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Convergence towards equilibrium for a model with partial diffusion

Delphine Salort ∗ Didier Smets †

November 4, 2022

Abstract

We study the asymptotic behavior of a two dimensional linear PDE with a degenerate diffusion
and a drift term. The structure of this equation typically arises in some mathematical mean fields
models of neural network, and the investigation of the qualitative properties of this equation is still
open, and a challenging question. We prove, via a Doeblin-Harris type method, that the solutions
converge exponentially fast to the unique stationary state in a L1-weighted norm.

1 Introduction

The study of partial differential equations (PDE) associated to neurosciences has seen a growing
interest in recent years. These models often involve a mixture of effects leading to singular terms,
heterogeneities, nonlocal terms, jumps, partial diffusion mechanisms and long term memory effects,
which overall make their qualitative study somewhat challenging (see for instance [25, 17, 2, 24, 16,
5, 13, 18, 22]). In this paper, we propose to study the following toy model, which is directly derived
from a model in [21]. It reads

∂tu(t, x, y)− ∂x(xu)− ∂y(yu)− ∂xxu = δx=1N(t, y), (1.1)

N(t, y) = ∂xu(t, 0, y − 1), t ≥ 0, x ≥ 0, y ∈ R, (1.2)

u(t, 0, y) = 0, u(t, x, y) = 0 if y ≤ 0, u(0, x, y) ≥ 0,

∫ +∞

x=0

∫ +∞

y=0
u(0, x, y)dxdy = 1. (1.3)

Modulo a change of sign in the variable x, the solution u(t, x, y) can be interpreted as the probability
density of a neuron to be at the membrane potential x with an adaptation current y at time t. The
point x = 0 models the activation potential, and x = 1 the reset value. The function N(t, y) models
the flux of neurons which discharge at time t with an adaptation current y − 1. If we integrate the
equation in the y variable, we find that w(t, x) :=

∫ +∞
y=0 u(t, x, y)dy is a solution to

∂tw(t, x)− ∂x(xw)− ∂xxw = δx=1N (t),

N (t) = ∂xw(t, 0), w(t, 0) = 0, w(0, x) ≥ 0,

∫ +∞

x=0
w(0, x)dx = 1.
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In other words w is solution to the classical LIF Fokker Planck equation, which was widely studied
in the linear and non linear case in several articles (see for instance [14, 8, 9, 11, 12, 5, 23, 6, 26]).
In particular, it was proven in [5] that, in the linear case, the solution converges exponentially fast
to its stationary state, in an exponential weighted norm in L2. The proof consists of the use of an
entropy inequality combined with Poincaré type estimates. The adaptation of this strategy fails in
the context of Equation (1.1), due to the degenerate diffusion. The so-called hypocoercivity method
[1, 28, 15, 20] are other possible methods which do not apply immediately here. For this reason, we
propose here an entirely different approach based on an adaptation of the so-called Doeblin-Harris
method. The latter has proved very performant in a number of contexts recently, as a growing number
of papers have focused on the use of this method for many equations from neuroscience or physics
[4, 3, 10, 16, 17, 27, 19]. Following these ideas, we eventually prove exponential convergence to the
stationary state for Equation (1.1). More precisely, the next theorem holds where, here and in the
sequel, we denote by S(t)u0(x, y) := u(t, x, y) the solution operator1:

Theorem 1.1 There exist two constants C > 0, µ > 0, such that for all initial data u1, u2 satisfying
(1.3), the following estimate holds∫∫

(1 + |y|+ |x|2)|S(t)u1 − S(t)u2|(x, y)dxdy ≤ Ce−µt
∫∫

(1 + |y|+ |x|2)|u1 − u2|(x, y)dxdy. (1.4)

As a consequence, there exists a unique stationary state u∗ of (1.1), (1.2), (1.3), with∫∫
(1 + |y|+ |x|2)u∗(x, y)dxdy < +∞,

and for all initial data u0 satisfying (1.3),∫∫
(1 + |y|+ |x|2)|u(t, x, y)− u∗(x, y)|dxdy ≤ Ce−µt

∫∫
(1 + |y|+ |x|2)|u(0, x, y)− u∗(x, y)|dxdy,

for all t ≥ 0.

The Doeblin method (see e.g. [4]) relies on the following simple and efficient result. Assume that
Ω ⊂ Rd, d ≥ 1, and that S(t) : L1(Ω)→ L1(Ω) is a linear semi-group for t ≥ 0 which preserves mass
and positivity: for all f ∈ L1(Ω)∫

Ω
S(t)f(x)dx =

∫
Ω
f(x)dx, and f ≥ 0⇒ S(t)f ≥ 0.

Assume also that for some time t0 > 0, one is able to prove a uniform non trivial lower bound on the
solution, relative to its initial mass. More precisely, assume that there exists t0 > 0, α ∈]0, 1[, and a
non negative ν ∈ L1(Ω) with total mass 1 such that for all non negative f ∈ L1(Ω)

S(t0)f ≥ αν
∫

Ω
f. (1.5)

Then S(t) possesses a unique non negative stationary state f∗ ∈ L1(Ω) with unit mass, and moreover
there exists C > 0 and µ > 0 such that for all f ∈ L1(Ω), and for all t ≥ 0

‖S(t)f − f∗‖L1(Ω) ≤ Ce−µt‖f − f∗‖L1(Ω).

1Although we shall not study the existence part for the Cauchy problem here, our estimates below could actually be
used to do so.
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The key observation leading to this result is the following. Take f ∈ L1(Ω) such that
∫

Ω f = 0 and
decompose f = f+−f−, where f± are respectively the positive and the negative part of f , in particular∫

|f | = 2

∫
f+ = 2

∫
f−.

We write then

S(t0)f =

(
S(t0)f+ −

α

2

∫
Ω
|f |(x)dx ν

)
−
(
S(t0)f− −

α

2

∫
Ω
|f |(x)dx ν

)
=: g1 − g2,

where ν and α are given in (1.5). Since the functions g1 and g2 are non negative by (1.5), it follows
that ∫

|S(t0)f |(x)dx ≤
∫
g1(x)dx+

∫
g2(x)dx = (1− α)

∫
|f |(x)dx,

where we have used the fact that S(·) is mass preserving. The existence of a unique stationary state
and exponential convergence towards it can then be proved following standard semi-group theory
arguments, mainly through iteration, the details of which can be found e.g. in [4].

In order to prove Theorem 1.1, we will have to adapt the previous strategy because the equivalent of
Estimate (1.5) clearly cannot hold for the semi-group associated to Equation (1.1), in particular due
to the unboundedness of our domain. To overcome this difficulty, we shall first prove some uniform
lower bounds in the spirit of (1.5), provided some control of the initial data in suitable weighted
norms holds (see Theorem 3.1). For that purpose, and because the diffusion term only operates in
the variable x, we need to understand the delicate mechanism that allows mass to spread along y as
well. The next difficulty for the proof of Theorem 1.1, assuming Theorem 3.1 holds, is that we cannot
iterate easily the contraction argument as one would do in a classical Doeblin method. Instead, in
the spirit of Doeblin-Harris type method (see [7]), we need to understand the global dynamics of the
solution with respect to the added weighted norm, combined with the information of the uniform non
trivial lower-bound on the solution obtained in Theorem 3.1.

The organisation of the paper is as follows. In the next section we obtain uniform lower-bounds on
the solutions on compact subsets K ⊂ ]0,+∞[×[0,+∞], at the cost of integrating in the variables x
and y and assuming that the second moment in the variable x and the first moment on the variable
y are a priori bounded by a given constant C > 0. In the third section, still assuming these uniform
bounds on the moments, we get rid of integration and obtain pointwise lower-bounds estimates. This
part is complicated due to the degenerate diffusion in Equation (1.1). Finally in the last section, we
finish the proof of Theorem 1.1, by combining the pointwise estimates with controls on the moments
of the solution.

2 Uniform local mass bounds

Our main goal in this section is to prove that the solution can neither concentrate too much near the
boundary in the x variable, nor have too much mass flowing to infinity. We rely on weighted norms,
and define the quantities

M(t) :=

∫ +∞

x=0

∫ +∞

y=0
((x− 1)2 + y)S(t)u0(x, y)dxdy. (2.1)

We shall prove
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Proposition 2.1 Let C > 0 be given. Then, there exists σ > 0, and for each t ≥ σ there exist ε > 0,
A > 0, and R > 0 such that, for all initial data u0 satisfying (1.3) with M(0) ≤ C, the following
estimate holds ∫

Kε,R

S(t)u0(x, y)dxdy ≥ A,

where Kε,R = [ε,R]× [0, R2].

Proof of Proposition 2.1. We proceed in two steps. First, we establish a control on the growth
M(t), which allows us to ensure that the mass of the solution does not too much concentrate near
infinity. Next, we prove on control on the possible mass concentration near the boundary at x = 0.
More precisely, we shall prove

Lemma 2.2 Let u0 satisfying (1.3) with M(0) < +∞. Then for t ≥ 0,

M(t) ≤M(0)e−t + 3,

and

Lemma 2.3 Let C > 0. Then, there exists σ > 0, and for each t ≥ σ there exists B > 0 such that for
all u0 satisfying (1.3) with M(0) ≤ C,

X1(t) :=

∫ +∞

x=0

∫ +∞

y=0
xS(t)u0(x, y)dxdy ≥ B.

We postpone the proofs of these lemmas and proceed with the proof of Proposition 2.1. Let C > 0 be
fixed as in the statement, and let t ≥ σ be given by Lemma 2.3 for that same value of C. Lemma 2.2
implies that M(t) ≤ C + 3. Hence, comparing the weights and assuming R ≥ 2, we deduce that

4
C + 3

R
≥
∫ +∞

x=R

∫ +∞

y=0
xu(t, x, y)dxdy and

C + 3

R2
≥
∫ +∞

x=0

∫ +∞

y=R2

u(t, x, y)dxdy. (2.2)

Thanks to Lemma 2.3, we obtain that, for all R > 0 and ε > 0,

B ≤
∫ +∞

x=0

∫ +∞

y=0
x S(t)u0(x, y)dxdy =

∫ ε

x=0

∫ +∞

y=0
x S(t)u0(x, y)dxdy +

∫ R

x=ε

∫ R2

y=0
x S(t)u0(x, y)dxdy

+

∫ R

x=ε

∫ +∞

y=R2

x S(t)u0(x, y)dxdy +

∫ +∞

x=R

∫ +∞

y=0
x S(t)u0(x, y)dxdy.

From the latter and (2.2), we deduce that when R ≥ 2,

R

∫ R

x=ε

∫ R2

y=0
S(t)u0(x, y)dxdy ≥ B − ε− 5

C + 3

R
·

Taking ε sufficiently small (e.g. ε = B/3), and then and R ≥ 2 sufficiently large (e.g. R =
max(2, 15(C + 3)/B)) , the conclusion follows. �

We proceed now with the proofs of Lemma 2.2 and Lemma 2.3.
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Proof of Lemma 2.2. The function M satisfies the identity

M ′(t) = −M(t) +

∫ +∞

x=0

∫ +∞

y=0
(x− 1)(−x+ 3) S(t)u0(x, y)dxdy + 2

∫ +∞

x=0

∫ +∞

y=0
S(t)u0(x, y)dxdy.

Using that (x− 1)(−x+ 3) ≤ 0 for x ≥ 3, and that (x− 1)(−x+ 3) ≤ 1 for 0 ≤ x ≤ 3, we obtain the
inequality

M ′(t) ≤ −M(t) + 3

∫ +∞

x=0

∫ +∞

y=0
S(t)u0(x, y)dxdy = −M(t) + 3,

and therefore the announced
M(t) ≤M(0)e−t + 3

which gives Lemma 2.2. �

Proof of Lemma 2.3. We have
X ′1(t) = −X1(t) +N0(t),

where N0(t) =
∫ +∞
y=0 N(t, y)dy, and therefore

X1(t) = X1(0)e−t + e−t
∫ t

0
esN0(s)ds. (2.3)

If X1(0) ≥ 1
2 , we simply derive that

X1(t) ≥ 1

2
e−t. (2.4)

Assume now that X1(0) ≤ 1
2 , and set, for µ > 0,

Φµ(t) :=

∫∫
e−µxu(t, x, y)dxdy.

Multiplying Equation (1.1) by e−µx, and integrating, we obtain that

Φ′µ(t) = µ2(t)Φµ(t) + µ

∫∫
xe−µxu(t, x, y)dxdy + (e−µ − 1)N0(t)

and therefore
Φ′µ(t) ≥ µ2(t)Φµ(t) + (e−µ − 1)N0(t).

Mass conservation implies that for all t ≥ 0, Φµ(t) ≤ 1, and so∫ t

s=0
e−µ

2sN0(s)ds ≥ 1

(1− e−µ)

(
Φµ(0)− e−µ2t

)
.

On the other hand, as M(0) ≤ C, we deduce that there exists C1 > 0 such that∫ C1

x=0

∫ C1

y=0
u(0, x, y)dxdy ≥ 1

2

and so Φµ(0) ≥ 1
2e
−C1µ, which gives∫ t

s=0
N0(s)ds ≥

∫ t

s=0
e−µ

2sN0(s)ds ≥ 1

(1− e−µ)

(
1

2
e−C1µ − e−µ2t

)
.
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Taking µ = 1, we obtain that there exists a constant C̃1 > 0 and σ > 0 such that for all t ≥ σ,∫ t

s=0
N0(s)ds ≥ C̃1.

Coming back to Estimate (2.3), we obtain that, for t ≥ σ,

X1(t) ≥ e−tC̃1,

which concludes the proof of Lemma 2.3. �

3 Uniform pointwise lower bounds

The aim of this section is to prove the following theorem.

Theorem 3.1 Let C > 0. Then, there exists t∗ > 0, and for each t0 ≥ t∗ there exist α ∈]0, 1[ and an
integrable function

ν : R+ × R+ → R+ with

∫∫
ν(x, y)dxdy = 1,

such that for all initial data satisfying (1.3), with M(0) ≤ C, where M is defined by (2.1), the following
estimate holds

u(t0, x, y) ≥ αν(x, y).

The main difficulty of the proof lies in the fact that we have a diffusion only in the variable x. It is
therefore necessary to understand how the source term, coupled with the drift term in the variable y,
allows to gain a sufficiently diffusive dynamics in y. The sketch of the proof goes as follows: First,
by a suitable change of variable, we observe that Equation (1.1) can be written as infinitely many
heat equations, parametrized by y, with a source term that couples all equations together. For the 1D
linear heat equation, with a Dirichlet boundary term, it can be explicitly verified that the derivative
in x of the solution at 0 can, for any time, be bounded from below using a weighted average of the
initial data at time 0 (this is the object of Lemma 3.2 below). Using Duhamel’s formula for our new
set of equations, which involves a time integral of the source term, we obtain a control from below on
the solution via the coupling term, which itself can be controlled using Lemma 3.2. One key point is
that the integral in time obtained via Duhamel’s formula also provides in the original variables some
implicit integration in the y variable, because the derivative of the velocity of the drift term with
respect to y is non trivial.

We begin with the explicit boundary derivative control for the heat equation, and the proceed with
the actual proof of Theorem 3.1

Lemma 3.2 Let v : R+ × R+ → R+ be the solution of the equation

∂tv − ∂2
xv = 0, v(t, 0) = 0, v(0, x) ≥ 0.

Let S(t) := ∂xv(t, 0). Then,

S(t) =
1

t
√

4πt

∫ +∞

0
xe−

x2

4t v(0, x)dx.
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Proof of Lemma 3.2. We have

v(t, x) =
1√
4πt

∫ +∞

0
(e−

(x−y)2
4t − e−

(x+y)2

4t )v(0, y)dy.

Hence,

∂xv(t, x) =
1

t
√

4πt

∫ +∞

0
((y − x)e−

(x−y)2
4t + (x+ y)e−

(x+y)2

4t )v(0, y)dy,

which yields the result, taking x = 0. �

Proof of Theorem 3.1.

First observe that by direct computation, if u is a solution to (1.1), then

n(t, x, y) :=
1

(2t+ 1)
u(ln(

√
2t+ 1),

x√
2t+ 1

,
y√

2t+ 1
) (3.1)

satisfies

∂tn− ∂2
xn = δx=

√
2t+1 G(t, y), G(t, y) = ∂xn(t, 0, y −

√
2t+ 1). (3.2)

By Duhamel formula, it follows that

n(t, x, y) = e−t∆n(0, x, y) +

∫ t

0
e−(t−s)∆δx=

√
2s+1 G(s, y)ds,

and therefore when u and thus n is non negative,

n(t, x, y) ≥
∫ t

0

1√
4π(t− s)

(e
− (
√
2s+1−x)2
4(t−s) − e−

(
√
2s+1+x)2

4(t−s) )G(s, y)ds.

From the latter, we deduce that for any compact set K ⊂]0,+∞[, and for any t ≥ 0, there exists a
positive constant C(t,K) such that

n(t, x, y)Ix∈K ≥ C(t,K)

∫ t

0
G(s, y)ds. (3.3)

We now estimate the term involving G. To this end, observe first that by the comparison principle
G(t, y) ≥ S(t, y), where S(t, y) is given by S(t, y) := ∂xv(t, 0, y), where

∂tv − ∂2
xv = 0, v(t, 0, y) = 0, v(0, x, y) = n(0, x, y) ≥ 0.

Hence, applying Lemma 3.2 in Estimate (3.3), we obtain that for all t > δ > 0

n(t, x, y)Ix∈K ≥ C(t,K, δ)

∫ t

s=δ

∫ +∞

x=0
xe−

x2

4s n(δ, x, y −
√

2s+ 1)dxds,

for some positive C(t,K, δ). In turn this implies that for any compact interval K ′ ⊂]0,+∞[, we have

n(t, x, y)Ix∈K ≥ C(t,K,K ′, δ)

∫ y−
√

2δ+1

z=y−
√

2t+1

∫
x∈K′

n(δ, x, z)dxdz,
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for some positive C(t,K,K ′, δ). Using Relation (3.1) between u and n, and rescaling the variable z,
we infer that for all compact interval K and K ′ of ]0,+∞[,

u(ln(
√

2t+ 1),
x√

2t+ 1
,

y√
2t+ 1

)Ix∈K

≥C(t,K, δ,K ′)

∫ y√
2δ+1

−1

z= y−
√
2t+1√

2δ+1

∫
x∈K′

u(ln(
√

2δ + 1), x, z)dxdz.
(3.4)

Let A > 0, ε > 0, R > 0 be given by Proposition 2.1, where in the statement of Proposition 2.1, we
take the value of C identical to its value in the statement of Theorem 3.1 and with the choice t = σ.
We next choose δ in such a way that ln(

√
2δ + 1) = σ, and let K ′ = [ε,R]. The interval

K ′′ :=
{
y ≥ 0 s.t. y ≤

√
2t+ 1 and y ≥ (R2 + 1)eσ

}
has positive length provided t > t∗ := 1

2((R2 + 1)2e2σ − 1), and by construction we have

[0, R2] ⊂ [
y −
√

2t+ 1√
2δ + 1

,
y√

2δ + 1
− 1], ∀y ∈ K ′′,

so that by (3.4) and Proposition 2.1, for all t > t∗,

u(ln(
√

2t+ 1),
x√

2t+ 1
,

y√
2t+ 1

)Ix∈KIy∈K′′ ≥ C(t, σ,K)

∫
Kε,R

u(σ, x, z)dxdz ≥ C(t, σ,K)A.

This implies that for all t > t∗, there exists a compact set of positive measure K ′′′ ⊂ R+ × R+, such
that

u(ln(
√

2t+ 1), x, y)I(x,y)∈K′′′ ≥ C(t, σ,K)A.

As for all t > 0, ln(
√

2t+ 1) < t, we deduce that for all t0 ≥ t∗, there exists a compact set of positive
measure K ′′′ ⊂ R+ × R+, such that

u(t0, x, y)I(x,y)∈K′′′ ≥ C(t0, σ,K)A,

which concludes the proof of Theorem 3.1 by taking ν =
IK′′′
|K′′′| , where |K ′′′| denotes the Lebesgue

measure of K ′′′. �

4 Proof of Theorem 1.1

We first recall for completeness the classical argument showing that Estimate (1.4) implies that there
exists a unique stationary state u∗ of (1.1), (1.2), (1.3), such that∫ +∞

x=0

∫ +∞

y=0
(1 + |x|2 + |y|)u∗(x, y)dxdy < +∞.

Let L1
m denote the Banach space of integrable functions f : R+ × R+ → R, endowed with the norm

‖· ‖L1
m

, where

‖f‖L1
m

=

∫ +∞

x=0

∫ +∞

y=0
(1 + |x|2 + |y|)|f |(x, y)dxdy.

8



For t > 0, let Ψt : L1
m → L1

m defined by Ψt(f) = S(t)f . The application Ψt is well defined because of
Lemma 2.2, and if t is sufficiently large, it follows from Estimate (1.4) that there exists κ < 1 such
that for all (f, g) ∈ L1

m × L1
m,

‖Ψt(f)−Ψt(g)‖L1
m
≤ κ‖f − g‖L1

m
,

and Picard fixed point theorem yields a unique u∗ ∈ L1
m such that

S(t)u∗ = u∗.

On the other hand, we have for all t′ ≥ 0,

S(t)(S(t′)u∗) = S(t′)(S(t)u∗) = S(t′)u∗.

Hence, for all t′ ≥ 0, S(t′)u∗ is a fixed point of Ψt which implies that for all t′ ≥ 0, S(t′)u∗ = u∗.

It remains to prove Estimate (1.4). For that purpose, we consider u1 and u2 two initial data satisfying
(1.3), and set

m0(t) :=

∫ +∞

x=0

∫ +∞

y=0
|S(t)(u1 − u2)|(x, y)dxdy

M(t) :=

∫ +∞

x=0

∫ +∞

y=0
((x− 1)2 + y)|S(t)(u1 − u2)|(x, y)dxdy.

We note that by conservation of mass and positivity, the quantity m0 is a non increasing function.

The next lemma, based on Theorem 3.1, provides a first contraction type result, assuming a uniform
control on M(t) with respect to m0(t).

Lemma 4.1 Let γ > 0. There exists t∗ > 0, and for any t0 ≥ t∗ there exists α ∈]0, 1[, such that for
any t ≥ 0, if M(t) ≤ γm0(t) then

m0(t+ t0) ≤ αm0(t).

Proof of Lemma 4.1. We decompose S(t)(u1 − u2) =: µ+ − µ−, where µ± denote respectively the
positive and the negative parts of S(t)(u1 − u2). We have∫ +∞

x=0

∫ +∞

y=0
µ+(x, y)dxdy =

∫ +∞

x=0

∫ +∞

y=0
µ−(x, y)dxdy =

1

2
m0(t).

We also have, for all (x, y) ∈ R+ × R+,

|S(t)(u1 − u2)(x, y)| ≥ µ+(x, y) and |S(t)(u1 − u2)(x, y)| ≥ µ−(x, y),

and therefore from the assumption M(t) ≤ γm0(t) we deduce that∫ +∞

x=0

∫ +∞

y=0
((x− 1)2 + y)µ±(x, y)dxdy ≤ 2γ

∫ +∞

x=0

∫ +∞

y=0
µ±(x, y)dxdy.

Applying Theorem 3.1 with initial data µ±, it follows that there exists a time t∗ > 0 and for any
t0 ≥ t∗ there exists α ∈]0, 1[ and a function ν as in Theorem 3.1, such that

S(t0)(µ±) ≥ αm0(t)ν

2
·
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We write

S(t0 + t)(u1 − u2) = S(t0)(µ+)− m0(t)

2
ν +

m0(t)

2
ν − S(t0)(µ−),

and taking the absolute value and integrating yields∫ +∞

x=0

∫ +∞

y=0
|S(t+ t0)(u1 − u2)|(x, y)dxdy ≤ α

∫ +∞

x=0

∫ +∞

y=0
|S(t)(u1 − u2)|(x, y)dxdy

which ends the proof of Lemma 4.1. �

Because it requires an a priori bound on M(t), it is not clear a priori that it can be iteratively used
in order to derive and exponential decay. As a matter of fact, even assuming that there exists t≥ 0

such that M
m0

(t) ≤ γ, we do not know, for example, if for k ≥ 1 we still have M
m0

(t+ kt0) ≤ γ. In order

to overcome this difficulty, we shall split the time space into two regions determined by the ratio M
m0

with respect to a parameter γ: in one region we will directly make use of that ratio bound, while in
the other will make use of Lemma 4.1.

We being with the case where M is large with respect to m0.

Lemma 4.2 Let γ > 0. Assume that M ≥ γm0 on some interval I = [T1, T2]. Then

M(t) ≤ e(−1+ 3
γ

)t
M(T1),

for all t ∈ I.

Proof of Lemma 4.2. Set p(t) := |S(t)(u1 − u2)|. Then,

∂tp− ∂x(xp)− ∂y(yp)− ∂xxp ≤ δx=1|N1(t, y)−N2(t, y)|

where Ni(t, y) = ∂xS(t)ui(0, y − 1). Multiplying the above equation by (x− 1)2 + y and integrating,
we derive that

M
′
(t) ≤ −M(t) + 3m0(t) ≤ −M(t) +

3

γ
M(t), (4.1)

and the conclusion follows from Gronwall’s lemma. �

We now proceed with the region where M ≤ γm0. To deal with that situation, we define a suitable
area where one can iterate over Lemma 4.1, in order to control m0, and where, at the same time, a
sufficient control on M can be established. More precisely, we have

Lemma 4.3 Let γ > 0, let t∗ be given by Lemma 4.1 for this choice of γ, and let t0 > t∗.
Assume that for some T ≥ 0, M(T ) ≤ γm0(T ), and set

N = N(T, γ, t0) := sup
{
k ≥ 0 s.t. M(T + jt0) ≤ γm0(T + jt0) ∀ 0 ≤ j ≤ k

}
∈ N ∪ {+∞}.

There exists 0 < β ≤ 1
2 , depending only on γ and t0, such that

m0(t) ≤ 2e−β(t−T )m0(T ), (4.2)

and

M(t) ≤ e−(t−T )M(T ) + 12e−β(t−T )m0(T ), (4.3)

for all t ∈ IN , where IN := [T, T + (N + 1)t0) if N is finite, and IN := [T,+∞) otherwise.
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Proof of Lemma 4.3. Inequality (4.2) follows from Lemma 4.1 and the fact that m0 is a decreasing
function. Indeed, for 0 ≤ k ≤ N we can apply Lemma 4.1 at the point T + kt0 and therefore obtain
that

m0(T + (k + 1)t0) ≤ αm0(T + kt0).

Using that m0 is a decreasing function, it follows that

m0(t) ≤ αkm0(T ), ∀t ∈ [T + kt0, T + (k + 1)t0], ∀0 ≤ k ≤ N,

and therefore (4.2) holds provided e−βt0 ≥ max(1
2 , α). We choose β := max(1

2 ,−
1
t0

log(max(1
2 , α)).

Estimate (4.3) is then a direct consequence of the fist inequality in (4.1). Indeed, we have

M(t) ≤ e−(t−T )M(T ) + 3e−t
∫ t

T
esm0(s)ds,

and using (4.2) as well as β ≤ 1
2 , we bound

3e−t
∫ t

T
esm0(s)ds ≤ 6e−β(t−T )m0(T )

∫ t

T
e−(1−β)(t−s)ds ≤ 12e−β(t−T )m0(T ).

This concludes the proof of Lemma 4.3. �

Proof of Theorem 1.1 completed. Let γ = 24 and let t∗ be given by Lemma 4.3 for this choice
of γ. We then set t0 = max(t∗, 2 log(2)), and denote by β the value provided by Lemma 4.3 for such
values of γ and t0. We split the argument in three steps.

Step 1: Initialization. We distinguish two cases.
Case 1: M(0) ≤ γm0(0). We may then apply Lemma 4.3 with T = 0, and we distinguish again two
subcases depending on N := N(T, γ, t0).
Case 1a: N = +∞. In that case, summation of (4.2) and (4.3) leads to(

M +m0

)
(t) ≤ 14e−βt

(
M +m0

)
(0), ∀ t ≥ 0, (4.4)

which immediately implies (1.4).
Case 1b: N < +∞. In that case, we set T0 = (N + 1)t0 and similarly summation of (4.2) and (4.3)
yields (

M +m0

)
(t) ≤ 14e−βt

(
M +m0

)
(0), ∀t ∈ [0, T0]. (4.5)

By definition of N , we also have M(T0) > γm0(T0).
Case 2: M(0) > γm0(0). In that case, we simply set T0 = 0. Obviously, (4.5) also holds.

Step 2: Induction. Assume that for some k ∈ N we have constructed Tk ≥ 0 such that

M(Tk) > γm0(Tk), (4.6)

M(Tk) ≤ 14e−βTk
(
M +m0

)
(0), (4.7)

(M +m0)(t) ≤ 28e−βt
(
M +m0

)
(0), ∀ 0 ≤ t ≤ Tk. (4.8)

Let T ′k = sup{t ≥ Tk s.t. M(s) > γm0(s) ∀ s ∈ [Tk, t]}. We distinguish two cases.
Case 1: T ′k = +∞. Then by Lemma 4.2 and in view of the inequality −1 + 3

γ = −7
8 ≤ −

1
2 ≤ −β we

obtain that for all t ≥ Tk

(M +m0)(t) ≤ (1 +
1

γ
)M(t) ≤ (1 +

1

γ
)e−β(t−Tk)M(Tk) ≤ 28e−βt

(
M +m0

)
(0),
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where we have used (4.7) for the last inequality. It follows that the equivalent of (4.8) holds for all
t ≥ 0, and there is nothing left to prove in that case.
Case 2: T ′k < +∞. By continuity it holds M(T ′k) = γm0(T ′k). By Lemma 4.2, and using once more
that −1 + 3

γ = −7
8 ≤ −

1
2 ≤ −β, we have

M(t) ≤ e−β(t−Tk)M(Tk) ∀ t ∈ [Tk, T
′
k], (4.9)

and therefore by definition of T ′k(
M +m0

)
(t) ≤

(
1 +

1

γ

)
M(t) ≤

(
1 +

1

γ

)
e−β(t−Tk)M(Tk) ∀ t ∈ [Tk, T

′
k]. (4.10)

We distinguish once more two subcases depending on N := N(T ′k, γ, t0).
Case 2a: N = +∞. Summation of (4.2) and (4.3), together with (4.9) (evaluated at t = T ′k) yields(

M +m0

)
(t) ≤ 14e−β(t−T ′k)M(T ′k) ≤ 14e−β(t−Tk)M(Tk), ∀ t ≥ T ′k. (4.11)

Using (4.7) to control M(Tk) in both (4.11) and in (4.10), and combining the control so obtained for
all t ≥ Tk with the existing control (4.8) for t ≤ Tk finishes the proof in that case.
Case 2b: N < +∞. This is the only case that will potentially repeat itself, it is therefore important
that it yields an exponential decay without a pre-multiplying factor. We set T ′′k = T ′k + t0 and
Tk+1 = T ′k + (N + 1)t0. Inequality (4.3) combined with m0(T ′k) = M(T ′k)/γ yield

M(t) ≤ e−(t−T ′k)M(T ′k) +
12

γ
e−β(t−T ′k)M(T ′k), ∀ T ′k ≤ t ≤ Tk+1. (4.12)

Since by construction t0 ≥ 2 log(2) and β ≤ 1
2 , we have

e−(t−T ′k) ≤ e−
1
2

(t−T ′k)e−β(t−T ′k) ≤ 1

2
e−β(t−T ′k) ∀ t ≥ T ′′k = T ′k + t0.

It follows therefore from (4.12) and the choice γ = 24 that

M(t) ≤ e−β(t−T ′k)M(T ′k) ∀ t ∈ [T ′′k , Tk+1]. (4.13)

Combining (4.13) and (4.9) (evaluated at t = T ′k) we deduce that

M(t) ≤ e−β(t−Tk)M(Tk) ∀ t ∈ [Tk, Tk+1] \ (T ′k, T
′′
k ), (4.14)

and therefore by the inductive assumption (4.7) we obtain

M(t) ≤ 14e−βt
(
M +m0

)
(0) ∀ t ∈ [Tk, Tk+1] \ (T ′k, T

′′
k ). (4.15)

The latter evaluated at t = Tk+1 reproduces the equivalent of (4.7) at t = Tk+1. Note also that by
definition of N we have M(Tk+1) > γm0(Tk+1), i.e. (4.6) also holds at time Tk+1. It remains to prove
the inequality in (4.8) holds for all t ≤ Tk+1. In view of (4.15), this amounts to bound M(t) for
t ∈ (T ′k, T

′′
k ) and m0(t) for t ∈ [Tk, Tk+1]. For the first one, we simply refer to (4.12) and combine it

with (4.15) (evaluated at t = T ′k) to obtain

M(t) ≤ 3

2
14e−βt

(
M +m0

)
(0) ∀ t ∈ [Tk, T

′
k]. (4.16)
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Regarding m0(t), first by definition of T ′k and (4.15)

m0(t) ≤ 1

γ
M(t) ≤ 1

γ
14e−βt

(
M +m0

)
(0) ∀ t ∈ [Tk, T

′
k].

Second, by (4.2) we have

m0(t) ≤ 2e−β(t−T ′k)m0(T ′k) =
2

γ
e−β(t−T ′k)M(T ′k) ≤

2

γ
14e−βt

(
M +m0

)
(0) ∀ t ∈ [T ′k, Tk+1].

After summation with (4.16) or (depending on the value of t) (4.15), and using that (3
2 + 2

γ )14 ≤ 28,
we finally derive (4.8) for all t ≤ Tk+1.
Step 3: Conclusion. If the algorithm presented in Step 2 exits early (i.e. if either case 1 or case 2b
holds at some point), then we already showed that there was nothing left to prove. If it doesn’t then
the sequence (Tk)k≥0 is necessarily unbounded, since Tk+1 − Tk ≥ t0 for all k ≥ 0. Inequality (4.8)
therefore eventually holds for all t ≥ 0, and the proof of Theorem 1.1 is hereby completed. �
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