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Holomorphic Embedding Load Flow Method in Three-Phase Distribution Networks with ZIP Loads

The Holomorphic Embedding Load flow Method (HELM) employs analytic continuation of complex analytic functions to calculate the practical (high voltage) load flow solution and provides promising convergence guarantees. Although HELM has been applied to various types of power systems, the literature has not thoroughly investigated three-phase distribution networks with common load types/connections. In this paper, we extend HELM to three-phase distribution networks with ZIP loads, while preserving its prominent convergence promises. Specifically, we introduce a HELM formulation, which emphasizes on accurate modeling of constant-current loads (and the voltage dependence of current injections) for both wye and delta connections. We perform extensive numerical experiments on standard test systems with various equipment/connection types to demonstrate the accuracy and efficacy of the proposed HELM compared with the existing literature.

Index Terms-Holomorphic Embedding Load flow Method (HELM), three-phase distribution network load flow, ZIP loads.

I. INTRODUCTION

R OBUST AC load flow solution methods are of funda- mental importance to power system operation as their solution represents the steady-state operating condition. Numerical iterative methods, such as the traditional Newton-Raphson (NR) method, are extensively applied to the nonlinear AC load flow equations. However, although the traditional NR method in polar coordinates [1] and their variants, e.g., the Fast Decoupled method [2], are typically employed in transmission systems, they are not as robust and efficient in distribution networks, which are characterized by radial or weakly meshed structure, unbalanced three-phase operation, and high R/X ratios.

, have proven to be more successful in distribution networks. The BFS method is considered to be computationally efficient taking advantage of the typical radial structure of distribution networks. While several

common transformer winding connections are modeled in the BFS method, typically by deriving matrices that express the relationship between nodal phase-to-ground voltages and line currents [START_REF] Kersting | Distribution system modeling and analysis[END_REF], some important configurations such as the grounded wye-delta are yet to be addressed [START_REF] Kocar | Implementation of a modified augmented nodal analysis based transformer model into the backward forward sweep solver[END_REF]. In addition, the BFS method may encounter numerical instability issues when incorporating specific transformer winding connections [START_REF] Wang | Implementing transformer nodal admittance matrices into backward/forward sweep-based power flow analysis for unbalanced radial distribution systems[END_REF], particularly when dealing with large shunt admittances and constant-impedance loads [START_REF] De Araujo | Comparisons between the three-phase current injection method and the forward/backward sweep method[END_REF], [START_REF] De Araujo | Sensitivity analysis of convergence characteristics in power flow methods for distribution systems[END_REF], [START_REF] Heidarifar | A Riemannian optimization approach to the radial distribution network load flow problem[END_REF]. The IZB method is numerically more stable due to the fact that transformer models are incorporated into the Y -bus admittance matrix, whose invertibility is crucial for convergence [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF]. Notably, the BFS method and a variant of the NR method are the main load flow solvers in GridLAB-D [START_REF] Pnnl | GridLAB-D power flow solution methods[END_REF] (PNNL's distribution network analysis tool), whereas variants of the IZB and NR methods are implemented in OpenDSS [START_REF] Dugan | OpenDSS manual[END_REF], (EPRI's distribution system simulator tool). Nonetheless, the aforementioned numerical iterative methods neither guarantee convergence to the practical load flow solution, if it exists, nor provide an unequivocal signal of divergence in case a solution does not exist. In contrast, the Holomorphic Embedding Load flow Method (HELM) [START_REF] Trias | The holomorphic embedding load flow method[END_REF], proposed in 2012 for single-phase AC power systems, provides promising convergence properties.

HELM is a recursive load flow solution method that successively obtains higher order coefficients in the voltage Maclaurin series starting from the zeroth coefficient -a.k.a. germobtained as the solution of the load flow equations under a noload no-generation scenario. As such, HELM does not rely on an arbitrary initial guess employed by other solution methods encountered in the literature. In order to ensure existence of the voltage Maclaurin series and attain convergence guarantees, HELM requires holomorphicity, i.e., complex differentiability, of the load flow equations, YV = I(V), where Y is the Y -bus admittance matrix, V the voltages, and I the current injections. Given the linearity of the lhs of the load flow equations w.r.t. voltages, it is only required to ensure holomorphicity of the rhs, which involves current injections as a function of voltages, I(V). Because the rhs is, in general, not holomorphic, HELM embeds a complex-valued parameter -interpreted as a load factor -to implicitly define holomorphic voltage functions for which the Maclaurin series exist. Moreover, HELM employs analytic continuation methods, e.g., Padé approximants, to evaluate voltages within their domain but beyond the radius of convergence of their respective Maclaurin series, hence providing convergence guarantees to the practical solution, if it exists, or unambiguously signaling non-existence.

HELM has received considerable attention in the literature.

There are several works that incorporate equipment models, e.g., see [START_REF] Subramanian | PV bus modeling in a holomorphically embedded power-flow formulation[END_REF], [START_REF] Rao | The holomorphic embedding method applied to the power-flow problem[END_REF] for PV nodes, [START_REF] Liu | Remote voltage control using the holomorphic embedding load flow method[END_REF] for remote voltage control, [START_REF] Basiri-Kejani | Holomorphic embedding Load-flow modeling of thyristor-based FACTS controllers[END_REF] for thyristor-based FACTS controllers, and [START_REF] Singh | STATCOM model using holomorphic embedding[END_REF] for STATCOM. There are also works that present HELM applications, e.g., see [START_REF] Liu | Probabilistic power flow analysis using multidimensional holomorphic embedding and generalized cumulants[END_REF] for probabilistic load flow analysis, [START_REF] Liu | Online voltage stability assessment for load areas based on the holomorphic embedding method[END_REF], [START_REF] Yao | Voltage stability analysis of power systems with induction motors based on holomorphic embedding[END_REF], [START_REF] Chevalier | Mitigating the risk of voltage collapse using statistical measures from PMU data[END_REF] for voltage stability assessment, [START_REF] Zhu | Nonlinear structure-preserving network reduction using holomorphic embedding[END_REF] for network reduction, [START_REF] Wu | Holomorphic embedding based continuation method for identifying multiple power flow solutions[END_REF] for locating multiple load flow solutions, [START_REF] Yao | Novel AC distribution factor for efficient outage analysis[END_REF] for line outage distribution factors, and [START_REF] Yao | Efficient and robust dynamic simulation of power systems with holomorphic embedding[END_REF] for dynamic simulation. Furthermore, there are a few works that extend HELM to solve the load flow problem in DC power transmission systems [START_REF] Trias | The holomorphic embedding load flow method for DC power systems and nonlinear DC circuits[END_REF], single-phase distribution networks [START_REF] Baghsorkhi | Embedding AC power flow in the complex plane part I: Modelling and mathematical foundation[END_REF], [START_REF] Heidarifar | Efficient load flow techniques based on holomorphic embedding for distribution networks[END_REF], three-phase distribution networks [START_REF] Keihan Asl | Holomorphic embedding load flow for unbalanced radial distribution networks with DFIG and tap-changer modelling[END_REF], [START_REF] Sun | Holomorphic embedding load flow modeling of the three-phase active distribution network[END_REF], and AC/DC hybrid power systems [START_REF] Zhao | Holomorphic embedding power flow for AC/DC hybrid power systems using Bauer's Eta algorithm[END_REF].

Apparently, there has been limited discussion on HELM's performance on the distribution network load flow problem. In our previous work [START_REF] Heidarifar | Efficient load flow techniques based on holomorphic embedding for distribution networks[END_REF], we proposed two HELM variants by exploiting the typical radial/weakly-meshed topology in single-phase distribution networks. Due to the nature of distribution network loads, modeling voltage-dependent ZIP load models, i.e., constant-impedance, constant-current, and constant-power, as well as ensuring holomorphicity for the representation of the current injections as a function of voltages, are of significant importance. Evidently, the current injections by constant-impedance load models are a linear function of the voltages, and hence holomorphic. Furthermore, HELM literature has sufficiently addressed constant-power loads [START_REF] Trias | The holomorphic embedding load flow method[END_REF], [START_REF] Rao | The holomorphic embedding method applied to the power-flow problem[END_REF], however, it has not thoroughly investigated the accurate incorporation of voltage-dependent constant-current load models. We note that the constant-current load model in our previous work [START_REF] Heidarifar | Efficient load flow techniques based on holomorphic embedding for distribution networks[END_REF] is based on the modeling of [START_REF] Trias | The holomorphic embedding load flow method[END_REF], where the current injections from constant-current loads are in fact voltage-independent.

Arguably, the performance of HELM has not been fully evaluated yet in three-phase distribution networks that incorporate various transformer winding connection types and voltagedependent ZIP load models. To the best of our knowledge, [START_REF] Keihan Asl | Holomorphic embedding load flow for unbalanced radial distribution networks with DFIG and tap-changer modelling[END_REF] and [START_REF] Sun | Holomorphic embedding load flow modeling of the three-phase active distribution network[END_REF] are the only works that apply HELM to three-phase distribution networks. The HELM formulation in [START_REF] Keihan Asl | Holomorphic embedding load flow for unbalanced radial distribution networks with DFIG and tap-changer modelling[END_REF] assumes constant-power and voltage-independent constant-current wyeconnected loads. The formulation in [START_REF] Sun | Holomorphic embedding load flow modeling of the three-phase active distribution network[END_REF] considers a ZIP load model for wye-connected loads, and a constant-power load model for delta-connected loads. Although the constantcurrent load model in [START_REF] Sun | Holomorphic embedding load flow modeling of the three-phase active distribution network[END_REF] considers voltage dependence based on an earlier work [START_REF] Baghsorkhi | Embedding AC power flow in the complex plane part I: Modelling and mathematical foundation[END_REF], as will be shown later, it may not satisfy the holomorphicity requirements for three-phase systems.

In this paper, we introduce a constant-current load model that accurately represents voltage dependence of current injections, and propose a HELM formulation that satisfies the holomorphicity requirements for three-phase distribution networks with both wye and delta connections. In addition, we discuss the applicability of the proposed HELM to tapchanging devices. We further numerically compare HELM with other load flow methods and computation tools (namely OpenDSS and GridLAB-D) on standard test systems with various equipment/connection types. In particular, we compare the proposed HELM with (i) the existing HELM literature, (ii) the IZB method, (iii) the NR method (implemented by OpenDSS), and (iv) the BFS method (implemented by GridLAB-D). Our numerical experiments show that the existing HELM literature, which assumes voltage-independent current injections in the constant-current load model, as well as the BFS method, in the presence of a delta-delta substation transformer, may result in significant load flow solution errors. On the contrary, the proposed HELM, the IZB and the NR methods yield highly accurate solutions. We also demonstrate that both the IZB and NR methods may fail to converge to the load flow solution in the presence of high constant-current loading conditions, whereas the proposed HELM converges.

Our main contribution is two-fold. First, we propose a HELM formulation which satisfies the holomorphicity requirements for three-phase distribution networks with a complete ZIP load model and both wye and delta connections, thereby preserving the prominent convergence guarantees. Our analysis puts emphasis on the constant-current load model and the accurate representation of the voltage dependence of current injections. Second, we demonstrate through numerical studies that the proposed HELM formulation outperforms (i) the existing HELM literature as well as the BFS method in terms of accuracy, and (ii) the IZB and NR methods in terms of convergence under high constant-current loading conditions, while keeping comparable solution times.

The remainder of the paper is organized as follows. In Section II, we provide a brief overview of the three-phase network model and existing HELM applications to distribution networks. In Section III, we propose a HELM formulation for three-phase distribution networks with both wye-connected and delta-connected ZIP loads. In Section IV, we present the results of extensive numerical experiments. In Section V, we conclude and provide directions for further research.

II. PRELIMINARIES

In Subsection II-A, we summarize the three-phase distribution network model used throughout the paper. In Subsection II-B, we present the basics of HELM and the existing HELM formulations emphasizing the constant-current load modeling shortcoming.

A. Network Model

We consider a general three-phase distribution network described as a graph (N + , E), where N + := {0} ∪ N is the set of nodes with N = {1, 2, ..., N }, and E ⊂ N + ×N + is the set of edges. The distribution substation, i.e., the connection point to the transmission system, is considered as the slack node and represented by node 0. The set of nodes N excluding the slack node are partitioned as N = N Y ∪ N ∆ , where the nodes with wye and delta connections are included in N Y and N ∆ , respectively. The complex vector of line-to-neutral voltage and the net current injections at node i are denoted by V i := {V ϕ i } and I i := {I ϕ i }, respectively, where ϕ ∈ Φ i and Φ i ⊆ {a, b, c} is the set of available phases at node i. We assume without loss of generality that the voltage at the slack bus is fixed at V 0 = {1, e -j 2π

3 , e j 2π 3 }. We further define

V ϕ i = |V ϕ i |∠δ ϕ i where |V ϕ i | and δ ϕ i
represent the magnitude and phase angle of voltage at bus i and phase ϕ, respectively. We consider a general ZIP load model and denote the dependence of current injections to nodal voltages for load busses explicitly by:

I ϕ i (V i ) = I ϕ P Qi (V i ) + I ϕ Ii (V i ) + I ϕ Zi (V i ), ∀i ∈ N , (1) 
where I ϕ P Qi (V i ), I ϕ Ii (V i ) and I ϕ Zi (V i ) are the current injections from constant-power, constant-current, and constantimpedance loads, respectively. They are given below, in (2), for wye connections:

I ϕ P Qi (V i ) = S ϕ Li /V ϕ i * , ∀i ∈ N Y , (2a) 
I ϕ Ii (V i ) = V ϕ i |V ϕ i | I ϕ Li , ∀i ∈ N Y , (2b) 
I ϕ Zi (V i ) = Y ϕ Li V ϕ i , ∀i ∈ N Y , (2c) 
where S ϕ Li , I ϕ Li , and Y ϕ Li are parameters representing the nominal constant-power, constant-current, and constant-impedance components, respectively, of wye-connected loads. The superscript * in (2a) denotes the complex conjugate operator. Similarly, for delta-connected loads, we have:

I ϕ P Qi (V i ) = ϕ ′ ∈Φi\{ϕ} S ϕϕ ′ Li V ϕ i -V ϕ ′ i * , ∀i ∈ N ∆ , (3a) 
I ϕ Ii (V i ) = ϕ ′ ∈Φi\{ϕ} V ϕ i -V ϕ ′ i |V ϕ i -V ϕ ′ i | I ϕϕ ′ Li , ∀i ∈ N ∆ , (3b) 
I ϕ Zi (V i ) = ϕ ′ ∈Φi\{ϕ} Y ϕϕ ′ Li (V ϕ i -V ϕ ′ i ), ∀i ∈ N ∆ , (3c) 
where S ϕϕ ′ Ln , I ϕϕ ′ Ln , and Y ϕϕ ′ Ln are parameters representing the nominal constant-power, constant-current, and constantimpedance components, respectively, of delta-connected loads.

The series elements including transmission lines, threephase transformers, and step-voltage regulators are modeled in the Y -bus admittance matrix following the approach in [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF]. We denote the row in matrix Y corresponding to node i and phase ϕ with Y ϕ i . The load flow equations can then be written as:

Y ϕ i V = I ϕ i (V i ), ∀i ∈ N , (4) 
where the rhs corresponds to the voltage-dependent current injections [START_REF] Tinney | Power flow solution by Newton's method[END_REF], which leads to nonlinearity of the load flow equations in the presence of constant-power and constantcurrent loads.

B. Holomorphic Embedding Load Flow

For clarity, we first define the concept of a holomorphic function. A function f of the complex variable z is holomorphic at a point z 0 if it is differentiable at all points within some neighborhood of z 0 [START_REF] Brown | Complex variables and applications[END_REF]. Equivalently, f is holomorphic at z 0 if it has continuous first-order partial derivatives at z 0 and it satisfies the Cauchy-Riemann equations. A relevant function in the context of the load flow problem is the absolute value function f (z) = |z|, which is not holomorphic at any nonzero point as it does not satisfy the Cauchy-Riemann equations.

Another relevant function is the complex conjugate function g(z) = z * , which is not holomorphic at any point.

The load flow equations (4) are not holomorphic in the complex voltage variables as the injections in the rhs include the complex conjugate operator . * -see (2a) and (3a)and the absolute value operator |.| -see (2b) and (3b). In 2012, [START_REF] Trias | The holomorphic embedding load flow method[END_REF] proposed to embed a complex-valued parameter to make (4) holomorphic in the embedded parameter. Note that [START_REF] Trias | The holomorphic embedding load flow method[END_REF] only applies to single-phase networks where current injections from the constant-current load model are voltageindependent. In particular, the constant-current load model in [START_REF] Trias | The holomorphic embedding load flow method[END_REF] is as follows:

I ϕ Ii (V i ) = Īϕ Li , ∀i ∈ N Y , (5) 
where

Īϕ Li = V ϕNom i |V ϕNom i | I ϕ
Li is a parameter and V ϕNom i is the nominal voltage at phase ϕ. We note that the model in [START_REF] Bazrafshan | Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads[END_REF] does not maintain the voltage dependence that is present in (2b), thus raising accuracy concerns. However, unlike (2b), the voltage-independent model in ( 5) is holomorphic.

In what follows, we show how the existing HELM in [START_REF] Trias | The holomorphic embedding load flow method[END_REF] that incorporates the constant-current load model ( 5) can be extended to three-phase networks with only wyeconnected loads. We shall refer to this HELM formulation with voltage-independent constant-current loads as "existing HELM," which we will use as the basis for comparisons with the proposed HELM formulation (introduced in Section III) that accurately models voltage-dependent constant-current loads.

Following [START_REF] Trias | The holomorphic embedding load flow method[END_REF], we start by embedding a complex-valued parameter α and rewrite (4) to incorporate constant-power (2a), voltage-independent constant-current [START_REF] Bazrafshan | Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads[END_REF], and constantimpedance (2c) loads:

Y ϕ i V(α) = α S ϕ * Li V ϕ * i (α * ) +α Īϕ Li +αY ϕ Li V ϕ i (α), ∀i ∈ N Y , (6) 
where the solution at α = 0 -called germ -can be found under the no-load no-generation scenario, and the original load flow equations ( 4) can be recovered at α = 1. Also, note that the V ϕ * i function in the rhs of ( 6) is embedded with α * instead of α to meet the holomorphicity requirement, i.e., the Cauchy-Riemann conditions. Intuitively speaking, expanding V ϕ * i (α * ) using the Maclaurin series defined below, one observes that it is a function of α, not α * , thus preserving holomorphicity. The next step is to expand the Maclaurin series of V ϕ i around the germ,

V ϕ i (α) = V ϕ i [0]+V ϕ i [1]α+...+V ϕ i [n]α n +..., ∀i ∈ N Y , (7) 
where the zeroth term V ϕ i [0] corresponds to the germ at node i and phase ϕ which can be obtained by evaluating (6) at α = 0 and finding voltages as:

Y ϕ i V[0] = 0, ∀i ∈ N Y . (8) 
As the load flow equations ( 6) include voltage reciprocals in the rhs, we define power series W ϕ i (α):

W ϕ i (α) = 1 V ϕ i (α) , ∀i ∈ N Y ,
with its Maclaurin series expanded as:

W ϕ i (α) = W ϕ i [0] + W ϕ i [1]α + ... + W ϕ i [n]α n + ..., ∀i ∈ N Y , (9) 
where the power series coefficients of V ϕ i (α) and W ϕ i (α) are related by their convolution below:

W ϕ i [n] =        1 V ϕ i [n] , n = 0, - n-1 k=0 W ϕ i [k]V ϕ i [n -k] V ϕ i [0] , n ≥ 1, ∀i ∈ N Y .
(10) We then replace V ϕ i (α) and W ϕ i (α) in ( 6) with their corresponding power series ( 7) and ( 9), respectively. Equating the coefficients of α at both sides, one can find the next coefficient in the voltage power series V ϕ i [n], starting with n = 1 (using the germ), and recursively, for n ≥ 1, using:

Y ϕ i V[n] = S ϕ * Li W ϕ * i [n -1] + Y ϕ Li V ϕ i [n -1], ∀i ∈ N Y . (11 
) Indeed, HELM is a recursive load flow solution method that requires solving [START_REF] De Araujo | Sensitivity analysis of convergence characteristics in power flow methods for distribution systems[END_REF] and ( 11) to obtain the (higher order) coefficients of the power series starting with the germ, i.e., V ϕ i [0], ∀i ∈ N . Since the voltage power series may not converge, [START_REF] Trias | The holomorphic embedding load flow method[END_REF] proposes to evaluate the voltages using the Padé approximant, which is a rational function commonly used as an analytic continuation method to find the value of a function within its domain but possibly outside the radius of convergence of the corresponding power series. In this paper, we use the Eta method [START_REF] Baker | Padé approximants[END_REF], [START_REF] Rao | Theoretical convergence guarantees versus numerical convergence behavior of the holomorphically embedded power flow method[END_REF] to calculate the coefficients of the Padé approximant due to its computational efficiency compared with the commonly used matrix method.

As already mentioned, the existing HELM raises accuracy concerns in the presence of constant-current loads, i.e., its solution may not satisfy the original load flow equations (4). In the next section, we address this shortcoming by accurately modeling the voltage dependence of current injections in constant-current loads.

III. THREE-PHASE HELM WITH ZIP LOADS

In this section, we present a HELM formulation for threephase distribution networks with ZIP loads. We consider wyeconnected loads in Subsection III-A, and delta-connected loads in Subsection III-B. Our analysis emphasizes the constantcurrent load model, which represents the less thoroughly addressed case in the literature. Subsection III-C summarizes the key steps of the proposed HELM, and Subsection III-D discusses its applicability to tap-changing devices.

A. Wye-Connected Loads

For wye-connected loads, we begin with embedding a complex-valued parameter α, and rewriting (4) incorporating in the rhs the constant-power, constant-current, and constantimpedance loads from (2a)-(2c), to obtain:

Y ϕ i V(α) = α S ϕ * Li V ϕ * i (α * ) +αI ϕ Li V ϕ i (α) |V ϕ i (α)| + αY ϕ Li V ϕ i (α), ∀i ∈ N Y . (12)
1) Constant-Current Loads: The absolute value function representing constant-current loads -see the second term in rhs of (12) -violates the holomorphicity condition. In order to restore holomorphicity, we rewrite the absolute value function as:

|V ϕ i (α)| = V ϕ i (α)V ϕ * i (α * ), ∀i ∈ N Y ,
and replace it in [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF] to yield the second term as:

αI ϕ Li V ϕ i (α) |V ϕ i (α)| = αI ϕ Li V ϕ i (α) V ϕ * i (α * ) , ∀i ∈ N Y , (13) 
where we define the square root as the principal square root function below [START_REF] Brown | Complex variables and applications[END_REF]:

√ z = √ re iθ = √ re iθ/2 , r > 0, -π < θ < π, (14) 
which is holomorphic in the range defined above [START_REF] Brown | Complex variables and applications[END_REF]. It remains to verify that the radicand in ( 13) satisfies the conditions in [START_REF] Dugan | OpenDSS manual[END_REF]. The condition on the magnitude of the radicand is straightforward to verify as voltages in a practical power system are strictly above zero. The phase angle under the radicand in ( 13) is θ = 2δ ϕ i , which combined with the condition ( 14) results in:

-π/2 < δ ϕ i < π/2, ∀i ∈ N Y . (15) 
Condition [START_REF] Trias | The holomorphic embedding load flow method[END_REF] indicates that the phase angles at all nodes and phases must be between -π/2 and π/2, which does not hold for phases b and c, where the reference phase angles (in a balanced system) are -2π/3 and 2π/3, respectively. For phase a, since the reference phase angle at the slack node is 0, the condition implies that the phase angle difference w.r.t. the slack node at all nodes must be between -π/2 and π/2, which is a mild condition in practical power systems. Given the lack of holomorphicity conditions for phases b and c, the approach employed by [START_REF] Baghsorkhi | Embedding AC power flow in the complex plane part I: Modelling and mathematical foundation[END_REF], which incorporates [START_REF] Pnnl | GridLAB-D power flow solution methods[END_REF] directly in derivation of HELM equations, may result in solutions (if any) that would not satisfy the original load flow equations [START_REF] Chen | Distribution system power flow analysis-a rigid approach[END_REF].

In order to restore holomorphicity in all phases, we rewrite (13) as follows:

αI ϕ Li V ϕ i (α) |V ϕ i (α)| = αI ϕ Li e i ψ ϕ 2 V ϕ i (α)e -iψ ϕ V ϕ * i (α * ) , ∀i ∈ N Y , (16) 
which modifies the holomorphicity condition [START_REF] Trias | The holomorphic embedding load flow method[END_REF] to:

-π/2 < δ ϕ i -ψ ϕ /2 < π/2, ∀i ∈ N Y . (17) 
Selecting {ψ a , ψ b , ψ c } = {0, -4π/3, 4π/3}, it is straightforward to verify that the holomorphicity condition ( 17) is now met. We note that although [START_REF] Rao | The holomorphic embedding method applied to the power-flow problem[END_REF] is a very mild condition, a more strict approach can be adopted in which ψ ϕ is replaced with ψ ϕ i , and updated at each recursive step using the information from the previous recursive step (for each node) so as to keep the phase angles as close to zero as possible and ensure that condition ( 17) is satisfied.

Since the constant-current load model ( 16) is holomorphic, we proceed to the next step of HELM formulation by introducing power series U ϕ i (α):

U ϕ i (α) = V ϕ i (α)e -iψ ϕ V ϕ * i (α * ) , ∀i ∈ N Y , (18) 
with its Maclaurin series expanded as:

U ϕ i (α) = U ϕ i [0] + U ϕ i [1]α + ... + U ϕ i [n]α n + ..., ∀i ∈ N Y , (19) 2 
) Constant-Power Loads: Constant-power loads -see the first term in the load flow equations ( 12) -include current injections with voltage reciprocals. Hence, as mentioned in Subsection II-B, the power series W ϕ i is required. 3) Constant-Impedance Loads: Constant-impedance loads -see the third term in the load flow equations ( 12) -include current injections that are a linear function of voltages. Hence, only the power series V ϕ i is required. 4) HELM Formulation: The load flow equations [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF], using ( 16) and [START_REF] Liu | Remote voltage control using the holomorphic embedding load flow method[END_REF], can be rewritten as:

Y ϕ i V(α) = αS ϕ * Li W ϕ * i (α * ) + αI ϕ Li e i ψ ϕ 2 U ϕ i (α) + αY ϕ Li V ϕ i (α), ∀i ∈ N Y , (20) 
where the germ, i.e., V ϕ i [0], is computed under a no-load nogeneration scenario at α = 0 by solving for voltages in [START_REF] Wang | Implementing transformer nodal admittance matrices into backward/forward sweep-based power flow analysis for unbalanced radial distribution systems[END_REF]. For n ≥ 1, the coefficients of the voltage power series, V ϕ i (α), are related with the coefficients of power series W ϕ i (α) and U ϕ i (α) as follows:

Y ϕ i V[n] = S ϕ * Li W ϕ * i [n -1] + I ϕ Li e i ψ ϕ 2 U ϕ i [n -1] +Y ϕ Li V ϕ i [n -1], ∀i ∈ N Y . (21) 
The coefficients of power series W ϕ i (α) are obtained using [START_REF] De Araujo | Sensitivity analysis of convergence characteristics in power flow methods for distribution systems[END_REF]. To obtain the coefficients of U ϕ i (α), we first square both sides of [START_REF] Liu | Remote voltage control using the holomorphic embedding load flow method[END_REF] and replace the voltage reciprocal with power series W ϕ i (α), yielding:

U ϕ i 2 (α) = e -iψ ϕ V ϕ i (α)W ϕ * i (α * ), ∀i ∈ N Y , (22) 
which indicates that U ϕ i (α) is related to V ϕ i (α) and W ϕ i (α). Expanding both sides of [START_REF] Liu | Online voltage stability assessment for load areas based on the holomorphic embedding method[END_REF] with the corresponding Maclaurin series in [START_REF] Kocar | Implementation of a modified augmented nodal analysis based transformer model into the backward forward sweep solver[END_REF], [START_REF] De Araujo | Comparisons between the three-phase current injection method and the forward/backward sweep method[END_REF], and [START_REF] Basiri-Kejani | Holomorphic embedding Load-flow modeling of thyristor-based FACTS controllers[END_REF], and evaluating both sides at α = 0, the zeroth coefficient of the U ϕ i power series is given by:

U ϕ i [0] = e -iψ ϕ V ϕ i [0]W ϕ * i [0], ∀i ∈ N Y . ( 23 
)
and by equating the same coefficients of α n on both sides for n ≥ 1, the higher order terms are given by:

U ϕ i [n] = e -iψ ϕ n k=0 W ϕ * i [k]V ϕ i [n -k] 2U ϕ i [0] -e -iψ ϕ n-1 k=1 U ϕ i [k]U ϕ i [n -k] 2U ϕ i [0] , ∀i ∈ N Y . (24) 

B. Delta-Connected Loads

For delta-connected loads, embedding parameter α, and rewriting (4) incorporating in the rhs the constant-power, constant-current, and constant-impedance loads from (3a)-(3c), we obtain:

Y ϕ i V(α) = α ϕ ′ ∈Φi\{ϕ} S ϕϕ ′ * Li V ϕ * i (α * ) -V ϕ ′ * i (α * ) + α ϕ ′ ∈Φi\{ϕ} V ϕ i (α) -V ϕ ′ i (α) |V ϕ i (α) -V ϕ ′ i (α)| I ϕϕ ′ Li + α ϕ ′ ∈Φi\{ϕ} Y ϕϕ ′ Li (V ϕ i (α) -V ϕ ′ (α) i ), ∀i ∈ N ∆ . ( 25 
)
1) Constant-Current Loads: Similarly to the treatment of wye-connected constant-current loads, we replace the term in the second sum of the rhs of ( 25):

V ϕ i (α) -V ϕ ′ i (α) |V ϕ i (α) -V ϕ ′ i (α)| = V ϕ i (α) -V ϕ ′ i (α) V ϕ * i (α * ) -V ϕ ′ * i (α * ) , ∀i ∈ N ∆ . (26) 
We use condition [START_REF] Dugan | OpenDSS manual[END_REF] to evaluate the holomorphicity of (26). The phase angle under the radicand in ( 26) is θ = 2δ ϕϕ ′ i , where δ ϕϕ ′ i is the phase angle of the voltage difference vector between phases ϕ and ϕ ′ . Therefore, condition [START_REF] Dugan | OpenDSS manual[END_REF] results in:

-π/2 < δ ϕϕ ′ i < π/2, ∀i ∈ N ∆ . (27) 
Condition [START_REF] Yao | Novel AC distribution factor for efficient outage analysis[END_REF] indicates that the voltage difference phase angles between all phases must be between -π/2 and π/2. Since the reference phase angles (in a balanced system) are {ϕ ab , ϕ bc , ϕ ca } = {π/6, -π/2, 5π/6}, the condition is not met at least for bc and ca. As a result, if [START_REF] Wu | Holomorphic embedding based continuation method for identifying multiple power flow solutions[END_REF] is used directly in HELM equations, the obtained solutions (if any) would not satisfy the original load flow equations [START_REF] Chen | Distribution system power flow analysis-a rigid approach[END_REF].

In order to restore holomorphicity, we rewrite (26) as follows:

V ϕ i (α) -V ϕ ′ i (α) |V ϕ i (α) -V ϕ ′ i (α)| = e i ψ ϕϕ ′ 2 V ϕ i (α) -V ϕ ′ i (α) e -iψ ϕϕ ′ V ϕ * i (α * ) -V ϕ ′ * i (α * ) , ∀i ∈ N ∆ , (28) 
which modifies the homolorphicity condition [START_REF] Yao | Novel AC distribution factor for efficient outage analysis[END_REF] to:

-π/2 < δ ϕϕ ′ i -ψ ϕϕ ′ /2 < π/2, ∀i ∈ N ∆ . (29) 
Selecting {ψ ab , ψ bc , ψ ca } = {π/3, -π, 5π/3}, it is straightforward to verify that condition (29) holds. Similarly to the more strict approach provided for the wye-connected loads, one could also replace ψ ϕϕ ′ with ψ ϕϕ ′ i , and update it at each step with the latest nodal phase angles, so as to keep it as close as possible to zero, and ensure condition (29) is satisfied.

Next, we define the power series U ϕϕ ′ i (α) as follows to represent the term with radical in [START_REF] Yao | Efficient and robust dynamic simulation of power systems with holomorphic embedding[END_REF]:

U ϕϕ ′ i (α) = V ϕ i (α) -V ϕ ′ i (α) e -iψ ϕϕ ′ V ϕ * i (α * ) -V ϕ ′ * i (α * ) , ∀i ∈ N ∆ , (30) 
with its Maclaurin series expanded as:

U ϕϕ ′ i (α) = U ϕϕ ′ i [0] + U ϕϕ ′ i [1]α+ ... + U ϕϕ ′ i [n]α n + ..., ∀i ∈ N ∆ . (31) 
2) Constant-Power Loads: Constant-power loads -see the first sum in the load flow equations ( 25) -include current injections with voltage reciprocals. Similarly to wye-connected loads, we define power series W ϕϕ ′ i (α) as the reciprocal of the difference of voltage power series across two phases:

W ϕϕ ′ i (α) = 1 V ϕ i (α) -V ϕ ′ i (α) , ∀i ∈ N ∆ , (32) 
with its Maclaurin series expanded as:

W ϕϕ ′ i (α) = W ϕϕ ′ i [0] + W ϕϕ ′ i [1]α+ ... + W ϕϕ ′ i [n]α n + ..., ∀i ∈ N ∆ . ( 33 
)
3) Constant-Impedance Loads: Constant-impedance loads -see the third sum in the load flow equations ( 25) -include current injections that are a linear function of voltages. Hence, only the power series V ϕ i is required. 4) HELM formulation: The load flow equations (25), using [START_REF] Baghsorkhi | Embedding AC power flow in the complex plane part I: Modelling and mathematical foundation[END_REF] and [START_REF] Keihan Asl | Holomorphic embedding load flow for unbalanced radial distribution networks with DFIG and tap-changer modelling[END_REF], can be rewritten as:

Y ϕ i V(α) = α ϕ ′ ∈Φi\{ϕ} S ϕϕ ′ * Li W ϕϕ ′ * i (α * ) + α ϕ ′ ∈Φi\{ϕ} I ϕϕ ′ Li e i ψ ϕϕ ′ 2 U ϕϕ ′ i (α) + α ϕ ′ ∈Φi\{ϕ} Y ϕϕ ′ Li (V ϕ i (α) -V ϕ ′ (α) i ), ∀i ∈ N ∆ , (34) 
where the germ is computed under a no-load no-generation scenario at α = 0, by solving for voltages in:

Y ϕ i V[0] = 0, ∀i ∈ N ∆ . (35) 
For n ≥ 1, the coefficients of the voltage power series, V ϕ i , are obtained by equating the same coefficients of α in (34) as follows:

Y ϕ i V[n] = ϕ ′ ∈Φi\{ϕ} S ϕϕ ′ * Li W ϕϕ ′ * i [n -1] + ϕ ′ ∈Φi\{ϕ} I ϕϕ ′ Li e i ψ ϕϕ ′ 2 U ϕϕ ′ i [n -1] + ϕ ′ ∈Φi\{ϕ} Y ϕϕ ′ Li (V ϕ i [n -1] -V ϕ ′ i [n -1]), ∀i ∈ N ∆ . (36) 
The coefficients of power series W ϕϕ ′ i (α) are obtained by expanding the corresponding power series in [START_REF] Keihan Asl | Holomorphic embedding load flow for unbalanced radial distribution networks with DFIG and tap-changer modelling[END_REF], and equating both sides, at α = 0, to derive the zeroth coefficient

W ϕϕ ′ i [0]: W ϕϕ ′ i [0] = 1 V ϕ i [0] -V ϕ ′ i [0] , ∀i ∈ N ∆ , (37) 
and the higher order coefficients (for n ≥ 1):

W ϕϕ ′ i [n] = - n-1 k=0 W ϕϕ ′ i [k](V ϕ i [n -k] -V ϕ ′ i [n -k]) V ϕ i [0] -V ϕ ′ i [0] , ∀i ∈ N ∆ . (38) 
The coefficients of power series U ϕϕ ′ i (α) are obtained by squaring both sides of (30), expanding the corresponding power series, and equating both sides, at α = 0, to derive the zeroth coefficient U ϕϕ ′ i [0]:

U ϕϕ ′ i [0] = e -iψ ϕϕ ′ (V ϕ i [0] -V ϕ ′ i [0])W ϕϕ ′ * i [0], ∀i ∈ N ∆ , (39) 
and the higher order coefficients (for n ≥ 1):

U ϕϕ ′ i [n] = e -iψ ϕϕ ′ n k=0 W ϕϕ ′ * i [k](V ϕ i [n -k] -V ϕ ′ i [n -k]) 2U ϕϕ ′ i [0] -e -iψ ϕϕ ′ n-1 k=1 U ϕϕ ′ i [k]U ϕϕ ′ i [n -k] 2U ϕϕ ′ i [0] , ∀i ∈ N ∆ . (40) 

C. Overview of Proposed HELM

In Table I, we summarize the proposed HELM, for calculating load flow solutions in three-phase distribution networks with ZIP loads, distinguishing between wye-connected loads (left column) and delta-connected loads (right column).

Step 1 involves the initialization of the method. Unlike other load flow solution methods that select an arbitrary initial point, HELM requires a systematic calculation of its initial point, a.k.a. germ. The germ, V ϕ i [0], i.e., the zeroth term of the Maclaurin series of V ϕ i is calculated by solving a set of linear load flow equations derived under a no-load no-generation scenario, combining (8) for wye-connected loads and (35) for delta-connected loads.

In Steps 2, 3, and 4, we calculate, in a recursive manner, the coefficients of power series W (in Step 2) and U (in Step 3), which are needed for calculating the higher order terms (n ≥ 1) of the voltage power series V (in Step 4), according to [START_REF] Liu | Probabilistic power flow analysis using multidimensional holomorphic embedding and generalized cumulants[END_REF] for wye-connected loads and (36) for delta-connected loads. We remind the reader that power series W is required for constant-power loads, and power series U is required for constant-current loads; for constant-impedance loads, given the linear dependence of current injections with voltages, power series V is sufficient.

Specifically, in Step 2, we calculate the coefficients of power series W , namely W ϕ i [n] for wye-connected loads using (10), and W ϕϕ ′ i

[n] for delta-connected loads using (37)- [START_REF] Molzahn | A survey of distributed optimization and control algorithms for electric power systems[END_REF]. Note that according to [START_REF] De Araujo | Sensitivity analysis of convergence characteristics in power flow methods for distribution systems[END_REF], for n = 0, the calculation of W ϕ i [n] requires only the germ, V ϕ i [0], whereas for n ≥ 1, it requires the lower order terms W ϕ i [j], where j < n, and the terms

V ϕ i [j ′ ],
where j ′ ≤ n. Similarly, the calculation of W ϕϕ ′ i

[n] requires for n = 0 only the germ, according to [START_REF] Rao | Theoretical convergence guarantees versus numerical convergence behavior of the holomorphically embedded power flow method[END_REF], whereas for n ≥ 1, it requires according to [START_REF] Molzahn | A survey of distributed optimization and control algorithms for electric power systems[END_REF] the lower order terms W ϕϕ ′ i [j], where j < n, and the terms V ϕ i [j ′ ], where j ′ ≤ n. In Step 3, we calculate the coefficients of power series U , namely U ϕ i [n] for wye-connected loads using ( 23)-( 24), and In Step 5, we employ Padé approximation and the Eta method [START_REF] Baker | Padé approximants[END_REF], as an analytic continuation method, to evaluate nodal voltages using the voltage power series coefficients obtained so far. Note that such methods have improved properties compared with the power series itself, e.g., they can obtain the value of a function within its domain but beyond the radius of convergence of the respective power series.

In Step 6, we check for convergence using a predefined tolerance, by comparing the nodal voltages with the ones obtained in the previous evaluation (last recursion). If convergence is not reached, then the next set of coefficients is calculated in the next recursion (Steps 2, 3, and 4), voltages are evaluated in Step 5, convergence is re-checked in Step 6,and this process continues until a sufficient number of coefficients becomes available to achieve convergence.

Summarizing, we note that the main root cause of modeling improvement compared with existing HELM refers to [START_REF] Subramanian | PV bus modeling in a holomorphically embedded power-flow formulation[END_REF] for wye-connected constant-current loads, and ( 28) for deltaconnected constant-current loads. By satisfying the holomorphicity conditions in ( 16) and ( 28) -see ( 17) and ( 29), respectively -we further proceed with the introduction of the U power series -in ( 18)-( 19) and ( 30)-( 31), respectivelyand the derivations of their coefficients in ( 23)-( 24) and ( 39)- [START_REF] Wei | Optimal power flow of radial networks and its variations: A sequential convex optimization approach[END_REF], respectively. Note that in Table I, the calculations for power series U (in Step 3) affect the calculations for power series V (in Step 4), and hence the voltage updates (in Step 5), as well as the calculations for power series W (in Step 2), which in turn depend on the calculations for power series V from the previous recursion.

D. Applicability to Tap-Changing Devices

Last but not least, we discuss the applicability of the proposed HELM to handling tap position changes for transformers, voltage regulators, and shunt compensators, arguably an advanced feature of a load flow solution method. Indeed, tap positions for the aforementioned devices could change during recursions, using a voltage controller of the device and given the calculated current/voltage values of a specific recursion. Our proposed HELM can handle tap position changes, in a manner similar to the approach briefly sketched in [START_REF] Rao | The holomorphic embedding method applied to the power-flow problem[END_REF], also in the context of HELM but for single-phase load flow.

After evaluating the voltages in Step 5 (of Table I), the voltage controller of the device updates the tap position by calculating the minimum tap position change required to satisfy their control goals, e.g., in order to bring the voltages back to their allowed regions. Because our model includes both series elements -e.g., transformers and step-voltage regulators, and shunt devices -e.g., shunt compensators, in case a tap position change for any of the devices occurs, we need to update the Y -bus admittance matrix using the new tap values, before proceeding to the next voltage update, i.e., repeating Steps 1 to 5 (of Table I). Note that when the Y -bus admittance matrix changes, we need to re-calculate the initial solution (germ), which must be systematically calculatedsee Step 1 -to ensure HELM's convergence promises.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed HELM on the following standard test systems (distribution feeders):

1) IEEE-37: The IEEE 37-bus feeder includes a delta-delta substation transformer, a delta-delta load transformer, an open-delta step-voltage regulator, and unbalanced deltaconnected ZIP loads. 2) IEEE-123: The IEEE 123-bus feeder includes four wyeconnected step-voltage regulators, one delta-delta load transformer, and a combination of wye-connected and delta-connected ZIP loads. 3) European-906: The European 906-bus low voltage feeder includes wye-connected constant-power loads. We obtained the feeder data from [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF]. For comparison purposes, we implemented the IZB method [START_REF] Bazrafshan | Convergence of the Z-Bus method for three-phase distribution load-flow with ZIP loads[END_REF], an iterative load flow solution method which, similarly to HELM, requires the inverse of the Y -bus admittance matrix at each iteration. The network series elements, which include transmission lines, three-phase transformers, and step-voltage regulators, were modeled following the procedure presented in [START_REF] Bazrafshan | Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[END_REF], and the Y -bus admittance matrices were created accordingly. The methods were implemented in MATLAB v.9.4 using a Dell XPS i7 at 1.8 GHZ CPU with 16 GB RAM. The convergence tolerance was set at 10 -6 . In addition, we employed two popular load flow calculation tools, namely OpenDSS and GridLAB-D, in our experiments, and further compared with the OpenDSS implementation of NR, and the GridLAB-D implementation of BFS.

In what follows, we present the simulation results and comparisons in terms of accuracy (in Subsection IV-A), computation time (in Subsection IV-B), and performance under high constant-current loading conditions (in Subsection IV-C), and we illustrate the applicability of the proposed HELM in the presence of tap-changing devices (in Subsection IV-D).

A. Accuracy

In this subsection, we evaluate the accuracy of the obtained load flow solution, by comparing the nodal voltage magnitudes (p.u.) with the ones obtained using the IZB method, referred to as nodal voltage magnitude errors. We consider (i) the proposed HELM (that incorporates an accurate voltage-dependent constant-current load model), (ii) the existing HELM (that incorporates a voltage-independent constant-current load model), (iii) the NR-DSS method (the OpenDSS implementation of NR), and (iv) the BFS method (the GridLAB-D implementation of BFS).

1) IEEE-37: Figure 1 illustrates the voltage magnitude errors w.r.t. the IZB method for the aforementioned methods (proposed HELM, existing HELM, NR-DSS and BFS). The results demonstrate that the existing HELM causes noticeable voltage magnitude errors in the order of 10 -3 . On the contrary, the load flow solution obtained by both the proposed HELM and the NR-DSS method were highly accurate, with maximum nodal voltage magnitude errors across all busses and phases in the order of 10 -7 . The BFS method, on the other hand, exhibits really poor performance, in fact converging to a highly inaccurate solution, which is significantly different from the solution obtained by the IZB method, with voltage magnitude errors up to 0.0383 pu. The reason for such poor performance is attributed to the presence of the delta-delta substation transformer, which we included in the GridLAB-D model (note that the default IEEE-37 model in GridLAB-D omits this transformer, apparently due to the difficulties that the BFS method faces with certain transformer configurations). Hence, due to the demonstrated inaccuracies, we will not evaluate the BFS method further.

2) IEEE-123: The results indicated that the maximum nodal voltage error of the proposed HELM was in the order of 10 -8 compared with 10 -3 of the existing HELM. The NR-DSS method also performed similarly to the proposed HELM.

3) European-906: Due to the absence of constant-current loads, the proposed HELM yielded the same results with the existing HELM within the tolerance.

B. Computation Time

Table II shows the computation times and iterations required to obtain the load flow solution using the IZB method (including the initialization), the NR-DSS method, and the proposed HELM. We clarify that iterations for HELM practically refer to the order of power series coefficients required to achieve convergence.

The results indicate that the proposed HELM performs comparably with the NR-DSS method -slightly better for European-906 (larger test feeder). Compared with the IZB method, the computation time for HELM is higher but remains in the same order of magnitude (milliseconds for IEEE-37 and IEEE-123, and a few seconds for European-906). The number of iterations is also very similar for all three methods. We also note that, as shown in [START_REF] Heidarifar | Efficient load flow techniques based on holomorphic embedding for distribution networks[END_REF], the voltage evaluation and convergence check steps (Steps 5 and 6 in Table I) are the most time-consuming steps of HELM. However, since the results from Steps 5 to 6 are not used as input to Steps 2 to 4, one can proceed from Step 4 to Step 2, while in parallel evaluating voltages and checking convergence in Steps 5 and 6, thereby reducing the computation time. If convergence is reached, the algorithm terminates; otherwise convergence is checked again at the next step.

C. High Constant-Current Loading Conditions

In this subsection, we modified the loading conditions, by increasing the constant-current loads, to evaluate the performance of the proposed HELM.

1) IEEE-37: We converted the constant-power loads at busses 701 and 728 to equivalent constant-current loads and applied a loading factor of 2. Figure 2 illustrates the voltage magnitude errors for this modified IEEE-37. The results demonstrate that the existing HELM introduces noticeable voltage magnitude errors in the order of 10 -2 , which are around one order of magnitude higher than the errors observed under the original loading condition -see Fig. 1. The proposed HELM and the NR-DSS method still achieve accurate load flow solutions (errors in the order of 10 -7 ).

2) IEEE-123: We converted all loads to constant-current, and applied gradually increasing loading factors, in order to stress the test system and evaluate the performance of load flow methods in cases that are, in general, considered to be challenging for obtaining a solution. We increased loading factors in small increments, until we passed the nose point of the PV/QV curves, i.e., until no high-voltage solution is found (which signals that we passed the nose point), taking advantage of HELM's guarantees and ability to track the curve on the high-voltage side until the nose point.

Figure 3 illustrates the convergence error (line plot) and the number of iterations (bar plot) as a function of loading factor for the proposed HELM, NR-DSS, and IZB methods, for loading factors between 1 and 8, in 0.2 increments. The convergence error is defined as the L1-norm of the load flow mismatches in (4) divided by the number of busses. We observe that the convergence error of the IZB (NR-DSS) method suddenly increases for loading factors at or above 5.4 (5.6), for which the IZB (NR-DSS) method diverges, whereas the proposed HELM manages to find the load flow solution. Furthermore, the results imply that the number of iterations increases exponentially with the loading factor for the IZB and NR-DSS methods, whereas it increases linearly for the proposed HELM.

3) European-906: We converted all loads to constantcurrent and applied loading factors between 1 and 5, in 0.2 increments. Figure 4 shows the convergence error (line plot) and the number of iterations (bar plot). Similarly to Fig. 3, we observe that the IZB (NR-DSS) method fails to converge to a solution for loading factors at or above 2.8 (3.4), whereas the proposed HELM manages to find the solution with acceptable convergence error. The results also imply that the number of iterations increases exponentially for the IZB and NR-DSS methods, whereas it increases linearly for the proposed HELM.

D. Illustration of Tap Position Changes

Lastly, we illustrate the applicability of the proposed HELM on the IEEE-37 feeder, which includes an open-delta stepvoltage regulator that updates tap positions using a Line Drop Compensation (LDC) controller. The LDC controller employs an internal model of the distribution line impedance to approximate the voltage at the target bus and ensure it stays within the bounds by adjusting the tap position accordingly. Note that in an unbalanced three-phase system, tap changers act, in general, independently on each phase. The step-voltage regulator comprises 33 taps (16 raise position taps, 16 lower position taps, and one center tap) at each tap changer.

In the original loading conditions of the IEEE-37 feeder, the step-voltage regulator tap positions are 7 and 4 at the AB and CB paths, respectively, and the monitored voltages are within the bounds of ±10%. We perturb the loading conditions, by applying a loading factor of 1.2 to all loads, and we observe that for the above tap positions (7 and 4), the voltages of the target bus (bus 33) are no longer within bounds. Specifically, the line-to-line voltage across the AB and the AC path are 0.9% and 0.7%, respectively, below the lower bound of -10%, whereas the voltage across the BC path is within bounds. We then apply the procedure described in Subsection III-D, and obtain a new value [START_REF] Heidarifar | A Riemannian optimization approach to the radial distribution network load flow problem[END_REF] for the AB path, to bring voltages within bounds, whereas the tap at the CB path remains at position 4 (since the LDC controller does not "sense" out-ofbound voltages).

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we proposed a HELM formulation for threephase distribution networks with a complete ZIP load model and wye and delta connections. Compared with the existing literature, the proposed HELM preserves the attractive convergence properties, while accurately modeling voltage dependence of constant-current loads. Numerical results demonstrated the accuracy and efficacy of the proposed HELM compared with existing work. In particular, we showed that the existing HELM, which assumes voltage-independent constantcurrent loads, may introduce significant load flow solution errors, particularly in the presence of a noticeable amount of constant-current loads. We also demonstrated that both the IZB method (commonly used for distribution network analyses), and the NR-DSS method (OpenDSS implementation of NR) may fail to converge to a solution under high constantcurrent loading conditions; we further illustrated the poor performance of BFS in the presence of a delta-delta substation transformer. On the contrary, the proposed HELM converges and provides accurate solutions, in computation times that are comparable to those of the IZB and the NR-DSS methods. The obtained results are particularly encouraging and suggest that HELM has considerable potential as a reliable method in practical three-phase distribution network load flows, whose performance is certainly worthy to be further explored.

An interesting direction for further research is the potential relevance of HELM to the Optimal Power Flow (OPF) problem. Indeed, conventional load flow models can be used in analyses related to OPF. However, the nonlinearity and particularly the non-convexity of the resulting optimization problems present a significant challenge -see e.g. [START_REF] Molzahn | A survey of distributed optimization and control algorithms for electric power systems[END_REF] for a related survey. Given the increasing penetration of Distributed Energy Resources (DERs), the approaches to solve the OPF problem are moving towards distributed -broadly construed -algorithms, which, in general, decompose the problem and solve it iteratively. Approaches that use some simplified/relaxed modeling of the load flow equations, e.g., the relaxed branch flow model [START_REF] Farivar | Branch-flow model: Relaxations and convexification -Part I[END_REF], would typically require a conventional load flow solver to verify feasibility (not necessarily optimality) of the solution. This is reminiscent of techniques applied in the transmission system, where DC OPF is followed by full AC load flow to ensure feasibility (in case of violations, constraints are usually appended in the DC OPF and the process is rerun). Of particular interest are approaches that iterate between a centralized formulation that preserves the network structure, and small DER sub-problems, preferably in a hierarchical manner, where feasibility is ensured within the iterations see e.g. [START_REF] Wei | Optimal power flow of radial networks and its variations: A sequential convex optimization approach[END_REF], [START_REF] Andrianesis | Optimal grid-distributed energy resource coordination: Distribution locational marginal costs and hierarchical decomposition[END_REF], [START_REF] Andrianesis | Optimal distributed energy resource coordination: A decomposition method based on distribution locational marginal costs[END_REF]. In such cases, a load flow solver can be embedded in the process, and in fact, the convergence guarantees of HELM can preserve the convergence of an OPF algorithm, even if HELM becomes a fallback option that is employed in problematic cases, to either identify a solution or signal non-existence. For instance, in a parallel work [START_REF] Heidarifar | A Riemannian optimization approach to the radial distribution network load flow problem[END_REF], we used HELM to verify solution non-existence in the context of applying Riemannian optimization to solve the load flow problem in single-phase distribution networks, which we further extended to the OPF problem [START_REF] Heidarifar | A Riemannian augmented Lagrangian method for the optimal power flow problem in radial distribution networks[END_REF]. Recently, [START_REF] Lange | Learning to solve AC optimal power flow by differentiating through holomorphic embeddings[END_REF] used HELM in a learning-based AC OPF framework, taking advantage of its attractive properties, e.g., its ability to identify the correct load flow solution, if it exists. Indeed, the integration of HELM in optimization algorithms that tackle the OPF problem is an interesting direction for further research.
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 23 Fig. 2. Comparison of voltage magnitude error w.r.t. the IZB method for the proposed HELM, existing HELM, and NR-DSS on the modified IEEE-37 feeder.
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Steps

Load Connection Type Wye Delta 1

Set n = 0. Calculate the germ V ϕ i [0], using [START_REF] Wang | Implementing transformer nodal admittance matrices into backward/forward sweep-based power flow analysis for unbalanced radial distribution systems[END_REF].

Set n = 0. Calculate the germ V ϕ i [0], using [START_REF] Brown | Complex variables and applications[END_REF].

Calculate W ϕ i [n] using [START_REF] De Araujo | Sensitivity analysis of convergence characteristics in power flow methods for distribution systems[END_REF] from W ϕ i [j], where j < n and V ϕ i [j ′ ], where j ′ ≤ n.

Calculate W ϕϕ ′ i

[n] using (37)- [START_REF] Molzahn | A survey of distributed optimization and control algorithms for electric power systems[END_REF] from W ϕϕ ′ i

[j], where j < n, and V ϕ i [j ′ ], where j ′ ≤ n.

3

Calculate U ϕ i [n] using ( 23)-( 24) from U ϕ i [j], where j < n, and

, where j < n,

, and

Evaluate nodal voltages V ϕ i with Padé approximants using the Eta method [START_REF] Baker | Padé approximants[END_REF].

If the maximum voltage difference w.r.t. last evaluation is within the tolerance, stop; otherwise, recursively apply Steps 2 -6.

U ϕϕ ′ i

[n] for delta-connected loads using ( 39)- [START_REF] Wei | Optimal power flow of radial networks and its variations: A sequential convex optimization approach[END_REF]. Note that the calculation of U ϕ i [n] for n = 0 requires, according to [START_REF] Yao | Voltage stability analysis of power systems with induction motors based on holomorphic embedding[END_REF], the germ and W ϕ i [0], whereas for n ≥ 1, according to [START_REF] Chevalier | Mitigating the risk of voltage collapse using statistical measures from PMU data[END_REF], it requires the lower order terms U ϕ

[j], where j < n, and the terms

where j ′ ≤ n. Similarly, the calculation of U ϕϕ ′ i

[n] for n = 0 requires, according to [START_REF] Farivar | Branch-flow model: Relaxations and convexification -Part I[END_REF], the germ and W ϕϕ ′ i [0], whereas for n ≥ 1, it requires according to [START_REF] Wei | Optimal power flow of radial networks and its variations: A sequential convex optimization approach[END_REF] the lower order terms U ϕϕ ′ i [j], where j < n, and the terms

where j ′ ≤ n. In Step 4, we calculate the coefficients of the voltage power series V ϕ i [n] for wye-connected loads using [START_REF] Liu | Probabilistic power flow analysis using multidimensional holomorphic embedding and generalized cumulants[END_REF], and for deltaconnected loads using [START_REF] Baker | Padé approximants[END_REF]. Considering that n is increased by 1 at the beginning of Step 4, the calculation of V