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Hybrid quantum mechanics / molecular mechanics (QM/MM) models successfully describe the properties of biological
macromolecules. However, most QM/MM methodologies are constrained to unrealistic gas phase models, thus limiting
their applicability. In the literature, several works have attempted to define a QM/MM model in periodic boundary
conditions (PBC) but frequently the models are too time-consuming for general applicability to biological systems in
solution. Here, we define a simple and efficient electrostatic embedding QM/MM model in PBC combining the benefits
of electrostatic potential fitted (ESPF) atomic charges and particle-mesh Ewald sums, that can efficiently treat systems
of arbitrary size at a reasonable computational cost. To illustrate this, we apply our scheme to extract the lowest singlet
excitation energies from a model for arabidopsis thaliana cryptochrome 1 containing circa 93000 atoms, reproducing

accurately the experimental absorption maximum.

Embedding methods in quantum chemistry allow reducing
the overall computational cost by treating a small subsystem
of atoms with an accurate theoretical method while treating
the rest of the system in a cheaper and often less accurate
approach! In such embedding schemes, the total energy is
computed as the sum of energies of the constituent subsystems
plus some interaction terms between each fragment® One of
the most popular embedding methods for treating biological
macromolecules is quantum mechanics / molecular mechan-
ics (QM/MM)2 in which the energy is expressed as,

E = Egy + Eyy +E™ (1)

where Egyy is the energy of the (small) QM subsystem, Epy
is the energy of the (large) MM subsystem, and E™ is the
interaction term between them. Usually, the interaction is
electrostatic, complemented with other pairwise atom-atom
interactions. The majority of ab initio QM/MM methods have
been formulated employing an electrostatic Coulomb interac-
tion between QM and MM subsystems, the complete macro-
molecular system being in the gas phase® There exist several
attempts in the literature to formulate an ab initio QM/MM
method for models of macromolecules surrounded by an ex-
tended environment (solvent, membrane, etc.), either using
non-periodic continuum models or periodic boundary condi-
tions (PBC) employing the Ewald summation technique 721
Most QM/MM PBC formulations rely on atomic point
charges for efficiently representing the long-range QM-QM
interactions such as Mulliken O7ZUOLES - chEIpG 13151200
ESP1% or other types!?2! Such methods mainly use Ewald
pair potentials 0131620 standard Ewald 721202 or exploit-
ing the efficiency of particle-mesh Ewald (PME) method 2224
The PME, which is state-of-the-art algorithm for efficiently
calculating long-range interactions in large MM systems,
has mainly been implemented for semi-empiricall?H1H418
QM/MM methods. We are aware of only two recent articles
reporting its use in ab initio QM/MM methods 2L

Here, we combine the advantages of electrostatic potential
fitted (ESPF) charges** and PME potentials to formulate
an efficient ab initio electrostatic embedding QM/MM PBC
method, defining a unified consistent embedding energy from

FIG. 1. Schematic representation of the electrostatic embedding
QM/MM PBC method described here for a chromophore (QM) in
water (MM). In the original cell (center), the QM subsystem is rep-
resented by a quantum charge density. In the replica cells, the QM
atoms are represented as ESPF point charges (green circles). MM
atoms are represented with blue and red point charges. All point
charges are used to polarize the QM density in the original cell.

an interaction hamiltonian. Our formulation takes full com-
putational advantage of PME, it reduces the number of in-
tegrals to be computed and can be applied to any ab initio
self-consistent field method. The definition of ESPF QM/MM
PBC interaction (see Fig. [T) is based on the pairwise elec-
trostatic interaction energy between QM and MM subsystems
defined in terms of potentials,

E" =Y aa @™+ ) aa®f”, @)
A A

where the first term accounts for the QM-MM interactions and
the second term for the QM-QM interactions, with the 1/2
factor to avoid double counting. Hereafter, we use the com-
mon index notation upper and lower case letters to indicate
QM and MM atoms respectively. The Ny is the number of
QM atoms, g4 = Z4 — Q4 are their partial charges, defined as
the difference between the atomic charge Z4 and the electronic
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charge population Q4 =Y,y PuvQa uv, obtained as the con-
traction between the quantum density matrix P and an atomic
charge operator matrix Q4 to be defined later on. The nota-
tion ®4 is a short-hand notation for the external potential felt
at atom position A, that is, @4 = O(r4).

It must be immediately emphasized that 9@ /9P,, =0
while 8CI>§M /dPyy # 0. Taking this into account, we can ob-
tain an interaction operator by deriving the interaction energy
with respect to any density matrix element Py, leading to

== Y Oapuy (P4 +0") == Y Qasv®a, )
A A

where we defined the total potential ®4 = CIDQ”M + <I>§M.

Up to this point, this is a general formulation for a QM/MM
embedding when using charge operators. The different
QM/MM models are then distinguished by defining the MM
energy and the external electrostatic potential. For example,
in the straightforward QM/MM implementations of pairwise
Coulomb interactions without PBC, the QM/MM procedure is
simple by defining the external electrostatic potential as

D, :cpMM:NﬁL. )
§ [raj]

Here, ry; = rq —r; is the distance vector between the two

charges. In this case, C[DgM = 0 and therefore the interaction
energy and operator matrix elements can be computed with
the sole knowledge of the potential generated by MM atoms
on QM centers.

The use of PBC allows to account for the long-range in-
teractions and to build a more realistic model of the macro-
molecule interactions with the solvent. However, the introduc-
tion of Coulomb interaction with replicas results in slow and
conditionally convergent interaction energy. The employment
of Ewald summation technique to reach a faster convergence
by introducing a range-separated electrostatic interaction,?
allows to split the pairwise Coulombic interaction energy for
a system containing N point charges into three contributions,

E = Eshort +E10ng _’_Eself7 (5)

in which we define short-range energy as

1 N/ qadq
gt ==Y ¥ lere(Blrapm|).  ©)
n=0¢,f=1 |raﬁn|
the long-range energy as
7r2m2
1 67 B2 2
E=_—Y ———|§ 7

m#0

and the self-interaction energy as

Eself —

B N
qu. (8)

In these formulas, r, fn=Ta—Tg+ nL, where L is the length
of the unitary cell (cubic) box and f is the range separa-
tion parameter that controls the rates of converging of the
first two terms. E*"", which recovers the short-range part
of the interactions, is computed in real space and contains a
summation over the original box and all the replicas which
are described by the n vectors. The prime in the second
sum of Eq. [fl means that we are excluding those terms for
which a@ = 8 when n = 0, while erfc(x) is the complemen-
tary error function which is defined as erfc(x) = 1 — erf(x),
where erf(x) is the error function. E', including the long-
range part of the interactions, is computed in the recipro-
cal space, where the summation runs over all the reciprocal
space vectors m. The so-called structure factors are defined

by S(m) = SQM(m) +SMM(m), and
Nom Nym
SQM Z qga 627nm rq . SMM Z gie 27im-r; ) )

Note that, within the long-range energy expression, the inter-
actions in the original cell for which a = 8 are not omitted
from the summation and, instead, the contribution to the en-
ergy due to such terms is removed by the introduction of self-
interaction energy (E*¢'/) which is a constant correction term.

For the QM/MM model in PBC, it is necessary to define
new expressions for MM energy and @4 out of the Ewald en-
ergy expression. The purely MM electrostatic energy con-
tribution can be easily obtained from Egs. [6] to [§] by restrict-
ing the summations to MM atoms only. The electrostatic po-
tentials in QM/MM PBC procedure have both MM and QM
parts. The MM potential contains short and long-range con-
tributions,

(I)%M — (I)ert,MM +(I)1140ng,MM7 (10)

while the QM potential contains in addition to the short and
long-range potentials, a self-interaction and correction terms,

q)gM _ (I)Zh"rt’QM +q)i\ong,QM +q)ielf,QM+q)zorr.QM. (11)

Here, ®4 has to be understood as the electrostatic potential
calculated at the position of QM atom A in the original cell,

that is, @4 = ®(r4 +0L). The expressions for the short-range
MM and QM potentials are given by
hort MM _ N
Syl Z Z erfc (B [raim]|)
n=0 i= | Azn‘
hort,OM __ Nov
@S Yy Z erfc (Blrasl|),  (12)
n#0 B=1

and the long-range MM and QM potentials are given by

2
1 2 -
CIDZ’"g’MM = ¢ —R [efzmm'rASMM(m)}
nV aZy m
—nzmz
q)long,QM o 1 e B —27rim~rAS 13
A = W Z m?2 e QM(m)v (13)
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where R(z) is the real part of z. For constructing the total
QM potential, two extra terms have to be considered, the self-

interaction (CIDMf My and the correction potentials (D" OMy
The self-interaction potential is defined as

~ 2
@O = \/’iqA, (14)

while the correction potential is defined as

corr,OQM __
D, =

Cl'f(ﬁ ‘rABO| (15)
—1 |rAB |

These two terms arise from spurious interactions that need to
be removed.? In this framework, extra energy terms are eas-
ily included as extra potential sources (see for example the
surface-dipole and the non-neutral cell correction terms in the
supporting information).

The ESPF method ensures the uniqueness of the result-
ing QM/MM potential energy surface, an absolute require-
ment for obtaining accurate molecular gradients at a reason-
able computational cost.*” Therefore, ESPF guarantees that
the correction term in eq. [13]is equivalent to the interaction
term that should be removed from eq. [I3] In the ESPF pro-
cedure, the charge operator matrix elements are fitted to QM-
only electrostatic integrals computed on a numerical grid con-
structed around the molecule/® For obtaining the charge op-
erators used in eq.[3] a system of equations,

QA[.LV
Z"I

' 3 * 1

I —Tal /d I‘%ﬂ(r)|1'*1'/<|%V(r)’ (10
has to be solved. The ry are the point coordinates of a Lebedev
atom-centered grid defined around the molecule, and y are the
atomic orbitals. A correction is added to the charge operator
matrix elements to ensure the conservation of the total charge
of the QM subsystem

While Ewald summation has been undoubtedly useful for
handling long-range interactions inside the PBC framework,
its original formulation scales like O(N?) and becomes soon
computationally unfeasible when the MM system is large. As
a consequence, different approaches, aimed at reducing the
algorithmic complexity have been proposed. 282! The model
described in this work makes use of the Smooth Particle
Mesh Ewald (SPME) method, firstly introduced by Pedersen
and coworkers,?*?% which features a reduced complexity of
O(Nlog(N)). The main idea behind PME consists in ap-
proximating the structure factor (eq. [9) by interpolating the
complex exponential. While the original Particle Mesh Ewald
method makes use of Lagrangian interpolation, the SPME is
based on cardinal B-spline interpolation, which allows ana-
Iytic differentiation. Within SPME, the long-range potential
could be expressed as

d)iong ~ zk: Op (w1 —k1)Op (u2j —k2) 0 (u3; —k3) (G* Q) (k)
a7

where 6, is the p-th order cardinal B-spline functions, u con-
tains the scaled fractional coordinates of a point of coordinates
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FIG. 2. (top) ESPF QM/MM PBC model of arabidopsis thaliana
cryptochrome 1 in a water box. The isoalloxazine, D396 and W400
(64 atoms in total) are treated at the QM level, with the link atoms
shown in purple; (bottom, left) Excitation energies for several snap-
shots computed with restricted open-shell Kohn-Sham and time-
dependent density functional theory. The mean values (dashed lines)
are compared to experimental values from Ref. 32l

r in the original cell, n are the real-space grid points vectors,
G * Q is the convolution of G, the generalized influence func-
tion defined by its Fourier transform, and Q, the generalized
grid multipolar array.?*

The presented methodology, combining PME and ESPF
charges, represents a consistent formulation between the en-
ergy and the Hamiltonian and an efficient method for com-
puting the ground and excited state energies. To test this, we
extract the lowest singlet excitation energies of 40 snapshots
of arabidopsis thaliana cryptochrome 1 (see Fig. 2] and the
supporting iformation for the computational details). On the
one hand, time-dependent density functional theory (TDDFT)
has been performed on top of the QM/MM PBC ground state
Kohn-Sham reference. In this model, we consider that the
external potential is fixed in the excited state calculations,
and therefore, the only excitation process occurs in the orig-
inal cell, while the replicas remain in the ground state. No
response terms have been added to the TDDFT equations.
This approximate model, for which the average excitation en-
ergy is around 412 nm =+ 26 nm, is in excellent accordance
with the experimental absorption maximum of 420 nm % The
blue-shift can be attributed to the lack of vibronic effects,
which are known to be important in the absorption spectra
of isoalloxazine*3 On the other hand, we have implemented
a restricted open-shell Kohn-Sham (ROKS) model to extract
the lowest energy excited state directly from the SCF># In
this model, both the chromophore in the original cell and the
replicas are excited. In this case, the average excitation energy
is 518 nm =+ 35 nm, thus underestimated by around 100 nm
with respect to experiments. Of course, this model is limited
by the fact that excited states are represented by a single con-
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figuration, but also the probably unrealistic situation that the
photoexcited protein is surrounded by simultaneously excited
proteins in the replicas.

In conclusion, we have presented an efficient QM/MM for-
mulation in periodic boundary conditions based on electro-
static potential fitted charges and smooth particle-mesh Ewald
sums. The method scales approximately like O(c - N};3,)
(0t =4-1079, see supporting information for further details),
opening up the route for a general application of QM/MD
simulations in large-sized periodic systems. This will require
the computation of analytic energy first derivatives, which we
plan to develop in the future.

ACKNOWLEDGMENTS

We acknowledge the support from “Agence Nationle de la
Recherche” through the project MAPPLE (ANR-22-CE29-
0014-01). Centre de Calcul Intensif d’Aix-Marseille is ac-
knowledged for granting access to its high performance com-
puting resources.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

11,. 0. Jones, M. A. Mosquera, G. C. Schatz, and M. A. Rat-
ner, Journal of the American Chemical Society 142, 3281
(2020).

2D. G. Fedorov, T. Nagata, and K. Kitaura, Phys. Chem.
Chem. Phys. 14, 7562 (2012).

3Q. Cui, T. Pal, and L. Xie, The Journal of Physical Chem-
istry B 125, 689 (2021).

“M. Huix-Rotllant and N. Ferré, Journal of Chemical Theory
and Computation 17, 538 (2021).

SE. Falbo, M. Fus¢, F. Lazzari, G. Mancini, and
V. Barone, Journal of Chemical Theory and Computation
18, 6203-6216 (2022).

%K. Nam, J. Gao, and D. M. York, Journal of Chemical The-
ory and Computation 1, 2 (2005).

"D. Riccardi, P. Shaefer, and Q. Cui, The Journal of Physical
Chemistry B 109, 17715-17733 (2005).

8T, Laino, F. Mohamed, A. Laio, and M. Parrinello, Journal
of Chemical Theory and Computation 1, 1176 (2005).

9T. Laino, F. Mohamed, A. Laio, and M. Parrinello, Journal
of Chemical Theory and Computation 2, 1370 (2006).

10G. d. M. Seabra, R. C. Walker, M. Elstner, D. A. Case, and
A. E. Roitberg, The Journal of Physical Chemistry A 111,
5655 (2007).

HR. C. Walker, M. F. Crowley, and D. A. Case, Journal of
Computational Chemistry 29, 1019 (2008).

12C. F Sanz-Navarro, R. Grima, A. Garcia, E. A. Bea,
A. Soba, J. M. Cela, and P. Ordejon, Theoretical Chemistry
Accounts 128, 825 (2011).

137.C. Holden, R. M. Richard, and J. M. Herbert, The Journal
of Chemical Physics 139, 244108 (2013).

14K. Nam, Journal of Chemical Theory and Computation 10,
4175 (2014).

157, C. Holden, R. M. Richard, and J. M. Herbert, The Journal
of Chemical Physics 142, 059901 (2015).

16T Vasilevskaya and W. Thiel, Journal of Chemical Theory
and Computation 12, 3561 (2016).

17T, J. Giese and D. M. York, Journal of Chemical Theory and
Computation 12, 2611 (2016).

I8, Nishizawa and H. Okumura, Journal of Computational
Chemistry 37, 2701 (2016).

19y, Kawashima, K. Ishimura, and M. Shiga, The Journal of
Chemical Physics 150, 124103 (2019).

207, C. Holden, B. Rana, and J. M. Herbert, The Journal of
Chemical Physics 150, 144115 (2019).

21y P, Pederson and J. G. McDaniel, The Journal of Chemical
Physics 156, 174105 (2022).

22T, Darden, D. York, and L. Pedersen, The Journal of Chem-
ical Physics 98, 10089 (1993).

23U. Essmann, L. Perera, Berkowitz, T. Max L., Darden,
H. Lee, and L. G. Pedersen, The Journal of Chemical
Physics 103, 8577 (1995).

¢, Sagui, L. G. Pedersen, and T. A. Darden, The Journal of
Chemical Physics 120, 73 (2004).

25N. Ferré and J. G. Angyédn, Chemical Physics Letters 356,
331 (2002).

26p P Ewald, Annalen der Physik 369, 253 (1921).

2TE. Melaccio, M. Olivucci, R. Lindh, and N. Ferré, Interna-
tional Journal of Quantum Chemistry 111, 3339 (2011).

28 A. Y. Toukmaji and J. A. Board Jr., Computer Physics Com-
munications 95, 73 (1996).

2D. R. Wheeler and J. Newman, Chemical Physics Letters
366, 537 (2002).

30y, Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and
D. E. Shaw, The Journal of Chemical Physics 122, 054101
(2005).

3IF. Nestler, M. Pippig, and D. Potts, Journal of Computa-
tional Physics 285, 280 (2015).

M. Ahmad, N. Grancher, M. Heil, R. C. Black, B. Gio-
vani, P. Galland, and D. Lardemer, Plant Physiology 129,
774 (2002).

33K, Schwinn, N. Ferré, and M. Huix-Rotllant, Journal of
Chemical Theory and Computation 16, 3816 (2020).

34T, Kowalczyk, T. Tsuchimochi, P.-T. Chen, L. Top, and
T. Van Voorhis, The Journal of Chemical Physics 138,
164101 (2013).



	An efficient electrostatic embedding QM/MM method using periodic boundary conditions based on particle-mesh Ewald sums and electrostatic potential fitted charge operators
	Abstract
	 Acknowledgments
	 Data availability statement
	 References


