari-

ations are less than 3% for ro,FM and 1% for the other quantities.
We therefore consider that our simulation K2 has achieved

a relatively global steady-state. In physical units (and for our
choice of axial density ρa), the jet mass loss is about 2 ×
10−7 M� yr−1 with a magnetic field around 10 G at 0.1 au. The
spine mass loss is only ∼10% of the jet mass loss, and so we
can safely presume that the dynamics are mostly controlled by
the JED, as expected. However, as the spine power is compara-

ble to the jet power (Pspine/Pjet = 0.81), the impact of the spine
on the collimation and topology of the electric field cannot be
neglected. The influence of the spine is detailed in Sect. 4.3.

Figure 6 shows the various contributions to the Bernoulli
integral E(ψ) along a magnetic surface anchored at ro = 100
at the final stage tend. It can be seen that E is indeed conserved
and that jet acceleration follows the classical pattern (Casse &
Ferreira 2000a): the kinetic energy (green) increases thanks to
the magnetic acceleration, leading to a decrease in the mag-
netic contribution (magenta). Enthalpy (red) is negligible in this
cold outflow. The presence of the shock is clearly seen around
Z = 3800: the flow is suddenly slowed down and the energy
is transferred back to the magnetic field, in agreement with the
Rankine-Hugoniot jump conditions (see Appendix C). Beyond
the shock, MHD acceleration is resumed but, at the edge of our
domain, the magnetic field still maintains around 45% of the ini-
tial available energy.

The evolution along a magnetic surface of the five MHD
invariants is shown in Fig. 7 for two surfaces, one anchored at
ro = 100 (left) and the other at ro = 1000 (right). In order to plot
η,Ω∗, L, E, and S on the same figure, we normalize each quantity
by its initial (at the disk surface) value at tend. On the left, vari-
ations of the invariants can indeed be seen but only at the shock
located at Z = 3800; they remain very small, much less than 1%
for all but the entropy (which is conserved to machine accuracy).
On the right plot, the field line is anchored beyond ro,FM and the
flow remains sub-FM while crossing no shock. Variations of the
invariants are again observed, but always less than 0.3%. This
shows that the PLUTO code is quite efficient and the MHD solu-
tion is indeed steady.

3.3. Jet collimation

Before analyzing the shocks in the following section, let us
briefly discuss jet collimation. Figure 8 shows the initial mag-
netic field configuration (in dotted lines) along with the final
configuration (solid lines) obtained at tend. Each color is asso-
ciated with a different anchoring radius ro, allowing us to see the
evolution from the initial potential field and the final full MHD
solution. This plot clearly illustrates how magnetic collimation
works. As the poloidal electric circuit responsible for the col-
limation must be closed, its sense of circulation must change
within the whole outflow (defined as both the jet and its spine).
The poloidal current density J p is therefore downward in the
inner regions and outward in the outer jet regions. As a conse-
quence, field lines anchored up to ro ∼ 25 are focused to the
polar axis (Z-pinch due a pole-ward J p × Bφ force as Jz < 0),
while field lines anchored beyond ro ∼ 30 are de-collimated and
pulled out (because of the outward action of the same J p × Bφ

force as Jz > 0). See the right panel of Fig. 2 for the topology
of J.

The inner self-collimated jet region can only exist thanks to
the existence of these outer jet regions that are pulled back and
out. The final state of the jet collimation, namely the asymptotic
jet radius achieved by these inner regions (the densest ones, pos-
sibly responsible for the observed astrophysical jets), is there-
fore also a consequence of the transverse equilibrium achieved
by the outflow outskirts with the ambient medium. This balance
is mathematically described by the Grad-Shafranov equation
and expresses the action of the poloidal electric currents – how
they are flowing and how electric circuits are closed within the
jet – on the shape of the magnetic surfaces (Heyvaerts & Nor-
man 1989, 2003a,b; F97; Okamoto 2001). We return to this point
below.

A159, page 8 of 27



T. Jannaud et al.: Numerical simulations of MHD jets from Keplerian accretion disks

Table 1. Simulations presented in this paper.

Name κ α µ δ tend
105 Zshock θext

FM(rad) θext
A (rad) ro,FM Ṁjet

Ṁspine

Ṁjet
Pjet

Pspine

Pjet

K1 0.05 12/16 1.41 50 7.34 2150 0.64 0.94 301 179 0.102 492 0.82
K2 0.1 12/16 1.00 100 6.51 1850 0.67 1.05 323 363 0.096 616 0.81
K2l 0.1 12/16 1.00 100 12.3 2490 0.65 1.02 289 357 0.094 620 0.81
K3 0.2 12/16 0.71 200 10.1 1810 0.69 1.09 368 743 0.093 768 0.80
K4 0.5 12/16 0.45 500 8.67 1150 0.90 1.26 655 2040 0.093 1024 0.81
K5 1.0 12/16 0.32 1000 4.62 700 0.99 1.34 670 4095 0.116 1264 0.96
A1 0.1 10/16 1.00 100 9.08 1900 0.96 1.23 234 195 0.206 551 1.21
A2 0.1 11/16 1.00 100 8.34 1800 0.87 1.15 349 272 0.137 578 0.99
A3 0.1 13/16 1.00 100 5.79 1920 0.59 0.95 566 690 0.047 668 0.66
A4 0.1 14/16 1.00 100 6.26 2050 0.64 0.94 398 1321 0.023 740 0.53
A5 0.1 15/16 1.00 100 1.62 2030 0.50 0.83 1046 3275 0.009 848 0.41
SP 0.1 12/16 1.00 100 3.93 1250 0.82 1.09 506 392 0.097 613 0.98

Notes. All the simulations presented have been performed in the grid described in Sect. 2.2 (e.g., NR = 1408 and Nθ = 266) except K2l, performed
in a lower resolution grid (e.g., NR = 704 and Nθ = 144) The parameters κ and α are varied independently, allowing us to compute µ, δ, and MS .
The columns Zshock, θ

ext
FM, θ

ext
A , ro,FM, Ṁjet, Ṁspine/Ṁjet, Pjet, and Pspine/Pjet are outputs of the simulation measured at the final time tend (given in 105Td

units). Simulations K1 to A5 were done with a nonrotating spine, namely Ωa = 0 and ea = 2. Simulation SP is done for Ωa = ΩKd and ea = 10 and
is discussed in Sect. 4.3. See Sect. 2.5 for the definition of all these quantities.

Fig. 5. Late evolution of several global jet quantities for the simulation
K2: the radius ro,FM of the last super-FM surface, the jet mass-loss rate
Ṁjet, and the two colatitudes θext

A and θext
FM that define the position of

the two critical surfaces. A slight drift from their initial value is indeed
observed. The values provided in Table 1 are those achieved at the final
time.

3.4. Standing recollimation shocks

Our reference simulation K2 ends with five standing shocks, of
which only the first (red in Fig. 4), starting on the axis around
Z1 = 1850, is studied hereafter. This is for two reasons: (1)
Contrary to the orange and cyan shocks, the red shock surface
covers a large extension in the jet itself. It is therefore most prob-
ably related to the dynamics of our quasi self-similar jet, whereas
these smaller shocks may be related to the spine–jet interaction.
(2) It remains far away from the outer boundary (it ends up at the
FM surface at a point r = 2500, z = 3800), which is clearly not
the case for the purple shock and also probably not for the blue
one.

Fig. 6. Evolution of the various energy contributions along a mag-
netic surface of anchoring radius r0 = 100 for the simulation K2 at
tend: the Bernoulli invariant E, the gravitational potential ΦG, the total
specific kinetic energy u2/2, the enthalpy H, and the magnetic energy
−Ω∗rBΦ/η. The absicssa is the altitude Z(Ψ).

3.4.1. Rankine-Hugoniot conditions

All shocks are due to the flow heading toward the axis (with
decreasing, usually negative Br and ur components) at a super-
FM velocity, resulting in a sudden jump in all flow quantities
with an outward refraction of the magnetic surface (this can
be seen in Fig. 8). The Rankine-Hugoniot jump conditions (see
Appendix C for more details) are of course satisfied with the
shock-capturing scheme of PLUTO and MHD invariants are
conserved (up to some accuracy, as discussed above).

The left panel of Fig. 9 displays the evolution of several
quantities along the red shock surface. It can be seen that the
compression rate χ (green curve), defined as the ratio of the
post-shock to the pre-shock densities, is larger than unity while
remaining small (≤1.3, see red curve in the right panel), despite
a very large Alfvénic Mach number m ∼ 100 (orange). This
is probably because the shock is oblique and the incoming jet
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(a) (b)

Fig. 7. Evolution of the MHD invariants along field lines of two different anchoring radii ro at tend for simulation K2. All invariants have been
normalized to their values at ro. The absicssa is the altitude Z(Ψ).

material does not reach very large super-FM Mach numbers n⊥
(defined as the ratio of the flow velocity normal to the shock
surface to the FM phase speed in that same direction; blue
curve). In fact, n⊥ ≤ n = up/V f m, and at these distances the
jet has reached its asymptotic state with a maximum velocity
of up ∼

√
2λ − 3VKo (VKo = Ω∗ro the Keplerian speed at the

anchoring radius). Assuming Bp � |Bφ|, m � 1 and a jet widen-
ing such that r � rA where rA is the Alfvén cylindrical radius
along a flow line where m = 1, leads to

n '
up

VAφ
=

up

Ω∗r
m

1 − r2
A/r

2
' m

ro

r

√
2λ − 3 ∼ m

rA

r
, (16)

which shows that the asymptotic FM Mach number critically
depends on how much the jet widens (see Pelletier & Pudritz
1992 and Sect. 5 in F97). In our case, n ∼ 4 at the outer edge
of the spine–jet interface, in agreement with self-similar stud-
ies. Following the main red shock along growing r, the incident
angle3 of the magnetic field lines on the shock front decreases
until turning into a normal shock on its external edge (r ∼ 2000).
Hence, on this edge, the shock front coincides with the FM crit-
ical surface n = 1. As the shock becomes normal, n⊥ → n = 1
and the shock vanishes, with a compression rate χ going to 1.

The three other curves in the left panel of Fig. 9 describe
other modifications in jet dynamics. The brown curve is the mag-
netic field line deviation at the shock front, δi = i2 − i1, where
i is the flow incidence angle to the normal to the shock surface
(subscripts 1 and 2 refer to the pre- and post-shock zones, respec-
tively). The maximum deviation of 0.07 rad = 4◦ is very small,
in agreement with the small compression rate.

The purple curve describes the relative variation of the flow
rotation δΩ = (Ω2 − Ω1)/Ω1, which is always negative. The
shock introduces a sudden brake in the azimuthal speed, mean-
ing that the compressed shocked material is always rotating
less. As t.e detection of rotation signatures in YSO jets is an
important tool for retrieving fundamental jet properties (see e.g.,

3 Here and throughout the following, the angles of incidence and
refraction are defined as in Snell-Descartes law, e.g., measured from
the normal to the shock front.

Fig. 8. Evolution of several magnetic field lines during the simulation
computation, for different anchoring radii R0 and for the reference sim-
ulation K2. The field lines at the first output of the simulation (initial
conditions) are shown in dotted lines. The field lines at the last output
of the simulation (final state) are shown as full lines.

Anderson et al. 2003; Ferreira et al. 2006; Louvet et al. 2018;
Tabone et al. 2020), recollimation shocks appear to be a very
interesting means to lower the jet apparent rotation. However,
the rather weak shock found here only introduces a decrease of
∼20% at the outer edge of the shock.

The plasma loss of its angular momentum at the shock is of
course compensated for by a gain of magnetic field (the angular
moment is a MHD invariant). This means that the magnetic field
lines are more twisted after the shock than before, as illustrated
in the red curve showing δBφ = (Bφ2 − Bφ1 )/Bφ1 > 0. The shock
surface acts therefore as a current sheet with an electric current
density flowing outwardly (in the spherical R direction).

3.4.2. Two families of shocks

The right panel of Fig. 9 displays the compression rate χ for
the five shocks seen in Fig. 2, using the same color code. All
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Fig. 9. Distributions along the shock of several quantities for K2 at tend. Left: normal incident FM Mach number n⊥, Alfvénic Mach number m,
compression rate χ, relative variations of the toroidal magnetic field δBφ and plasma angular velocity −δΩ, and total deviation δi (in rad) of the
poloidal magnetic field line for the main recollimation shock. Right: compression rates χ of all shocks appearing in Fig. 4, using the same color
code. The main shock corresponds to the red curve. See Appendix C for more details on this figure.

Fig. 10. Radial distribution of the radial accelerations and their sum
at the altitude Z = 2400 for the simulation K2 at tend. The vertical
dashed line corresponds to the spine–jet interface, namely the field line
anchored at ro = Rd.

shocks but the red one have larger compression factors near the
axis. The orange and cyan shocks merge with the main red one
(respectively at r ∼ 500 and r ∼ 900), leading to an increase in
its compression rate χ. The large blue shock has the same behav-
ior as the orange and cyan but remains alone (i.e., not merging
with the red) with χ converging to 1, while the purple shock
seems to have a similar behavior to the red one, maintaining a
larger value for χ. Although these last two shocks are probably
affected by their proximity with the outer boundary, it seems that
two classes of recollimation shocks are at stake.

The first class (represented by the red and purple shocks)
corresponds to the recollimation shock predicted in self-similar
studies (FP97, Polko et al. 2010). The reason for their exis-

tence is the hoop-stress that becomes dominant as the jet widens,
leading to a magnetic focusing toward the axis. As shown in
FP97, such a situation always arises in the super-FM regime,
meaning that a shock is the only possibility for the converg-
ing flow to bounce away. However, as long as no dissipation is
introduced, such a situation will repeat. Indeed, after the flow
refraction due to the shock, the magnetic field starts to acceler-
ate the plasma again, the magnetic surface widens and the same
situation repeats. One would therefore expect periodic oscilla-
tions and shocks on a vertical scale HR (measured on the axis).
Figure 8 provides some evidence of this pattern for the field lines
anchored at ro = 20, 30 or 40. The first recollimation shock (red)
is quite far away from the disk (Zshock = 1850), but the second
shock (purple) occurs at Z5 ' 2634. A much larger computa-
tional domain would be necessary in order to clearly assess a
periodic pattern.

The second class of recollimation shocks (represented by
the orange, cyan, and blue shocks) are limited to the vicinity
of the spine–jet interface and are thereby a consequence of a
radial equilibrium mismatch between these two super-FM out-
flows. The transverse equilibrium of a magnetic surface is pro-
vided by projecting the stationary momentum equation in the
direction perpendicular to that surface, leading to the equation
(FP97)

(1−m2)
B2

p

µ0R
−∇⊥

(
P+

B2

2µ0

)
−ρ∇⊥ΦG+

(
ρΩ2r−

B2
φ

µ0r

)
∇⊥r = 0. (17)

Here, ∇⊥ = e⊥ · ∇ provides the gradient perpendicular to a mag-
netic surface with e⊥ = ∇Ψ/|∇Ψ| and B2

p/R = e⊥ · (Bp · ∇Bp),
measures the local curvature radius R of the magnetic surface.
In the asymptotic region where these small recollimation shocks
are observed, the field lines are almost vertical and gravity is
negligible. The above equation therefore reduces to

−
∂

∂r

(
P +

B2

2µ0

)
+ ρΩ2r −

B2
φ

µ0r
= 0. (18)

Looking at Fig. 10, where the various forces are plotted as a
function of the cylindrical radius at a constant height Z = 2400,
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it can be clearly seen that the dominant force is the hoop stress
−B2

φ/(µor) (purple curve) near the spine-jet interface (dashed
vertical line), defined as the magnetic field line anchored at
ro = Rd. That pinching force overcomes the others (the above
sum is actually nonzero and negative), indicating that the field
lines do have a curvature and are actually converging toward
the axis (therefore Eq. (18) is too simplistic). Nevertheless, this
behavior of the forces is consistent with the stationary shape of
the magnetic surfaces seen at Z = 2400 at those radii. Further
out, downstream, the fifth (purple) shock will make the field
lines bounce back again. This tells us that we are witnessing
radial oscillations of the radius of the spine driven by a mis-
match between the dominant forces (hoop stress, magnetic pres-
sure, and centrifugal term).

This oscillatory behavior may be a generic feature of
MHD outflows from a central rotator as shown by Vlahakis &
Tsinganos (1997), because of the different scaling with the radius
of the pinching force and the centrifugal force (as in the self-
similar jet; F97). But it may also be triggered by the pinching
due to the outer jet recollimation, namely the spine–jet inter-
face response to the global jet recollimation. Indeed, no spine–jet
shock is seen before the onset of the main recollimation shock.
We further note that the five shocks are located at a slightly
increasing distance from each other. Indeed, ∆Z12 = Z2 − Z1 =
150,∆Z23 = 160,∆Z34 = 212, and ∆Z45 = 262, which is the sign
of some damping of the spatial oscillations at the spine–jet inter-
face (see e.g., Vlahakis & Tsinganos 1997). This corresponds to
three spine–jet shocks (orange, cyan, and blue) located between
the two large jet recollimation shocks (red and purple), as can be
seen in Fig. 4.

Despite the fact that the magnetic surfaces are in a steady
state, it is useful to look at this spatial oscillatory pattern as
the nonlinear outcome of transverse waves. Immediately after
a shock, the flow is again outwardly accelerated leading to a
widening of the magnetic surface and its refocusing toward the
axis with the unavoidable shock. It will therefore take a time
∆tz = ∆Z/uz to reach the next shock. On the other hand, any
radial unbalance triggered immediately after the shock gives
rise to a transverse (radial) FM wave that bounces back on a
timescale of ∆tr = 2r/V f m measured at the spine–jet interface. In
steady-state, these two times must be the same, which requires
∆Z ∼ 2nr, where n is the FM Mach number measured at the
spine–jet interface. At Z = 2400, the width of the spine is
r ' 40, and n ' 3, providing the correct order of magnitude
for ∆Z ∼ 240 . This is also verified for all other shocks. This
correspondence strengthens the idea that these small shocks are
actually triggered by the first large recollimation shock.

3.5. Electric circuits

The existence of these shocks drastically affects the poloidal
electric circuits that go along with MHD acceleration (and of
course collimation). This can be seen in Fig. 11, where sev-
eral interesting circuits are shown in color. Each poloidal circuit
corresponds to an isocontour of rBφ, the arrows indicating their
flowing direction.

The white contour marks the last electric circuit that flows
below the first recollimation shock and defines the envelope of
the initial accelerating current. It links the disk emf with the
accelerated jet plasma and flows back to the disk along the spine.
This is due to the fact that the largest electric potential difference
is with the axis.

The blue circuit is the last electric circuit fully enclosed
within the computational domain. The current flows out of the

Fig. 11. Plot of the poloidal electric circuits at tend for simulation K2.
The two red curves are the critical surfaces, Alfvén (dotted) and FM
(dashed). The yellow curves are the poloidal electric circuits, defined
as isocontours of rBφ, where the arrow indicate the direction of the
poloidal current density J p. Four circuits are highlighted in particu-
lar: (1) the envelope of the inner accelerating current in white (rBφ =
−2.06), (2) the outermost circuit still fully enclosed within the domain
in blue (Bφ = −2.005), (3) a circuit closed outside the domain in orange
(rBφ = −1.80), and (4) a post-shock accelerating circuit in purple (also
with rBφ = −2.06).

disk (further away than the previous circuit) and makes a large
loop that goes beyond (downstream) the main recollimation
shock, flowing back on the axis below Z5 until it encounters the
smaller shock at Z4 (blue curve in Fig. 4). As a shock behaves
as an emf, with an outwardly (positive Jr) electric current flow-
ing along its surface, the blue electric current gets around it and
goes back to the axis where it meets the next shock surface at Z3
(cyan in Fig. 4). As that shock merges with the main recollima-
tion shock, the blue electric current flows along these two sur-
faces, gets around the main shock (near the point r ∼ z ∼ 3000
in Fig. 11) and returns back to the disk via the spine, where it
joins the white circuit below Z1.

As mentioned above, the outflowing plasma gets re-
accelerated after each shock. This requires a local accelerating
electric circuit, which is naturally enclosed within two recolli-
mation shocks. One such circuit is exemplified by the purple
contour in Fig. 11. It actually has the same rBφ value as the white
one, but is enclosed between the two large recollimation shocks.
As the small shocks (orange and cyan in Fig. 4) merge with the
main one, the purple accelerating circuit is the envelope of the
current used to go from the first main shock to the second one
flowing back to the spine just before Z5 (and getting around the
shock starting at Z4 near the point r ∼ 2000, z ∼ 4000, like the
previous blue electric circuit).

These three examples of electric circuits (white, purple, and
even blue) are fully closed within the computational domain and
therefore do not contribute to any further asymptotic collimation.
However, it can be seen that the electric current outflowing from
the disk beyond ro ∼ 2000 leaves the computational domain
and is supposedly closed by the inflowing current that enters the
computational domain at small colatitudes. One example of such
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Fig. 12. Altitude Z of the different shocks (measured at the axis) as
a function of time (in Td units) for simulation K2. The vertical lines
correspond to the six times ti used in Fig. 13: t1 = 551, t2 = 2.08 ×
103, t3 = 8.51×103, t4 = 1.99×104, t5 = 1.05×105, and t6 = 1.58×105.
The last vertical line is tend = 6.51 × 105.

an electric circuit is shown by the orange curve in Fig. 11. This
inward electric current is responsible for the inner jet collimation
at large distances, say at Z & 3000, and is seen to flow back to the
disk along the spine, which acts as a conductor. This implies that
the asymptotic jet collimation is here somewhat controlled by an
electric circuit that is not fully self-consistent. Indeed, this elec-
tric circuit is actually determined by the boundary conditions at
Rext and there is no guarantee that its evolution is consistent with
the disk emf. This is of course unavoidable but it may have an
impact on the collimation properties of numerical jets (see dis-
cussion in Sect. 5). Moreover, as this current embraces very large
spatial scales, very long timescales are consistently implied and
may lead to evolution of the jet transverse equilibrium on those
scales.

3.6. Time evolution

Figure 12 shows the evolution in time of the vertical height Z
(measured at the axis) of all shocks found in the simulation. As
discussed previously, it takes a time text(1) ∼ 103 for the inner-
most jet (anchored at ro = Rd) to reach the boundary of our
computational box. During this early evolution with t < text(1),
the detected shocks correspond to the first bow shock where the
jet front meets the initial unperturbed ambient medium. Once
the jet has reached the boundary, the spine is in a steady-state
while the jet transverse equilibrium continues to evolve due to
the self-similar increase in its width. Indeed, the time to reach
the outer boundary for a magnetic surface anchored at ro in the
disk grows as text(ro) ∝ r1/2

o . It therefore takes a time ∼104 to
achieve a steady ejection from ro = ro,FM = 323, where ro,FM is
the maximum radius of the field lines that achieve a super-FM
flow speed. The global jet structure is only expected to have a
steady state beyond that time.

The vertical lines in Fig. 12 trace six times t1 = 551, t2 =
2.08× 103, t3 = 8.51× 103, t4 = 1.99× 104, t5 = 1.05× 105, and
t6 = 1.58× 105. The snapshots corresponding to each of these
times are shown in Fig. 13, allowing us to see the global jet
evolution. The times t1 and t2 have been chosen to enclose text(1).
The bow shock with the ambient medium is clearly seen, as is

the outward (radial) evolution of the jet width. At t2, several
shocks near Z ∼ 2000 can be seen in both figures. The jet radial
equilibrium is clearly not yet steady. However, Fig. 12 shows
that while the positions of the shocks (as measured on the axis)
are already close to their final values, their final number is not
yet settled.

Four standing recollimation shocks seem to settle some-
where between t3 = 8.51×103 and t4 = 1.99×104, in agreement
with our previous estimate; they can be clearly seen in Fig. 13,
where some transient shocks located further up at Z > 4000
at t3 have disappeared at t4. Also, given the huge spatial scales
involved, most of our JED is still evolving. For instance, while
there have already been 3183 orbital periods at Rd at t4, the disk
has done only half of an orbit at ro = 323. This can be seen
in the shape of the FM surface, which has not yet reached its
steady-state configuration (conical).

Beyond t4, the global flow is slowly evolving in time in some
adiabatic way, with four standing recollimation shocks. The evo-
lution of the jet outer regions and the progressive evolution of the
A and FM surfaces to their conical shapes seems to produce no
obvious evolution in the shocks until t5. At that time, a dramatic
evolution is triggered with the appearance of shocks beyond Z4.
Figure 12 clearly shows this pattern with the appearance of a fifth
shock; its altitude Z5 evolves in time, consistently with Z4 until
a steady-state is finally reached approximately near t6. Our final
state tend shows no relevant difference in the positions of the five
shocks. This evolution of the distribution of the shocks has only
slightly affected the position of the farthest shock Z4, leading to
the final regular distance ∆Z discussed above.

The appearance of a fifth shock at t5 leading – after a tran-
sient phase ending at t6 – to a new steady state jet configuration
is illustrated in Fig. 14. The time evolution of the cylindrical
radius of the field line anchored at ro = 3 (in blue) is measured
at a constant height Z = 3500. It can be seen that this radius
is steadily slowly decreasing in time, going from r ∼ 150 near
t4 down to r ∼ 135 at t5 where some fluctuations are suddenly
triggered. These oscillations describe a time-dependent behavior
which ends at t6, with a new radial balance found at a smaller
radius r ' 125. Globally, this evolution describes a magnetic
surface that is first slowly getting more and more confined, and
then enters an unstable situation until the formation of another
(tighter) equilibrium. This behavior is consistent with the evo-
lution of the electric current (red curve) that flows within that
magnetic surface, which is seen to first steadily (although very
slowly) increase until achieving a final value.

In these inner regions, transverse equilibrium of the cold jet
is mostly achieved by the poloidal magnetic pressure balancing
the toroidal pressure and hoop stress (see Eq. (18) and Fig. 10).
In this Bennett relation, one gets

(rBφ)2 = (rBz)2 +

∫ r

0
2B2

z rdr . (19)

This relation shows that the toroidal field Bφ is compelled to fol-
low the same scaling as Bz in order to maintain the jet trans-
verse equilibrium. If we assume that the self-similar radial scal-
ing for the vertical field Bz is recovered at large distances, we
get (rBφ)2 ∝ r2(α−1). As a consequence, for α < 1 (which is the
case here), whenever the electric current is increasing, the radius
of the magnetic surface decreases (as in a Z-pinch). This scaling
provides ∆I/I = (α − 1)∆r/r = −0.25∆r/r, which is consistent
with the evolution seen in Fig. 14.

This slow increase in time of the electric current flowing
near the axis is a natural consequence of the increase of the
disk emf edisk as the outer disk regions achieve a steady state.
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Fig. 13. Snapshots of our reference simulation K2 at different times (given in Td units). From top to bottom, left to right: t1 = 551, t2 = 2.08 ×
103, t3 = 8.51 × 103, t4 = 1.99 × 104, t5 = 1.05 × 105, and t6 = 1.58 × 105. The background color is the logarithm of the density, black lines are the
magnetic surfaces, red lines the Alfvén (dotted) and FM (dashed) surfaces, and yellow curves are isocontours of the poloidal electric current.

Indeed, edisk '
∫ rmax

Rd
ΩKrBzdr increases with rmax, which is the

maximal radius in the disk that achieved a steady state. This
increase in the available current is expected to stop when no
further relevant emf is added. The available current is deter-
mined at the disk surface by the crossing of the Alfvén critical
point, because it is that point that fixes the available total spe-
cific angular momentum carried away. One can therefore esti-
mate the time where the current should level off as the time
when the outermost magnetic field line reached the Alfvén point.
Figure 14 shows that this is achieved approximatively around t6
with rmax ∼ 103, corresponding to a full orbital period at rmax

equal to t = 2πr3/2
max = 2 × 105 (we note that the time for the

flow ejected at rmax to reach the outer boundary is comparable).
After a time of a few 105 Td, our simulation has finally achieved
a global steady state.

4. Parameter dependence

In the previous section, we showed that our reference simula-
tion K2 behaves qualitatively like the self-similar analytical cal-
culations of Blandford & Payne (1982) and F97, with a refo-
cusing toward the axis and the formation of a recollimation
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Fig. 14. Time evolution of the cylindrical radius r measured at Z = 3500
of the magnetic surface anchored at ro = 3 (blue curve) and the electric
current I = rBφ (red) flowing within that surface for simulation K2.
The two vertical dashed lines correspond to t5 = 1.05 × 105 and t6 =
1.58 × 105.

Fig. 15. Jet parameter space λ(κ) at the final stage of our simulations
K1–K5 with α = 3/4. Each simulation is obtained for a unique mass
loading κ and gives rise to a distribution of the magnetic lever arm λwith
the radius: green, red, and blue dots correspond to anchoring radii ro =
5, 50, and 500, respectively. The solid curves are obtained for constant
values (indicated in the panel) of the initial magnetic field inclination
ξ′0 = Br/Bz at the disk surface.

shock. However, the presence of the axial spine breaks down the
self-similarity and introduces additional shocks localized at the
spine–jet interface.

To further understand the behavior of these shocks, we con-
ducted a parameter study in κ and α, the jet mass load and
the radial exponent of the disk magnetic flux, respectively. We
finally ran one simulation with the same JED parameters as in
our reference simulation K2, but with a rotating spine. All our
simulations are presented in Table 1.

4.1. Influence of the mass loading parameter κ

In this section, we present our simulations K1 to K5, obtained
with the same parameters as K2 except for the mass load κ

which is varied from κ = 0.05 to κ = 1. Our parameter range
in κ is slightly smaller than the one achieved by Blandford &
Payne (1982) which goes down to κ = 0.01. It can be seen in
Fig. 15, which represents the magnetic lever arm λ as a function
of the mass-loading parameter κ. Each simulation is obtained
for a unique value of κ but as the simulation is not strictly self-
similar, we obtain a range in λ: the larger the anchoring radius,
the larger the field line inclination at the disk surface and the
larger the magnetic lever arm λ. To ease the comparison with
Fig. 2 of Blandford & Payne (1982), for each simulation, we
computed the anchoring radius ro at which the field line inclina-
tion ξ′0 = Br/Bz at the disk surface is equal to 1.4, 1.5, and 1.65.
This allowed us to draw in our Fig. 15 iso-contours of ξ′0, which
are in agreement with the above expectations and analytical self-
similar calculations (see also Fig. 3 in F97).

All simulations achieve a steady-state and exhibit roughly
the same behavior as K2, as can be seen in Fig. 16. From top to
bottom, κ increases from 0.05 to 1, the left panels showing the
whole computational domain with the two critical surfaces in red
(A, dotted and FM dashed) and the right panels providing a close
up view around the shock-forming regions near the axis. Table 1
provides the value of several jet quantities: the spine mass-loss
rate stays around 10% of the jet mass-loss rate, despite the net
increase in Ṁjet (∝κ, factor 20 increase). Similarly, while the jet
power Pjet scales in κ, the spine power stays around 80% of the
jet power.

The first observation is that the altitude of the main recolli-
mation shock (the one merging with the FM surface) decreases
globally with κ. This is quantitatively shown in Fig. 17, where
Zshock moves from 2150 down to 700. The same evolution occurs
for the altitude Ztip where the main shock merges with the
FM surface. Globally, as κ increases, the whole jet structure
decreases toward the disk.

Such behavior is consistent with the self-similar calculations
obtained by F97. Indeed, as evidenced in his Fig. 6, the denser
the jet (larger κ), the sooner (smaller altitudes) recollimation
takes place. This can be understood qualitatively by the fact that
λ = 1 + q/κ, where q = |Bφ/Bz| is the magnetic shear at the
disk surface (F97). Now, as the mass load κ increases, the mag-
netic lever arm λmust decrease (see also Fig. 15). This translates
into magnetic surfaces that open less, a less efficient magneto-
centrifugal acceleration, and recollimation shocks that are not
only closer to the disk but also show a smaller compression rate
χ due to a smaller FM Mach number n.

However, the physical scales implied are very different.
Here, a factor 20 difference in κ leads to a decrease in Zshock
by a mere factor 3, with a minimum value of 700. In F97, the
mass-loading parameter κ ∼ ξ varies from 0.01 to 0.05 only (for
a constant disk aspect ratio, see his Fig. 3) but leads to variations
in recollimation altitudes that span six decades. Our lowest Zshock
obtained for κ = 1 is still much farther away than the minimum
height of ∼10 found for κ ∼ 0.05 in F97.

This discrepancy can of course be attributed to the very dif-
ferent injection properties. Indeed, our numerical simulations
assume a supersonic flow while the self-similar calculations
compute the disk structure and outflows are found to only be
super-SM (and still subsonic) at the disk surface. However,
our guess is that the huge difference in the shock position is
probably due to the existence of the spine, which breaks down
the self-similarity. Indeed, recollimation is due to the dominant
hoop stress, and while in our case all quantities are leveling off
on the axis, strictly self-similar solutions have an axial elec-
tric current that grows without limits. For instance, at a cylin-
drical distance r = 0.1 from the axis at the spine basis, our
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Fig. 16. Influence of the mass-loading parameter κ on the final stage of jets obtained with α = 3/4. The color background is the logarithm of the
FM Mach number n, black solid lines are field lines, yellow lines are isocontours of the electric current rBφ and the red dashed (resp. dotted) curve
is the FM (resp. Alfvén) critical surface. The left panels show the whole domain and the right panels a close-up view around the shock-formation
regions. In the left panel, the field lines anchoring radii are ro = 3; 15; 40; 80; 160; 320; 600; 1000; 1500. In the right panel, the field lines anchoring
radii are ro = 1.2; 2; 3; 4; 5; 7; 9; 11; 13; 15.

Bz remains comparable to the disk field, Bφ goes to zero, and
the normalized Bernoulli integral e has decreased by a factor
5 (see Fig. B.1). Self-similar solutions, on the contrary, have
fields and a Bernoulli integral increasing respectively by a factor
105/4 = 17.8 and 10. This suggests that the conditions assumed

on the axis most certainly affect the overall jet collimation prop-
erties. We return to this aspect later on by changing the spine
properties.

A second interesting aspect is the appearance of a second
ensemble of shocks arriving at higher altitudes, namely
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Fig. 17. Influence of κ (orange lines) and α (blue lines) on the altitude of
the main recollimation shock. This is done by measuring two altitudes
for each shock: its height at the axis (Zshock, solid lines) and the altitude
of its outer edge (Ztip, dashed lines). The scale for κ is indicated below,
while the scale for α is above.

Z > 3000 for κ = 0.5 and Z > 2000 for κ = 1. This second
group of shocks is also composed of two large recollimation
shocks separated by smaller ones. The distance (measured at the
axis) between the two large shocks is comparable to the width of
the first group of shocks. As discussed in Sect. 3.3, this hints to
the fact that each group is caused by the global jet recollimation
dynamics, which should be periodic in the Z-direction on a scale
HR. Looking at the simulation K4 with κ = 0.5, this would give
HR ∼ 1650, while the width of each group is around W ∼ 300
(the first group of shocks being located between 1150 and 1450,
and the second between 3100 and 3400). As long as no dissipa-
tion is introduced, such a periodic behavior should continue in a
box of infinite size.

4.2. Influence of the magnetic field distribution α

In this section, we vary the magnetic flux distribution exponent
α in our simulations A1 to A5, keeping all other parameters (see
Table 1) constant. A strict mathematical self-similarity links the
magnetic field distribution α with the disk density in such a way
that α = (12 + 8ξ)/16, where ξ is the disk ejection efficiency
and is related to the disk accretion rate Ṁa(r) ∝ rξ (Ferreira &
Pelletier 1995). As long as material is only outflowing from the
disk (namely ξ > 0) and jet power is only released from accretion
(namely ξ < 1, F97), this leads to the unavoidable constraint
12/16 < α < 20/16.

Only α = 12/16 can be compared to the cold jet solutions of
F97, assuming an ejection efficiency ξ < 0.1. Larger values of
α > 12/16 would require a disk ejection efficiency of ξ = 0.125
up to 0.5. These values are only achievable in analytical stud-
ies by introducing an additional heat deposition at the disk sur-
face (magneto-thermal flows, Casse & Ferreira 2000b) and/or
a much smaller magnetic field strength (Jacquemin-Ide et al.
2019). However, the physical processes required to get these
solutions are missing in our simulation setup. We nevertheless
vary α in order to allow a comparison with the self-similar jet

solutions found by Contopoulos & Lovelace (1994), who tested
the effects of α ranging from 0.5 to 1.02. We did not succeed
to numerically obtain steady-state solutions for α ≥ 1 for rea-
sons that are discussed below, and show only simulations with α
ranging from 10/16 = 0.625 to 15/16 = 0.937.

All our A1 to A5 simulations reach a steady state with the
same overall behavior as K2, namely the existence of two main
recollimation shocks within the computational domain, sepa-
rated by several smaller standing shocks located at the spine–
jet interface. This can be clearly seen in Fig. 18 where, on the
other hand, a trend with α can be observed. Indeed, the radial
extension of the shocks decreases with α. This can also be seen
in Fig. 17 which shows that the altitude Ztip of the main recol-
limation shock decreases with α, while its altitude Zshock at the
axis barely changes. For simulations A1 (α = 10/16) and A2
(α = 11/16), the main recollimation shock ends out of the box,
and therefore Ztip cannot be defined. However, the value of Zshock
remains similar (see Table 1). This is a geometrical effect due
to the fact that, as α increases, the magnetic field configuration
goes from a highly inclined magnetic configuration (α = 0 cor-
responds to a monopole) to one that is much less inclined (α = 2
is a purely vertical field). This can be seen in the shape of the
magnetic field lines (black solid lines) in Fig. 18. This geometri-
cal effect translates into a smaller incidence angle near the axis
and therefore to weaker shocks (the incidence becomes normal
and n⊥ decreases to unity).

For α = 10/16 and 11/16, the shocks still exist but the MHD
characteristics are much more vertical than in K2. A larger box
would probably be necessary to recover the K2 behavior. The
opposite trend can be seen for α = 14/16, with less vertical
MHD characteristics allowing now the second main recollima-
tion shock to merge with the FM surface within the domain.

Table 1 also shows that as α increases, the last radius on the
disk giving rise to a super-FM flow increases and the colatitudes
(measured at the outer boundary) θext

FM and θext
A of the critical FM

and A surfaces decrease. These results are a natural consequence
of the magnetic field distribution becoming more vertical as α
increases. As the jet mass loss Ṁjet and jet power Pjet are com-
puted up to r0,FM which increases with α, Ṁjet and Pjet increase
with α. Still, the mass loss increases even when computing up to
a fixed radius. Indeed, the density decreases less with an increas-
ing α (ρ ∝ r2α−3) and the outer disk regions contribute more
to the mass flux and jet power. Moreover, as the distribution
in density is flatter with an increasing α, it is only natural that
Ṁspine/Ṁjet and Pspine/Pjet decrease when α increases.

In summary, we find that the altitude of the shocks
barely changes with α, which is in strong contrast with
Contopoulos & Lovelace (1994). Indeed, their Table 1 shows
that as α increases from 0.5 to a critical value 0.856, their self-
similar jet becomes super-FM and undergoes a recollimation at
a distance that increases by several decades (as in F97). As dis-
cussed above, we believe that this discrepancy is due to our non-
strict self-similar scaling (which forbids the unlimited growth of
the inner electric current and the subsequential Z-pinch in self-
similar solutions) and the presence of the spine. Contopoulos &
Lovelace (1994) also report that their solutions with α > 0.856
remain sub-FM, while we clearly achieve super-FM flows up to
α = 0.937 = 15/16. This is again probably a difference in our jet
radial balance, leading to a slightly different jet acceleration effi-
ciency. Finally, their solutions with α = 1, 1.01, and 1.02 remain
sub-FM but evolve through a series of radial oscillations at log-
arithmically equal distances in Z.

Our simulation A5 is the simulation with the largest value
α = 15/16, of close to unity. Although the final integration time
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Fig. 18. Influence of the magnetic field dis-
tribution α on the final stage of jets obtained
with κ = 0.1. We use the same notations,
colors, and field lines anchoring radii as in
Fig. 13.
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tend is quite comparable with the other simulations, its appear-
ance clearly shows that the global configuration is still far from
achieving a steady state like K2. This can be seen in Fig. 18, in
the shape of the critical surfaces but also on the isocontours of
the poloidal electric circuit (yellow curves) that are still strug-
gling to find their final state. This is normal and points to a
numerical difficulty in computing MHD codes when the mag-
netic configuration is such that α ≥ 1.

Indeed, it has been argued above that for self-similar bound-
ary conditions, the jet transverse balance imposes a toroidal mag-
netic field scaling with the vertical magnetic field. This leads to
an electric current at the disk surface behaving as I = rBφ ∝ rα−1.
Magnetic configurations with α < 1 correspond to a poloidal
current density leaving the disk surface and closing along or near
the spine (where it flows back to the disk), whereas configura-
tions with α > 1 correspond to an inward poloidal current den-
sity, with current closure being done only at the outskirts of the
outflow (F97). As div J = 0 in ideal MHD, all electric circuits
must be closed. Let us define a radius in the disk rI such that for
r < rI , the electric current flows down into the disk whereas it
flows out of it for r > rI . For α < 1, rI is always larger but close
to Rd implying very short timescales. As discussed in Sect. 3.6,
as time is evolved, the outer disk regions provide more current
that struggles to reach the innermost disk radius. But a global
radial balance can be achieved consistently with the electric cur-
rent closure condition because the local time near rI is small.
On the contrary, configurations with α > 1 have rI that is con-
stantly increasing in time (as t2/3), leading to an electric circuit
that freezes in time and therefore to a transverse MHD balance
that takes a much longer time to achieve steady state. We observe
this behavior for all values of α > 1 and none of these simula-
tions has achieved a steady state.

The limiting value α = 1 (close to our A5 simulation) would
correspond to rI = Rd and absolutely no electric current flow-
ing out of the disk until some outer radius. Current closure could
only be done through the spine and the outer jet interface with
the ambient medium. But then, no magnetic acceleration would
be possible as no electric current could be used along the mag-
netic surfaces. This would correspond to an exact force-free field
configuration fully determined by the chosen boundary condi-
tions. To compute such a situation, boundary conditions must
be designed where the jet launching region has a finite extent.
However, we doubt that the outcome would be a force-free field
unless explicitly enforced. This is beyond the scope of this paper.

4.3. Influence of a rotating central object

In this section, we do not intend to fully explore the physical
parameters of the spine but instead wish to probe whether the
spine, despite its small spatial extent, has indeed a profound
influence on the overall jet dynamics. All simulations K1-K5
and A1-A5 were done with the same nonrotating central object
in order to minimize its emf and numerically follow the outcome
of a jet emitted from an outer self-similar disk (see Sect. 2.4.2).
Our choice of parameters gives rise to a spine carrying typically
10% of the mass flux, and therefore providing only a small con-
tribution to the overall outflow. Nevertheless, this spine carries a
large fraction of the emitted power, even superior to that of the
disk for the simulation A1. The spine plays an important role
in introducing extra standing shocks at its interface with the jet,
but is probably also determining the altitude where the first large
recollimation shock occurs. Indeed, as discussed in the previ-
ous sections, the amount of electric current that is flowing along
the innermost axial regions (along the spine and the inner jet) is

Fig. 19. Snapshot at tend of our SP simulation with a rotating spine,
α = 3/4 and κ = 0.1. We use the same color coding as in Fig. 2. The
magnetic field lines (black solid lines) are anchored at the same disk
radii.

what determines the strength of the Z-pinch acting upon the jet
and thereby the altitude Zshock.

In order to probe this idea, we ran another simulation with
a rotating object (simulation SP in Table 1). We chose an object
rotating at the same angular velocity as the innermost disk radius
Rd, namely Ωa = ΩKd. This is for instance representative of a
star–disk interaction where the disk truncation radius is located
at the co-rotation radius. By doing so, the emf due to the central
object becomes non-negligible and we expect a stronger poloidal
electric current. However, care must be taken as enhancing the
hoop stress may also lead to an overwhelming radial pinch. To
prevent this and get somewhat closer to the self-similar condi-
tions, we also increase the value of the Bernoulli integral on the
axis and use ea = 10 (ea = 2 for the other simulations). We
note that the Bernoulli invariant from the innermost disk region
is ed ' λd − 3/2 ∼ 10. This translates mostly into a thermal
pressure that is five times larger than previously. Thus, our new
conditions for the spine provide a rotation and a specific energy
that are only comparable to those at the inner jet, not much larger
as in a self-similar situation.

Figure 19 shows the final outcome of this new simulation. It
achieves a global steady state with the same features as in our
reference simulation K2. However, the shocks are, as expected,
localized at lower altitudes, allowing a second set of large recol-
limation shocks to appear near Z ∼ 3700. The first large recol-
limation shock appears at Zshock = 1300, which is significantly
smaller than Zshock = 1850 obtained for a nonrotating central
object. This result confirms the role of the central object in shap-
ing, through its spine, the collimation properties of the jets emit-
ted by the surrounding disk. This is very promising and deserves
further investigation.

5. Discussion

5.1. Caveats

This paper provides some novel information on the collimation
of jets emitted from self-similar magnetized disks. However, we
would like the reader to pay attention to several caveats:

As we tried to replicate a Blandford & Payne process, we
mostly explored the ejection conditions on the disk and not on
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the source, with the exception of the rotation (see Sect. 4.3). For
instance, we kept a value of sonic mach number MS = 10 on
the whole ejection zone, thus only creating cold jets. It would
be interesting to provide a real exploration of the spine param-
eters to better understand the role of the central object in the
collimation.

The shocks displayed in our simulations are rather weak
(χ ∼ 2 near the axis, χ ∼ 1.3 in the jet). This is probably
due to our isentropic scheme, but as the simulations only reach
small values of n, the compression rates are intrinsically low (see
Appendix C). Moreover, as shown in Eq. (C.4) the impact of
those shocks on jet angular velocity in YSOs is probably weak,
at least for jets achieving m2 � 1.

Our adiabatic solutions do not allow energy dissipation, and
so the shocks should go on, one above the other, with each shock
producing its own local accelerating circuit. This is showcased
by the presence of a second subset of shocks in simulations K4,
K5 (see Fig. 16), and SP (see Fig. 19). Thus, this setup does
not allow the presence of a “true” asymptotic circuit that would
extend up to infinity on the jet axis.

These simulations are highly dependent on the numerical
setup. In order to capture the expected shocks, we used an HLLD
solver, switching to a more diffusive HLL solver and MINMOD
linear spatial reconstruction in regions of extremely low density
and very high Alfvén speed. For the same reason, we used a
higher resolution in θ around the axis to resolve the shocks. Still,
we were only able to reach very long timescales thanks to a novel
method that boosts the numerical integration (see Appendix A).

5.2. Comparison with other numerical works

In this section, we only compare our findings with previous
2D platform simulations of nonrelativistic jets. Indeed, relativis-
tic jets develop an electric force that deeply affects the asymp-
totic collimation, forbidding a direct comparison with our non-
relativistic setup. We also disregard 3D jet simulations as they
usually introduce a whole new phenomenology related to jet
instabilities that are not present in our work. Making 3D sim-
ulations of our jets is planned for future work.

Platform simulations of jets have a great many degrees of
freedom and it is therefore very difficult to determine the exact
generic results on jet collimation that can be derived from them.
Even if the whole injection domain is chosen to be sub-SM,
three free distributions must be chosen at the boundary (assumed
to be the disk surface), usually Bz(r), ρ(r), and uz(r). The disk
being assumed to be Keplerian, most previous works used field
lines rotating at Keplerian speeds and uz = VinjVK , where Vinj is
a small dimensionless number. We use the following notations
Bz ∝ rα−2 and ρ ∝ r−αρ leading to

κ =
Vinj

µ2 = κdrακ , µ =
VAz

VK
= µdrαµ , (20)

with ακ = −2αµ = −2α + αρ + 3 and the cylindrical radius is
normalized to the inner radius Rd. For a given magnetic field dis-
tribution, the way the mass is injected in the outflow (or how the
magnetic energy must vary within the disk) is an important quan-
tity allowing to compare the various jet models. Our injection
conditions (Eq. (8)) have αρ = 2α−3, and therefore αµ = ακ = 0,
which is in agreement with self-similar studies (BP82; F97). For
our explored range in α < 1, our jets are always dominated by
the mass flux emitted from the innermost disk regions. As dis-
cussed previously, the spatial and temporal scales are also very
important in order to obtain recollimation shocks. We recall that

our spherical domain goes up to Rext = 5650Rd covered with
266 × 1408 zones and lasts T f & 105 Td.

The box size and timescales achieved in the pioneering
works of Ouyed & Pudritz (1997a,b, 1999) were of course quite
small, with a cylindrical domain (z, r) = (80, 20) in Rd units
and a resolution of (500, 200) cells, with the simulations last-
ing up to T f ∼ 500. These authors studied mostly α = 1 and
α = 2 magnetic configurations, assuming αρ = 3/2, µd = 0.01
and with no injected spine. Their jets have therefore a steeply
decreasing κ (or increasing µ) with ακ = 3/2−2α, providing
situations very different from ours. The authors argued that the
nature of the outflow (steady or not) is mostly determined by the
mass load κ, with unsteady jets containing shocks and associated
knots arising at small values of κd ∼ 10−2. While these shocks
are indeed due to jet material being focused toward the axis,
Ouyed & Pudritz (1997a,b, 1999) did not report any steady-state
situation. Our own simulations show that their timescales were
still too short to warrant a transverse jet balance, especially for
α ≥ 1. Moreover, it remains unclear as to whether these knots
were indeed a consequence of a small mass load κd or due to
the boundary conditions used at the jet basis, which were too
numerous and therefore over-determined the outflow dynamics
(see discussions in e.g., Bogovalov 1997; Krasnopolsky et al.
1999; Ramsey & Clarke 2019).

Ustyugova et al. (1999) showed that if the simulation region
is elongated in the z-direction, then Mach cones may be partially
directed inside the domain, leading to an artificial influence (usu-
ally collimation) on the flow. Using a domain (z, r) = (200, 170)
with 100×100 cells, these authors showed that this effect can be
reduced with a square or spherical grid.

Pudritz et al. (2006) extended their work by exploring a
larger range in α = 1, 3/4, 1/2, 1/4, using κ = 5r3/2−2α, µd =
0.01 and no spine. These latter authors argued that the collima-
tion of a jet depends on its radial current distribution, which in
turn is prescribed by the mass load. Simulations with α = 1, 3/4
would collimate to cylinders due to a decreasing κ leading to
a large Bφ, whereas simulations with α = 1/2, 1/4 with an
increasing κ would produce a smaller Bφ and jets closer to wide-
range outflows with parabolic collimation. However, our sim-
ulations show that the physical scales needed to observe the
correct asymptotic state are much larger than those achieved in
these early simulations. Moreover, it is indeed correct that self-
collimation depends on Bφ, which, in a magnetic jet that carries
away the disk angular momentum, namely −rBφ/η ∝ Ωr2, varies
as Bφ ∝ κ(r)Bz at the disk surface. In their case, this expression
leads to Bφ ∝ r−1/2−α, which is indeed more steeply decreas-
ing with α. (However, our guess is that the collimation observed
within the box of Pudritz et al. 2006 is mostly a consequence of
the potential magnetic field configuration used as the initial con-
dition, as also illustrated in Fig. 8.) Therefore, the smaller α, the
wider (less collimated at a fixed distance) the jet.

The influence of the magnetic field profile α on the asymp-
totic jet collimation has also been investigated: Fendt (2006)
performed 40 simulations in a larger cylindrical grid (z, r) =
(300, 150) with 256 × 256 cells, with the simulations lasting up
to T f ∼ 300 to 5 103 (for those achieving a steady state over at
least 50% of the grid). He explored a wide range in αρ from 0.3
to 2 and in α from 0.5 to 1.8, using the same boundary conditions
as Ouyed & Pudritz (1997b), with Vinj = 10−3, κd = 5, no spine,
and µd varying between 0.1 and 2.67. Fendt (2006) confirmed
that the degree of collimation is decreasing for a decreasing α
regardless of αρ, in agreement with our suspicion that the over-
all MHD collimation trivially follows the potential field config-
uration (see also Sect. 3.2). For α > 1.6, no steady-state jet is
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actually found, with a wavy radial pattern evolving along the
outflow. This is consistent with our finding that for α ≥ 1
the timescales for reaching stationarity become overwhelmingly
long and also with the existence of radially oscillating, sub-
FM analytical solutions for α ≥ 1 (Contopoulos & Lovelace
1994). Fendt (2006) also reports a degree of jet collimation
increasing with the jet magnetization exponent, namely with
µσ = −ακ−3/2 (see his Eq. 10). Now, of the 40 simulations, only
6 have ακ = αµ = 0 and 8 have ακ > 0, meaning that most simu-
lations describe a mass loading decreasing with the radius. None
of the simulations show standing recollimation shocks, even in
the BP82 case obtained with µd = 0.177 (we use µd = 1). Putting
aside this difference, our Fig. 12 shows that around their final
time T f = 5000, we observed shocks only around Z ∼ 1900, far
beyond their computational domain.

Krasnopolsky et al. (1999) used a cylindrical grid (z, r) =
(80, 40) with 256 × 128 cells, with the simulations lasting up
to T f ∼ 170, introducing a ballistic axial flow below Rd (the
spine), injected close to the escape speed and surrounded by a
disk wind. These authors used the correct number of boundary
conditions and, by testing the effects of adjusting the size of the
box, they showed the drastic importance of the amount of mag-
netic flux becoming super-A within the box on the overall flow
collimation. They studied mostly α = 1/2 and 3/4 with µd = 4
and rather flat density distributions leading to ακ > 0, from 2
to 3/2. The authors do not report any time-dependent behavior
seen in previous studies, which they attribute to both the exis-
tence of their sub-FM inner spine (where magneto-centrifugal
acceleration is inefficient) and the correct treatment of boundary
conditions. This latter work was extended by Krasnopolsky et al.
(2003) on a much larger box (z, r) = (103, 103) with 190 × 210
zones, with the simulations lasting an unspecified time T f . They
only studied the case α = 1/2, with ejection from a finite zone
ro = Rd and ro = 10Rd, yielding αρ = 1 (ακ = 1) or αρ = 3
(ακ = −1). The authors found that the collimation degree of
this finite jet is improved for a steeper density profile, namely
with a decreasing mass load with the radius, as discussed above.
Krasnopolsky et al. (2003) report neither recollimation toward
the jet axis nor radial oscillations, and attributed this behavior to
their nonself-similar scaling. Our own results show instead that
recollimation should be seen farther out (beyond their box) and
that radial oscillations are expected only for α > 1.

Using the same grid and numerical setup as Krasnopolsky
et al. (2003), Anderson et al. (2005) studied the effect of κd on
the collimation of a cold BP82 jet model with α = 3/4 and
αρ = 3/2 (thus ακ = 0). These authors varied κd from 6.3 10−3

to 19 assuming that ejection takes place only from ro = Rd and
ro = 10 Rd (but enforcing Bz to zero at the edge of the launching
region), while we assumed ejection from the whole disk and var-
ied κd only from 5 × 10−2 to 1. Despite the truncation due to the
limited ejection range and the (almost) purely radial magnetic
field at the edge of the launching region, Anderson et al. (2005)
recover the same results as in steady-state jet theory (FP97):
jets become increasingly open as κd decreases (see discussion
in Sect. 4.1). Anderson et al. (2005) do not report any recolli-
mation shock (although wiggles can be seen in their Fig. 4) but
again, our shocks fall below Z = 1000 (within their box) only for
κd ∼ 1 (see Fig. 17). We conclude that their box was too small
to observe any standing recollimation shock. The authors report
the inability to reach steady state (the timescale T f is unspeci-
fied) for κd larger than unity, when field lines start to oscillate
and produce ripples that propagate outward. This behavior is
consistent with analytical studies and is related to the capabil-
ity to produce super-A flows when they are heavily loaded (or

have a weak magnetic field). Indeed, magnetically driven cold
flows are possible only up to κ ∼ 1, leading to a magnetic lever
arm λ ∼ 2. For larger mass loads (and smaller λ), gravity plays
an important role, with the Alfvén surface getting closer to the
disk, requiring the field lines to be bent by much more than the
fiducial 30◦ at the disk surface4 (see Fig. 4 and discussion around
the Grad-Shafranov equation in Jacquemin-Ide et al. 2019).

The largest axisymmetric simulations have been provided by
Ramsey & Clarke (2011, 2019), using nine levels of AMR in a
cylindrical grid (z, r) = (8×104, 5×103)Rd with simulations last-
ing up to T f ∼ 6× 104. These authors computed the propagation
and evolution of eight jets up to observable scales, defined with
varying mass loads κd from 5 × 10−2 to 32 and αρ = 3/2, α = 1
(thus a decreasing mass load with ακ = −1/2). In the simula-
tions of these latter authors, mass is injected with Vinj = 10−3

and there is no injected spine as in Ouyed & Pudritz (1997a),
although a spine naturally emerges. In all simulations, Ramsey
& Clarke (2011, 2019) observe that regions beyond ro ∼ 10 Rd
fail to displace the hot atmosphere and that the outflow is stifled,
despite the decrease in κ. This is actually consistent with our pre-
vious discussion for simulations with α ≥ 1, which take a much
longer timescale to reach steady state. Nevertheless, as the inner
parts of the outflow evolve on much shorter timescales, some
quasi-stationary situation can settle (see their Sect. 5.3). With
no surprise, this is the case for small mass loads, while knots
appear for κd = 0.5 (simulation E) and are recurrent (quasi-
periodic) for κd = 2. These knots are not to be compared with
our standing recollimation shocks, as none of the MHD invari-
ants are constant along field lines passing through them. They
are made of plasmoids launched from Rd . ro . 2Rd, where gas
is both dense and hot. The knot formation mechanism is here
directly related to the jet-launching process from this innermost
disk region. Indeed, in this region, the field line bending is insuf-
ficient to drive the massive injected material, until a sufficiently
strong toroidal field builds up and lifts the matter, in agreement
with steady-state theory of massive outflows (F97; Jacquemin-
Ide et al. 2019). The regularity of knot spacing is indicative of
a simple oscillator related to the necessary build up of a strong
toroidal field. These plasmoids are magnetically confined by the
surrounding poloidal magnetic field, follow the path of the jet,
and eventually merge together. For larger mass loads (κd = 8
and 32, simulations G and H), the outflows are fully unsteady
while keeping their global structure (probably because of their
2D nature, as destroying instabilities such as kink or Kelvin-
Helmholtz require 3D, as argued by the authors).

To our knowledge, no previous jet simulation has shown
the existence of standing recollimation shocks, either because
the computational domain was too small and/or the simulation
timescales were too short. These limitations are even worse of
course for simulations that do take into account the disk physics,
as they must also struggle to follow the disk and the mass-
loading process.

The first of these simulations computed an accretion–
ejection configuration with α = 3/4 and αρ = 3/2 (the BP82
case) within a cylindrical grid (z, r) = (80, 40) on a time T f =
251 only (Casse & Keppens 2002, 2004). On these timescales,
the mass-loading process is computed, leading to the inside-
out establishment of self-similar conditions with ακ = 0. Fur-
ther simulations, carried out with the same initial configura-
tion but exploring various disk parameters, were computed on
slightly extended scales, a grid (z, r) = (120, 40) on a timescale

4 This is why we could not reach steady-state solutions with κ > 1 with
our setup.
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of T f = 400 (Zanni et al. 2007; Tzeferacos et al. 2009, 2013)
and a grid (z, r) = (180, 50) on a timescale of T f = 5.6 × 103

(Sheikhnezami et al. 2012). As most of these works were focused
on the disk physics and less on the jet dynamics, they provided
little information about the latter. The simulations of Stepanovs
& Fendt (2016) were done on a spherical grid up to Rext = 1500
with (NR × Nθ) = (600 × 128) zones and up to T f = 104, for
the same BP82 initial configuration. Such scales would be rel-
evant for the appearance of recollimation shocks but they only
show close-up views below R = 30 and focus instead on the
accrection–ejection correlations. However, the long timescales
allow us to see a radial redistribution of both the vertical mag-
netic field and the disk density (as both evolve on accretion
timescales; Jacquemin-Ide et al. 2019), thereby modifying the
initial strict self-similar conditions.

The time evolution of the disk magnetic field distribution has
been reported previously (Murphy et al. 2009). These simula-
tions were done in a cylindrical grid (z, r) = (120, 40) up to a
time T f ' 6 × 103, and using α = 1/4 with αρ = 3/2. Such
an initial magnetic field distribution leads to a magnetic energy
density on the disk midplane that decreases very rapidly (∝r−1),
meaning that a super-FM ejection (with proper MHD invariants)
only takes place up to a certain radius ro ∼ 5 (Murphy et al.
2010). This latter study focused on this ejection from a limited
zone within the disk and little was mentioned about the jets.
However, we report that on the long timescale of the simula-
tion, the magnetic field is seen to slowly evolve within the disk,
leading to some readjustments also in the jet. How such a mod-
ification affects the jet transverse balance and possible stand-
ing recollimation shocks is an open issue that deserves further
investigation.

We note that standing recollimation shocks have already
been discussed in steady-state 2D jet simulations built upon ana-
lytical self-similar solutions. In these works, a cylindrical box is
used, which starts at a zo well above the disk (say z from zo = 10
to 210 and r from 0 to 100 in units of Rd). This allows the whole
domain to be filled with either only a self-similar BP82 jet model
(Gracia et al. 2006; Stute et al. 2008) or a combination of an axial
(meridionally self-similar) stellar wind surrounded by a BP82
jet model (Matsakos et al. 2008, 2009). The numerical proce-
dure, which evolves the MHD equations over time for a set of
boundary conditions, allows a stationary solution to be rapidly
obtained on timescales of T f ∼ 40 to 103. A weak recollima-
tion shock is always found between the axial flow and the BP82
jet, which fulfills most properties discussed in our paper. How-
ever, in strong contrast with our own work, the existence of this
shock is unavoidable in these works and is directly imposed by
the boundary conditions. Indeed, the outflow is already super-
FM at the injection altitude zo for all radii below ro ∼ 6 (see
for instance Fig. 1 in Matsakos et al. 2008), while field lines are
already being focused toward the axis.

5.3. Astrophysical consequences

In this paper, we showcase one mechanism enabling the creation
of a recollimating jet and its subsequent shocks. There are other
models explaining the creation of such shocks. They could be
triggered for instance by a sudden mismatch between the jet and
the ambient medium pressure. Studying FRII jets such as those
from the radio galaxy Cygnus A, Komissarov & Falle (1998)
proposed that the jet confinement and its consequential shocks
are caused by the thermal pressure of an external cocoon. For the
case of FRI jets, in Perucho & Martí (2007) the jet expands until

it becomes under-pressured with respect to the ambient medium,
and then recollimates and generates shocks, unless a turbulent
mixing layer at its interface with the ambient medium forbids
its formation (Perucho 2020). In any case, such shocks happen
much farther away than in our case and depend critically on the
ambient pressure distribution.

On the contrary, the jets in our simulations are intrinsically
collimated by the self-induced hoop stress (see Fig. 10). As
shown in FP97 for self-similar cold models and proven here
in full 2D time-dependent simulations, this force will lead the
cold jets toward the axis, leading to the formation of standing
recollimation shocks. Such a mechanism should therefore apply
regardless of the external medium and around various astrophys-
ical objects.

Extragalactic jets imaged by VLBI display knots of
enhanced emission that could be associated with shocks (as they
play an important role for the production of nonthermal emis-
sion). While most of these features are moving, some of them
appear stationary (Lister et al. 2009, 2013; Doi et al. 2018 and
Boccardi et al. 2017 for a review). The closely studied M87
jet is a particularly interesting case. It contains several moving
and stationary bright features near the HST-1 complex (Asada
& Nakamura 2012; Walker et al. 2018; Park et al. 2019), whose
origin may be due to pressure imbalance when the jet reaches
the Bondi radius. This distance is actually larger than the scales
reached by our simulations. However, these are Newtonian and
it is unclear whether or not relativistic effects (in particular the
decollimating force due to the electric field) would push the rec-
ollimation scale farther out. In any case, we note that our nonrel-
ativistic simulations provide shocks that are located on the same
scale as the closest features in the M87 jet (see Fig. 2 of Asada
& Nakamura 2012).

Protostellar jets also present some interesting features along
the flow usually interpreted as being bow shocks, as in HH212
(Lee et al. 2017) or HH30 (Louvet et al. 2018). Their origin
remains highly debated, either instabilities triggered during jet
propagation or variability induced by a time-dependent jet pro-
duction mechanism (as advocated for instance in HH212 by the
remarkable jet–counter-jet symmetry; see Tabone et al. 2018).
However, we suspect that whenever a jet undergoes an MHD rec-
ollimation shock that refracts the jet away from the axis, more
shocks are to be expected downstream (and probably affected
by the external pressure distribution). MHD recollimation may
therefore provide an intrinsic means to trigger jet variability on
observable scales. Stationary emission features are sometimes
indeed detected, as in HH154 (Bonito et al. 2011). These fea-
tures are located from a few tens to a few hundreds of astronom-
ical units from the source, a distance comparable to the altitude
of the first standing recollimation MHD shock. This is worthy of
further investigation.

6. Conclusion

We present axisymmetric simulations of nonrelativistic MHD
jets launched from a Keplerian platform. These are the first to
show the formation of standing recollimation shocks, at large
distances from the source. These recollimation shocks are intrin-
sic to the MHD collimation process and have been proposed as
a natural outcome of self-similar jet-launching conditions (F97;
Polko et al. 2010). Because they were never seen in previous
MHD simulations of jets, the suspicion grew that recollimation
would be a bias due to the self-similar ansatz. It turns out that the
physical scales required to capture these shocks are much larger
than those used in previous works. Using unprecedentedly large
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space and temporal scales allowed us to firmly demonstrate the
existence of such internal standing shocks and thereby bridge the
gap between analytical and numerical approaches.

We analyzed the conditions of formation of these recollima-
tion shocks and show that they qualitatively follow the behavior
demonstrated in analytical studies, namely that they get closer
to the source as the mass load increases. We also confirm that
the magnetic field distribution in the disk (Bz ∝ rα−2) is the
key quantity shaping the asymptotic jet collimation. For our self-
similar ejection setup, this MHD collimation closely follows the
trend satisfied by the potential field: the larger the α the stronger
the collimation. However, no steady-state solution is obtained for
α ≥ 1, because of the difficulty in establishing a stationary self-
consistent poloidal electric circuit along the outer jet regions.
As the magnetic field distribution is very likely to evolve on the
accretion time scale, we expect jet signatures to vary as well (see
e.g., discussion in Barnier et al. 2022).

Despite their qualitative agreement with analytical studies,
our results reveal an undeniable impact of the central axial flow
on the jet asymptotics. This inner spine is not related to the Kep-
lerian disk but instead to the central object and its interaction
with the surrounding disk. Indeed, the spine carries a poloidal
electric current responsible for the innermost jet collimation.
However, it may also introduce extra localized spine–jet inter-
actions, leading potentially to disruptive instabilities (like kink
and/or Kelvin-Helmholtz) or, on the contrary, to global jet sta-
bilization in 3D. Going to 3D is therefore necessary in order to
assess the role of the inner spine and the possible persistence of
recollimation shocks. In any case, our results confirm the role of
the central object in shaping, through its spine, the collimation
properties of the jets emitted by the surrounding disk. This is a
very interesting topic that merits further investigation.

These internal recollimation shocks introduce several inter-
esting features: (i) an enhanced emission likely seen as stationary
knots in astrophysical jets; (ii) a sudden decrease in the rotation
rate of the ejected material, and (iii) a possible electric decou-
pling between the pre-shock and the post-shock regions. This is
of especially great interest as these shocks occur at observable
distances, typically ∼150−200 au in the case of a YSO. How-
ever, our setup also assumes ejection up to several hundreds of
astronomical units, which is clearly inconsistent with derived jet
kinematics (see e.g., Ferreira et al. 2006; Tabone et al. 2020 and
references therein). Simulations with ejection from only a finite
zone within the disk (the JED) must therefore be carried out in
order to verify whether MHD recollimation shocks are indeed
maintained. This is a work in progress.
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Appendix A: Evolution on long timescales

In numerical simulations, the time increment is fixed by the–
Friedrichs–Lewy condition ∆t < ∆x/Cmax, where Cmax is the
maximal wave speed in the cell (in our case u + vFM) and ∆x is
the cell size. In a standard simulation, the time increment of all
cells is chosen by taking the absolute minimum of all the time
increments in the full computational domain. In our simulations,
this time step is set by the smallest cells around the inner spher-
ical boundary at Rd, which also happen to have the strongest
field and the highest Alfvén speed. However, these cells near the
source are also the ones that converge the fastest to a station-
ary solution. Thus, the cells that we consider are converging to a
steady state (meaning the relative variation of the density in one
integration step is smaller than an arbitrarily small parameter)
and are not used to determine the time increment of the cells that
are still evolving in time. The time increment used to evolve the
evolving cells is computed by taking a minimum over only the
cells that have not converged yet. The cells that have converged
to a steady state are still integrated in time using their own local
time increment so as to ensure the stability of the integration
and to be able to capture any perturbation that could possibly
alter their steady condition. As the cells that converge the fastest
are those characterized by the shortest time increment, the time
increments used to evolve the cells that are still evolving in time
and have not converged yet to a steady state become larger and
larger.

It is important to point out that the stationary solutions
obtained with this time boost are also a solution of the standard
nonaccelerated algorithm.

Figure A.1 shows the gain in computing time obtained thanks
to the time boost. The acceleration factor, defined as the ratio
between the physical time reached using the time boost and the
physical time that would have been achieved using the standard
CFL condition, is plotted versus the progressive numbering of
the outputted files.

Without the acceleration due to our handling of the CFL con-
dition, the time interval between two outputs would have been
constant, and the physical time of the solution would have been
proportional to the output number. Any increase in the accelera-
tion factor means that another batch of cells has converged. This
means the time increment of the cells that are still evolving in
time becomes larger, thus increasing the timescales reached.

This increase is clearly visible after the 300th output. Using
the output number as a proxy for the computational cost of a
simulation, this figure clearly shows that, at the end of the inte-
gration, the time boost enables us to reach timescales at least
two or three orders of magnitude larger than using a standard
CFL condition, without increasing the computational cost of the
simulation. Analogously, without employing the time boost, we
would have required two or three orders of magnitude more CPU
hours to reach the same timescales. Our approach enabled us
to produce simulations that would have consumed much more
computing time otherwise. The reference simulation K2 con-
sumed 725 CPU hours, but without the time boost it would
have required almost two million CPU hours. This enabled us
to work on simply 64 processors kindly provided by GRICAD
(Grenoble Alpes Recherche - Infrastructure de Calcul Intensif
et de Données).

For the evolution of the acceleration factor with the mass
load, we can see in Table 1 that the simulations with κ closest to
that of Blandford & Payne (1982) converge the fastest, reaching
larger timescales at the end of the computation. Nevertheless, all
seem to reach comparable convergence speeds: in Figure A.1 we

Fig. A.1. Evolution of the acceleration for the simulations K2, K5, and
A5.

see that the simulation K5 reaches an acceleration factor simi-
lar to that of K2 at the final output. For the evolution with the
magnetic field, we can clearly see that the higher the α and thus
the flatter the profile of the vertical magnetic field, the slower
the simulation converges. For higher values of α, the jet is ini-
tially more collimated as Br/Bz is higher on the disk. Therefore,
the field lines further on the disk have a higher impact, retard-
ing the global convergence. That is why the simulation A5 with
α = 15/16 has not yet converged. As an instability develops,
some cells that were previously stable become unstable, hence
the decrease in acceleration.

Appendix B: Boundary conditions

The plots represented in Figure B.1 illustrate the injection
boundary conditions we have chosen for the reference simula-
tion K2. The Bernouillli invariant E, the poloidal magnetic field
BΦ, the vertical magnetic field Bz, the mass to magnetic flux
ratio η = µ0ρvp/Bp, the rotation speed of the magnetic surfaces
Ω? = Ω−ηBΦ/(µ0ρr), the speed of sound Cs =

√
γP/ρ, and ver-

tical Alfvénic speed VAz = Bz/
√
µ0ρ are plotted on the first cell

over the injection boundary. The toroidal magnetic field goes to
zero on the axis for symmetry reasons, and |BΦ/Bz| & 1 on the
disk : The JED magnetic field is weakly toroidal. The launching
conditions are very cold as VAz/Cs ∼ 102 on both the source and
the disk.

The reader may observe the power-law dependency with the
magnetic flux on the whole disk (Ψ > 10, after the black vertical
line) for all parameters but the electric current. This is directly
induced by the self-similar ansatz. However, the torroidal mag-
netic field BΦ breaks the power-law dependency and shows a
swift decrease for Ψ > 2.106. Of all eight variables, only BR
and BΦ are free at the injection boundary (see Equation (8)), and
need to cross a characteristic surface to be fixed. For the toroidal
current, it is the Alfvénic surface. As all magnetic surfaces over
Ψ & 109 never cross the Alfvénic surface, the current can never
be fixed. Thus, the simulation cannot ever be stationary in this
region.

As the disk is a self-similar jet-emitting disk, all dimension-
less parameters are assumed to be independent of the radius
(Blandford & Payne (1982)). All these parameters are regrouped
in section 2.4.
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Fig. B.1. Conditions on the lowermost cells of the reference simula-
tion K2. Here all parameters are traced along the first cell above the
lower boundary : R = 1 and θ ∈ [0; π/2] on the source and then
θ = π/2 and R ∈ [0; Rext] on the disk. Shown are the Bernouilli invari-
ant E, the toroidal and vertical magnetic field BΦ and Bz, the mass to
magnetic flux ratio η, the rotation speed of magnetic surfaces Ω∗, the
speed of sound Cs and the vertical Alfvénic speed VAz , over the mag-
netic flux Ψ. The black vertical line corresponds to the flux anchored at
(R = 1,θ = π/2), at the source/disk interface.

As explained in section 2.3.2.2, we defined a spline function
f (θ) equal to zero on axis (θ = 0) and one at the inner disk radius
(θ = π/2) to smoothly connect the axis values with the inner disk
ones: f (θ) ≡ (3 sin2 θ − 2 sin3 θ)3/2.

The injection speed (VR on the source, −Vθ on the disk) is
fixed at κµ2 = 0.1 even when varying κ. However, even though
the injection Mach number Ms = up/Cs is assumed to be the
same all along the boundary, in order to account for the varying
inclination of the magnetic surfaces, its value is modified with
the parameter α from simulation to simulation. Its variation with
α is shown in Table 1.

Appendix C: Rankine-Hugoniot jump conditions

In this section, we write the Rankine-Hugoniot jump conditions
valid for standing, adiabatic recollimation shocks. Contrary to
Ouyed & Pudritz (1993), we take into account the toroidal mag-
netic field as the shocks arise when that component is dominant.
The local jump [A] = A2 − A1 between a pre-shock quantity A1
and its post-shock value A2 are expressed in the rest frame as

[ρu⊥] = 0

[ρu⊥(
u2

2
+ H) +

B2

µo
u⊥ −

u · B
µo

B⊥] = 0

[P + ρu2
⊥ +

B2
‖
− B2

⊥

2µo
] = 0

[ρu⊥u‖ −
B⊥
µo

B‖] = 0 (C.1)

[B⊥] = 0
[B⊥u‖ − u⊥B‖] = 0,

where H = C2
s/(Γ − 1) is the enthalpy and u⊥, B⊥ (respectively

u‖, B‖ ) are the normal (respectively tangential) components to
the shock surface. The shock is axisymmetric, and so the tangen-
tial component of the magnetic field B‖ = Btet + Bφeφ, whereas

the poloidal component is Bp = Btet+B⊥e⊥, with the unit vectors
(e⊥, et, eφ) defining a local orthonormal coordinate system. As
these jump conditions express the conservation of mass, angular
momentum, and energy in ideal MHD, the five MHD invariants
along a given magnetic surface (η,Ω∗, L, E, S ) are therefore also
conserved (see Fig.7).

In the case of a shock, the mass flux through the surface is
nonzero, which requires B⊥2 = B⊥1 , 0 and leads to

B‖2 =
m2 − 1

m2/χ − 1
B‖1, (C.2)

where m = u⊥/VAp,⊥ = up/VAp is the Alfvénic Mach number of
the incoming (pre-shock) flow and χ = ρ2/ρ1 = u⊥1/u⊥2 is the
shock compression rate. This equation shows that there are three
nontrivial discontinuities with χ ≥ 1: (1) an oblique shock with
m2 > χ > 1, (2) a normal shock with m2 = χ > 1 (requiring
B‖1 = 0), and (3) an Alfvén shear discontinuity with m2 = χ =
1 (allowing an arbitrary jump between the two tangential field
components). The oblique shock is the only case studied here.

After some algebra all post-shock quantities can be
expressed as function of the pre-shock ones, in particular

Bφ2

Bφ1
=

Bt2

Bt1
= χ

m2 − 1
m2 − χ

uφ2

uφ1
=

m2 − 1
m2 − χ

m2r2
A − χr2

m2r2
A − r2

(C.3)

P2

P1
= 1 + Γm2

s(χ − 1)
(

1
χ

+
b2

2
2χ − m2(1 + χ)

(χ − m2)2

)
T2

T1
=

1
χ

P2

P1
,

where the sonic Mach number ms = u⊥/Cs and magnetic shear
b2 = (B‖/B⊥)2 are computed in the pre-shock region. Of par-
ticular interest are the relative variations of the toroidal mag-
netic field component δBφ = Bφ2/Bφ1−1 and the plasma angular
velocity δΩ = Ω2/Ω1 − 1, as well as the total deflection angle of
the poloidal magnetic surface δi = i2 − i1 where tan i = Bt/B⊥,
which read

δBφ = (χ − 1)
m2

m2 − χ

−δΩ =
χ − 1

m2 − χ

m2(r2 − r2
A)

m2r2
A − r2

≤
χ − 1

m2 − χ
(C.4)

tan δi =
m2(χ − 1)

m2 − χ

tan i1
1 + χ tan2 i1 m2−1

m2−χ

.

These quantities are plotted in Fig. 9. The compression rate χ is
the solution of the cubic polynomial equation

−Aχ3 + Bχ2 −Cχ + D = 0 (C.5)

with

A = 1 + b2 +
1 + χo

Γm2
s

B = χo(1 + b2) + 2m2
(
1 +

1 + χo

Γm2
s
− b2 χo − 3

4

)
C = m2

(
2χo + b2 1 + χo

2
+ m2

(
1 +

1 + χo

Γm2
s

))
D = χom4,
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Fig. C.1. Distribution at tend along the main recollimation shock of the
compression ratio for simulation K2. The yellow curve is the theoretical
solution χth of Eq. C.5, computed using the pre-shock quantities, while
the blue curve is the ratio χ = ρ2/ρ1.

where χo = (Γ + 1)/(Γ − 1) is the maximal compression ratio
for a hydrodynamic shock. Equation C.5 has one positive root
only for an incoming super-FM flow, namely for n⊥ = u⊥/V f m,⊥
larger than unity.

We are dealing here with supersonic (ms >> 1) and super-
A (m >> 1) cold jets, where the dominant magnetic field is the
toroidal one (b2 ' (Bφ/B⊥)2 >> 1). The FM Mach number in
the normal direction therefore writes n⊥ ' mVAp,⊥/VAφ = m/b,
which leads to the simplified equation for χ

χo − 3
2

χ2 +

(
1 + χo

2
+ n2

⊥

)
χ − χon2

⊥ = 0 . (C.6)

This shows that whenever jets reach a very large FM Mach num-
ber n⊥, a large compression rate χ ' χo is possible. But this is
never achieved in our case. Indeed, the poloidal FM Mach num-
ber n = up/VFM,p (> n⊥) writes

n2 = ωA
BpAr2

A

Bpr2

1 − 1/m2

1 − r2
A/r

2

(
up

Ω∗rA

)3

∼ ωA

(
up

Ω∗rA

)3

, (C.7)

where ωA = Ω∗rA/VAp,A is the fastness parameter introduced in
F97 (ratio at the Alfvén point of the speed of the magnetic rota-
tor to the poloidal Alfvén speed). For magneto-centrifugal jets
like ours, with m2 >> 1, r >> rA and achieving their maximal
velocity up ∼

√
2Ω∗rA, the FM Mach number is n2 ∼ ωA, which

is larger than but of the order of unity (see also Krasnopolsky
et al. 2003). As a consequence, we expect rather weak shocks as
illustrated by the small values of χ achieved along the various
shocks (see Fig. 9).

Figure C.1 plots the theoretical solution χth of Eq. C.5 (in
yellow) computed along the main recollimation shock of our
simulation K2 and compares it with the ratio χ = ρ2/ρ1 (in
blue) directly measured (see Fig. 4). The correspondence is very
good, with discrepancies remaining below a few percent. The
two regions where larger differences are obtained correspond
to the positions where the two smaller shocks (triggered at the
spine-jet interface) merge with the main shock: the orange one
near r ∼ 500 and the cyan one near r ∼ 900.

The shocks were detected by following all magnetic field
lines anchored on the disk and looking for discontinuities. This
is not obvious in a discrete grid. To do so, we computed the
derivative of the toroidal magnetic field (δBφ) over the curvi-
linear abscissa along the field line, as shocks are best seen with
the electric poloidal current and explored its local extrema. We
checked that a different approach, based on the calculation of the
refraction angle δi of the poloidal magnetic surface, produces
very similar results. This gave us the shock locations used to
produce the plots in Figures 2 and 17. As PLUTO has a shock
capturing scheme, each shock is resolved and has a finite width.
To determine the shock width, we checked that the density was
growing within the shock as expected. Then, still following the
field line, we looked for the closest local minimum and maxi-
mum in density. The positions of these extrema allowed us to
compute the values of the pre-shock and the post-shock quanti-
ties, respectively. These were finally used to compute the param-
eters leading to the Figures 9 and C.1.
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