
HAL Id: hal-03845902
https://hal.science/hal-03845902

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-optimizing Dataflow Graphs and Actors with MLIR
Pedro Ciambra, Mickaël Dardaillon, Maxime Pelcat, Hervé Yviquel

To cite this version:
Pedro Ciambra, Mickaël Dardaillon, Maxime Pelcat, Hervé Yviquel. Co-optimizing Dataflow Graphs
and Actors with MLIR. 2022 IEEE Workshop on Signal Processing Systems (SiPS), Nov 2022, Rennes,
France. �hal-03845902�

https://hal.science/hal-03845902
https://hal.archives-ouvertes.fr


Co-optimizing Dataflow Graphs and Actors with
MLIR

Pedro Ciambra1∗, Mickaël Dardaillon†, Maxime Pelcat† and Hervé Yviquel∗
∗Institute of Computing, University of Campinas (UNICAMP), Campinas, Brazil

Email: p137268@dac.unicamp.br, hyviquel@unicamp.br
†INSA Rennes, IETR, UMR 6164, Rennes, France

Email: firstname.lastname@insa-rennes.fr

Abstract—Dataflow programming is considered a good solution
for the implementation of parallel signal processing applications.
However, the strict separation between kernel and coordination
codes limits the variety of possible optimizations and the com-
patibility with state-of-the-art compiler frameworks. We present
a prototype static dataflow compiler, built with the LLVM
MLIR framework, that overcomes these limitations and enables
a previously impossible combination of optimization strategies
that leverages information from the dataflow topology. Initial
results show 30% wall time improvement and 53% memory usage
improvement on a video processing workload.

Index Terms—compiler, dataflow, MLIR, optimization, dead
code elimination, IaRa, dialect, co-optimization

I. INTRODUCTION

Dataflow Models of Computation (MoCs) have demon-
strated their performances in a large number of signal pro-
cessing systems studies [1]. Dataflow networks have however
not been widely adopted by the compilation community. While
a number of tools have been developed to aid the creation and
optimization of dataflow algorithms, these projects have lim-
ited interoperability, amongst each other and with the outside
compiler ecosystem. Meanwhile, the popularization of domain
specific languages such as neural network representation for-
mats and other highly parallel programming frameworks has
brought many advances in compiler research [2], yet to be
leveraged by the dataflow community.

The go-to strategy for existing high-performance dataflow
projects has been source-to-source compilation. Instead of
directly generating machine code, these projects rely on an
existing framework for low-level code generation, usually a
C compiler such as the GNU Compiler Collection (GCC) or
Clang/LLVM. This strategy presents a couple of issues. One
disadvantage is having to commit to the level of abstraction of
C, which incurs some loss of information that could otherwise
be useful in optimization strategies; another problem is the
difficulty to perform transformations in the code once it has
been generated, as few C compilers expose their intermediate
representations in an accessible way.

In this paper, a dataflow compilation solution is proposed,
aiming at co-optimizing kernel and coordination code by using
MLIR [3]. In the semantics of MoCs, a coordination language
glues together self-contained kernels (“actors” in the dataflow

1CNPq Scholarship - 133933/2020-2

terminology) to which portions of computation are delegated
[4]. MLIR is a recent effort by the LLVM project that
focuses on modular, intercompatible Intermediate Represen-
tations (IRs) to provide compatibility and code reuse between
projects. By developing a new IR for dataflow networks that is
compatible with the state-of-the-art of compiler infrastructures,
we aim to demonstrate the potential for new strategies and
foster dataflow methods in the compiling community.

For compile time optimization, Synchronous Dataflow
(SDF) and other static dataflow MoCs are of particular interest,
since their properties allow for many optimization strategies
and expose different forms of parallelism; therefore, they
stand to gain the most from traditional compilation techniques.
Non-static dataflow MoCs such as PiSDF [5] and Dynamic
Dataflow [6] may also benefit from a dataflow compilation
framework, as they have conceptual similarities with static
models. By making use of the MLIR project to simultane-
ously access and modify different layers of abstraction, one
can develop optimization strategies based on the notion of
compilation passes.

The main contribution of this paper is the design of
a co-optimization pass that allows for the combination of
two previously incompatible strategies, showing experimental
gains in both time and memory consumption. To achieve
this, we present IaRa, a full compilation pipeline within the
MLIR framework that includes a Dataflow Interchange Format
(DIF) parser [7], a custom IR for dataflow networks, and an
integration with an MLIR C frontend called Polygeist [8] for
transformation of kernel implementations provided in the C
language.

To the extent of our knowledge, this work is the first to
concentrate on the co-optimization of dataflow graph structure
and kernel code.

In Section II, the semantics of SDF are discussed, as well
as the advantages of using MLIR for compiler research. In
Section III, we present the proposed compilation pipeline, in-
cluding a novel IR for dataflow networks, and an approach for
co-optimized Dead Code Elimination (DCE). The contribution
is compared to related work in Section IV. Section V discusses
the experimental improvements in performance and memory
usage achieved by co-optimizing an example application.
Finally, in Section VI we conclude the paper by discussing
further potential applications of MLIR and related projects.



II. BACKGROUND

A. Dataflow MoCs
Dataflow is a family of Models of Computation [9] that

relies on describing algorithms as directed graphs, where ver-
tices, referred to as “actors”, represent side-effect-free units of
computation that consume and produce data units (“tokens”),
and edges represent the connections between actors in the form
of first-in-first-out (FIFO) data structures. An actor “fires”,
consuming an amount of tokens from its input edges, applying
some transformation on them, and inserting the results into the
outputs. The source code for this computation is referred to
as “kernel”, and is traditionally provided in the C language.

A dataflow framework, thus, has the task of determining
when to fire each actor (scheduling), and where to allocate the
memory for the processed tokens (bufferization), using only in-
formation from the graph topology. The code generated by this
process is referred to as “coordination” code. This separation
of kernel and coordination code allows for a flexible design
process while maintaining high performance and parallelism.

Static Dataflow [9], [10] is a subset of dataflow MoCs
with the property of fixed production and consumption rates.
This allows a compiler to, ahead of execution, find an order
of firings that is periodic and data-independent, and also
determine size and location in memory for every produced
token in a period. This removes the need for a runtime and
allows for optimizations that are otherwise impossible, making
it a popular choice in the field of Digital Signal Processing
(DSP), where performance, energy efficiency, parallelism and
memory footprint are often very relevant considerations.

In the Related Works section, we go over a number of
existing solutions in the dataflow space.

B. MLIR
MLIR [3] is a recent initiative from the LLVM team

that establishes a framework for the development of modular
intermediate representations. By allowing different concepts
and levels of abstraction to be separated into different dialects
while allowing them to coexist with each other as the same
data structure, the project fosters reuse of code transformations
between different compiler projects while preserving safety,
performance and separation of concerns. MLIR has quickly
achieved relevance in the compiler community, having been
adopted by various projects such as TensorFlow [11], which
focuses on machine learning; CIRCT [12], which provides
hardware design tools; and Microsoft’s Project Verona [13],
which is a research compiler for concurrent ownership. MLIR
is also used by traditional general-purpose compiler projects
such as Polygeist [8], which converts C source code into MLIR
and provides a number of polyhedral optimizations. One thing
that makes MLIR very attractive as a compatibility medium
is the fact that its built-in dialects are easily convertible into
LLVM IR, a low-level IR that has already been adopted
by many languages and that can be compiled into highly
optimized code for many target architectures.

In analogy to the assembly-language-inspired instructions
of LLVM IR, MLIR code consists of operations. However,

differently from instructions, operations are not restricted to
single physical actions in a processor; they can represent any
kind of abstract information, and can contain other operations.
This allows operations to represent complex concepts such as
modules, functions, and structured control flow. Related opera-
tions are grouped into dialects, and developers are free to pick
and choose which dialects are relevant to their project, and
to define and share their own dialects and operations. MLIR
currently provides built-in dialects for control flow, memory
management, arithmetic and tensor operations, function and
scope management, parallelization, and other concepts that are
useful for general-purpose compilers. One of these dialects
maps directly into LLVM IR, and is commonly used as a
target by projects that wish to leverage the existing framework
around it.

In Listing 2, an example of MLIR can be seen. Notice that
every operation includes the name of its dialect; operations
starting with llvm are part of the LLVM dialect, but others
like arith and math are higher-level and can be used in
compilers for different architectures.

These dialects are converted between each other by
“passes”, which consist of formalized transformation proce-
dures that preserve certain guarantees about the state of the
IR and allow for automatic parallelization of the compilation
pipeline. The fact that these passes work on any level of
abstraction is useful in the context of new compiler research:
before this technology was introduced, the options for the
development of a new compilation technique were limited
to either the creation of a source-to-source compiler and
commitment to the user-facing level of abstraction of an
existing target language such as C, or to delve into the code
of an existing general-purpose compiler, whose complexity
may hinder the development and adoption of the contribution.
MLIR introduces the possibility of focusing only on the
appropriate levels of abstraction and relying on existing passes
to deal with everything else, and the fact that all dialects
expose a standardized interface makes it easy to ensure that
the contribution can be easily adopted and expanded upon by
others.

As MLIR operations may have an arbitrary number of
inputs and outputs, they are ideal for representing directed
graph structures; they also allow for arbitrarily deep nested
or hierarchical composition. These characteristics make them
especially well-suited for dataflow networks, as we can then
use the built-in data structure algorithms.

III. CONTRIBUTIONS

This section covers the structure of the proposed compiler,
its purpose-built dataflow graph IR, and a co-optimization
strategy that combines memory pooling and dead code elimi-
nation to achieve gains in performance and memory usage.

A. Multi-Source Compilation Flow

To explore the potential of co-optimization in dataflow
compilation, both kernel code and dataflow graph data must be
manipulated at the same time. By converting them into MLIR,



it becomes possible to use the built-in graph transformation
tools to implement a SDF flattening, a DCE and memory-
optimizing transformations. The built-in MLIR conversion
passes are leveraged to generate LLVM IR that can be com-
piled into an executable with existing tools. The proposed
MLIR dialect is capable of representing all of the abstractions
necessary for an SDF graph (graphs and subgraphs, actortypes,
nodes, edges, ports, parameters etc.).

Figure 1 illustrates the proposed compilation flow. Kernel
code is transformed into high-level MLIR using the C front-
end of the Polygeist project [8]. A custom parser for the
DIF language [7] extracts dataflow graph information and
transforms it into the proposed dataflow graph dialect. The
structured topology is analysed, at which point performance-
related features (unused ports, statically-known parameters,
etc.) can be extracted. During co-optimization, this information
is used to perform transformations in the kernel code and graph
data. After co-optimization finishes, the graph is flattened,
scheduled and bufferized, and the built-in lowering passes are
used to transform the resulting code into LLVM IR which is
then compiled into an executable using LLVM.

Fig. 1. Proposed compilation pipeline, with co-optimizations

B. Dataflow IR

The proposed dataflow IR consists of operations for four
main abstractions: Graph, Kernel, Actor, and Edge.

• GraphOp represents a single hierarchical level of a graph.
GraphOp encodes the name, MoC, graph-level parameters
and, in the case of a sub-graph, its outside interface input
and output ports. It contains KernelOps, NodeOps and
EdgeOps within its single block, and may coexist with
other GraphOps in the same MLIR module.

• KernelOp represents an external function that constitutes
the implementation for one or more nodes. It encodes
the function name of the implementation and its interface
(parameters and input/output ports). It is also possible to
define default values for the parameters.

• NodeOp encodes a single actor in the graph topology. It
provides a name for the node and values for the actor
parameters. It also contains a reference to an implemen-
tation, which can either be an KernelOp that represents
a concrete function or a GraphOp that represents an
interface to a sub-graph.

• EdgeOp encodes the edges of the graph. It consists simply
of two node-port pairs that represent the input and output
ports within the graph. Optionally, one of the node names
may be replaced by the containing graph name, which
represents an interface port for hierarchical graphs.

While MLIR includes support for representing arbitrary
directed graph structures by using the built-in Value system,
these structures rely on the ordering of incoming and outgoing
edges and do not allow for keyword-based assignment, which
harms the human legibility of the IR. We have instead opted to
use explicit operations for edges, which allows for the nodes
and ports to be referred to by name.

C. Dead code elimination by Co-optimization

Using Polygeist to convert (“raise” or “hoist”) the C im-
plementation of actors into higher-level MLIR enables access
and modification to their internal operations through MLIR’s
robust API. This enables the development of fine-grained
optimization strategies that make use of both coordination and
kernel information that have not been explored in source-to-
source dataflow projects, due to previously described chal-
lenges. In this work, we focus on Dead Code Elimination, but
there are other possible optimizations, such as actor splitting.
This consists of breaking an actor into components, exposing
hidden parallelism (not supported by our current single-core
implementation).

In an SDF graph, it is possible that some of the output
ports of an actor are not connected to any edges, meaning
that a significant portion of its operations may be generating
unused data and is eligible to removal.

The removal of unused ports and operations brings im-
provements in both memory and performance. By removing
ports, we remove the necessity to allocate “scratch” space
in which to write the output, decreasing the total memory
requirements and improving cache effectiveness. Additionally,
any removed operation will no longer generate processor
instructions, reducing the number of cycles required for the
execution of that actor. This optimization is a kind of code
specialization, potentially trading off additional program size
for improved program performance. In this work we choose
to perform systematic specialization, other trade offs could be
explored in the future.

Most traditional compilers implement some form of DCE,
but they are usually restricted to a single compilation unit, and
only to cases where there is no memory aliasing. This cannot



be applied when using common SDF memory optimization
strategies such as shared memory pools [14], which rely on
memory recycling and thus create strong aliasing before DCE
can be applied by the compiler.

However, with access to topology information, we can
determine ahead of time if an output port won’t be used,
and MLIR allows us to operate directly on the Single Static
Assignment (SSA) values of the kernel code.

1 void cartesian_to_polar(
2 float *x, float *y, // input ports
3 float *r, float *theta) // output ports
4 {
5 *r = sqrt(*x * *x + *y * *y);
6 *theta = atan2f(*y, *x);
7 }

Listing 1. Example kernel implementation in C.

1 func @cartesian_to_polar(
2 %arg0: llvm.ptr<f32>, %arg1: llvm.ptr<f32>,
3 %arg2: llvm.ptr<f32>, %arg3: llvm.ptr<f32>)
4 {
5 %1 = llvm.load %arg0 : !llvm.ptr<f32>
6 %2 = arith.mulf %1, %1 : f32
7 %3 = llvm.load %arg1 : !llvm.ptr<f32>
8 %4 = arith.mulf %3, %3 : f32
9 %5 = arith.addf %2, %4 : f32

10 %6 = math.sqrt %5 : f32
11 llvm.store %6, %arg2 : !llvm.ptr<f32>
12 %9 = call @atan2(%3, %1)
13 : (f32, f32) -> f32
14 llvm.store %9, %arg3 : !llvm.ptr<f32>
15 return
16 }

Listing 2. MLIR Polygeist output from source code in Listing 1.
Operations that flow into specific output ports are highlighted.

Consider the C function in Listing 1 and its MLIR represen-
tation (Listing 2), where the operations that flow exclusively
into r and theta are highlighted in bold and underlined,
respectively. These represent the sets of operations that can be
removed if the corresponding output port is unused. Finding
this separation consists of following the value Directed Acyclic
Graph (DAG) backwards from the port-writing llvm.store
operations, and keeping a table of which output values depend
on each operation.

As MLIR automatically keeps a graph data structure that
tracks the references and definitions of all intermediary values,
this can be implemented with a simple recursive algorithm
that walks this graph. Unlike LLVM IR, MLIR provides a
structured control flow dialect that simplifies the tracking of
values entering and leaving control flow regions; reasoning
about branches and jumps is not necessary. However, since
we’re relying on LLVM to generate optimized machine code,
we can skip this recursive step; it is enough to just delete all
operations that directly access the memory of the output we
want to remove. We can leverage the built-in function-scope
dead code elimination implemented in LLVM to guarantee that
all unused intermediary values and their associated operations
will be removed in the final binary.

There are a couple of caveats. This method does not apply
for operations that access global variables or call functions
with side effects, as they may be difficult to trace between
different sections of the function. It also assumes that there is
no aliasing between the pointers of each port, i.e., the memory
assigned to one port won’t be accessed by offsetting the pointer
of another port. In the case of SDF, it is assumed that a correct
kernel implementation conforms to this.

The compiler then creates a copy of the kernel, removes
the relevant operations, and updates the C interface to exclude
the removed output parameters. All nodes that reference this
kernel with this specific subset of unused ports have their
implementation fields updated. If there are no remaining nodes
that reference the original function, it is deleted.

D. Dataflow Scheduling and Bufferization

After kernel optimizations are applied and and the hierar-
chical network is flattened into a single level, scheduling and
bufferization take place. Scheduling consists of determining
a valid order in which to fire each actor, and bufferization
consists of assigning a location in memory to each token,
which will be passed as input and output arguments to the
kernel function of each actor. Many strategies require both
processes to be done at the same time.

The allocation of memory in dataflow compilation is a
well-researched problem. When minimizing memory usage,
an useful abstraction is the Memory Exclusion Graph (MEG),
which consists of Memory Objects that represent each token
in an SDF period [14]. Tokens that are involved in the same
actor activation (and which, therefore, must not share the same
space in memory) are connected together in the MEG.

There are several strategies to bufferize a MEG, particularly
when it comes to parallel schedules. It can be proven that the
minimum memory footprint for an SDF network is equivalent
to the MEG’s Maximum Weight Clique (its largest fully
connected sub-graph), which can be computed by exact algo-
rithms or approximated with an heuristic. However, devising
a schedule for an optimal MEG is a computationally complex
problem. It has been experimentally determined [14], however,
that there are simple heuristics that achieve similar results with
little compromise in memory usage and performance.

In the current single-core approach of IaRa, we have
selected a post-scheduling, first-fit allocation strategy and a
self-timed greedy scheduling strategy, for their simplicity and
high memory efficiency. Through a process called symbolic
execution [15], the size and location of tokens in a shared
memory pool is determined and the MEG and the schedule
are simultaneously constructed.

This consists of following the scheduling strategy as if real
data were being processed, but without executing the kernels.
One by one, nodes are selected to be symbolically executed
and a size and location for the memory of their ports is
allocated in the memory pool, which grows as necessary if
empty space of suitable size is not found. This ensures that
any patch of memory is only allocated while its contents are



live, and that it can be freed and reused after the contents are
consumed by an actor.

Before executing this algorithm, the total number of exe-
cutions of each node per SDF iteration must be determined.
This is achieved by computing the liveness and boundedness
of the SDF network [15]. This number can then be used to
determine a self-timed schedule (that is, a schedule where each
node executes as soon as its inputs become available).

Once the algorithm finishes, the schedule contains an or-
dered list of firings and the memory offsets for its function
call arguments, as well as the total size of the shared memory
pool, to be statically allocated.

There is some flexibility when choosing heuristics for node
selection and Memory Object allocation, which can affect
the performance of the schedule and the final pool size. A
schedule that favors firing the same node sequentially as many
times as possible has better cache characteristics than code that
fires available nodes in a round-robin fashion; likewise, it is
preferable to fire a node whose input tokens have been recently
produced, as it is likely that they will still be cached. When
optimizing for memory, the compiler can instead prioritize
nodes that will cause the smallest increase in the pool size.

Given the possibility space when choosing these strategies,
we opted to implement a baseline strategy that does not differ-
entiate between candidate nodes; advanced strategies are kept
for a future work. Our pool memory allocation scheme uses a
first-fit strategy that has been experimentally determined [14]
to be close in effectiveness to the theoretical optimum.

IV. RELATED WORKS

Since the beginning of dataflow programming in the late
eighties [9], multiple development frameworks [16]–[22] have
been proposed by both academia and industry to ease the
development of signal processing applications. Most of them
allow developers to compile their dataflow programs into
binaries so they can be later executed. In all these frameworks,
while the dataflow graphs are usually described using dataflow
languages (graphical or not), the code of the actor can be either
described with a traditional procedural language (e.g. C/C++)
or a dataflow-specific language (e.g. CAL [23]).

Frameworks that use these dataflow languages [20], [21]
are usually able to co-optimize kernel and coordination code
using a custom intermediate representation. Unfortunately,
most dataflow-specific languages did not reach adoption by
the compilation community so many projects [17], [19], [22]
rely on describing the actor code with classical procedural
languages like C/C++. As such, those projects use traditional
C/C++ compilers (GCC or Clang) to compile their code, which
prevents them from performing optimizations on actors that
require knowledge of the dataflow graph.

V. EXPERIMENTAL RESULTS

The experiments aim to demonstrate that utilizing dataflow
graph data to assist kernel code compilation can provide a
clear performance advantage. For that purpose, an example

algorithm is developed that is representative of some real-
life DSP use-cases where some code, while being present in
a function, is not necessary for the algorithm that uses the
function. Our hypothesis is that a co-optimized DCE pass will
reduce memory requirements and increase performance of the
executable.

Fig. 2. SDF dataflow network for the video processing algorithm used in
the experiment. One data token firing corresponds to an entire frame of
uncompressed 480p video.

This algorithm takes as input a raw rgb24-encoded color
video file and sets its hue and saturation levels to zero
(transforming it into a grayscale video), before outputting it in
the same rgb24 format, resulting in a grayscale version. Here,
we use a general-purpose RGB to HSL actor, and discard the
H and S outputs; the L to RGB actor reverses the conversion,
setting the H and S channels to 0. Both actors operate on an
entire 640x480 video frame at a time, as opposed to single
pixel values.

To measure the impact of the DCE pass, we generate
two versions of the executable. Both versions are compiled
by raising the C implementation of the actors into MLIR,
using the C front-end of Polygeist. Using this method, all
of LLVM’s built-in optimizations will be applied (such as
automatic inlining and constant propagation). The optimized
version differs from the baseline version only on the enabling
of a DCE pass based on coordination code.

Experiments were conducted on a desktop computer running
Manjaro Linux 21 with an Intel i5-4460 3.20GHz CPU,
16GB of RAM, and SSD storage. The project is built against
development versions of LLVM (commit 89525cbf) and
Polygeist (commit 745d6841). Timing information was ob-
tained by using the time command on a Linux machine. The
measurements were done 50 times for each version, and the
statistical bootstrap method was used to compute the average
and standard error.

TABLE I
IMPROVEMENTS OF EXECUTION TIME AND MEMORY CONSUMPTION

Wall time [s] Pool size [kB]
Baseline 5.29± 0.34 4608

DCE 4.07± 0.28 2150.4
Improvement 23% reduction 53% reduction

The DCE pass removes kernel operations related to the
computation of the H and S values. This can be observed as a
wall time reduction of 23%. There is also a 53% reduction in
the amount of allocated static memory for the shared memory
pool; this corresponds to the amount of memory required to
receive the tokens of the H and S unused outputs.

The application in question was chosen to highlight the
potential of this optimization strategy. The hue and saturation
outputs of the RGB to HSL algorithm are relatively expensive
to compute. This sort of readily-available function is common



in real-life applications, and we are confident that the chosen
example faithfully represents a real use-case.

MLIR made it possible to implement IaRa within 1 person-
year without any previous experience of LLVM/MLIR. A sim-
ilar optimization would be feasible using a custom IR, but this
would also require the reimplementation of a whole C com-
piler, which is far from trivial. Not relying on LLVM/MLIR
infrastructure and existing dialects would require the designer
to build a novel IR target, to reimplement all of the fine
grain optimizations available natively in LLVM, such as DCE,
and to emit correct machine code. Meanwhile, modifying an
existing source to source compiler like Preesm [24] to allow
for this functionality would require extensive modification of
the internal graph representation and code generation, as it
is not prepared to modify the internals of a C function in a
flexible way.

VI. CONCLUSION

Dataflow models of computation have been originally de-
veloped to assist in the development of portable, high per-
formance applications, and they have proven useful for sig-
nal processing systems. When it comes to the applicability
of dataflow MoCs advances in compiler research, the strict
separation that Dataflow enforces between coordination and
kernel code has been problematic.

With our experiments, we have demonstrated that MLIR
makes it possible to bridge this gap. By retrieving information
from the graph topology description, we have combined two
optimization strategies that would be incompatible otherwise:
alias-creating memory pools and dead code elimination. To
achieve this, we have used existing tools such as DIF and
Polygeist, and implemented traditional dataflow algorithms in
a cutting edge compilation framework in the form of the IaRa
dialect, showing that there is potential for further integration
between projects. With this implementation, we have achieved
a 30% wall time improvement and a 53% memory usage
improvement in a video processing application.

There is a wide set of future directions to explore from
here, many of them enabled by the large variety of projects
that are already found within the MLIR ecosystem. For
instance, efforts can be made in integrating Polygeist poly-
hedral optimization passes as well as MLIR’s built-in dialects
for parallelism, such as OpenMP. Current machine learning
dialects such as ONNX [25] and TensorFlow contain highly-
optimized implementations of tensor operations, which could
be integrated as actor kernels in the proposed framework.

REFERENCES

[1] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala,
Handbook of Signal Processing, 3rd ed. Springer, 2019.

[2] N. Vasilache, O. Zinenko, A. J. C. Bik, M. Ravishankar, T. Raoux,
A. Belyaev, M. Springer, T. Gysi, D. Caballero, S. Herhut, S. Laurenzo,
and A. Cohen, “Composable and Modular Code Generation in MLIR:
A Structured and Retargetable Approach to Tensor Compiler Construc-
tion,” arXiv preprint arXiv:2202.03293.

[3] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation,” Interna-
tional Symposium on Code Generation and Optimization (CGO), pp.
2–14, 2021.

[4] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Communications of the ACM, vol. 35, no. 2, p. 96, 1992.

[5] K. Desnos, M. Pelcat, S. S. Bhattacharyya, and S. Aridhi, “PiMM:
Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Run-
time Reconfiguration,” in Embedded Computer Systems (SAMOS), 2013
International Conference on, 2013.

[6] E. A. Lee and T. Parks, “Dataflow process networks,” Proceedings of
the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[7] C.-J. Hsu, F. Keceli, M.-Y. Ko, S. Shahparnia, and S. S. Bhattacharyya,
“Dif: An interchange format for dataflow-based design tools,” in Inter-
national Workshop on Embedded Computer Systems. Springer, 2004,
pp. 423–432.

[8] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Affine
c in mlir,” 2021.

[9] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[10] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cvclo-Static
Dataflow,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp.
397 – 408, 1996.

[11] J. Pienaar, “Mlir in tensorflow ecosystem,” 2020, compilers For Machine
Learning (C4ML) 2020, San Diego, CA, USA.

[12] S. Eldridge, P. Barua, A. Chapyzhenka, A. Izraelevitz, J. Koenig,
C. Lattner, A. Lenharth, G. Leontiev, F. Schuiki, R. Sunder et al., “Mlir
as hardware compiler infrastructure,” in Workshop on Open-Source EDA
Technology (WOSET), 2021.

[13] Microsoft, “Project verona,” https://github.com/microsoft/verona, 2019.
[14] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi, “Memory Analysis

and Optimized Allocation of Dataflow Applications on Shared-Memory
MPSoCs,” Journal of Signal Processing Systems, vol. 80, no. 1, pp.
19–37, Jul. 2015.

[15] A. Ghamarian, M. Geilen, T. Basten, B. Theelen, M. Mousavi, and
S. Stuijk, “Liveness and boundedness of synchronous data flow graphs,”
in 2006 Formal Methods in Computer Aided Design, 2006, pp. 68–75.

[16] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming Heterogeneity - The Ptolemy
Approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[17] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. J.-F. Nezan, “An Open
Framework for Rapid Prototyping of Signal Processing Applications,”
EURASIP Journal on Embedded Systems, vol. 2009, no. 1, 2009.

[18] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von
Platen, M. Mattavelli, and M. Raulet, “OpenDF: a dataflow toolset for
reconfigurable hardware and multicore systems,” SIGARCH Computer
Architure News, vol. 36, no. 5, pp. 29–35, 2009.

[19] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping Concurrent
Dataflow Applications to Heterogeneous MPSoCs,” IEEE Transactions
on Industrial Informatics, vol. X, no. X, pp. 1–19, 2011.

[20] H. Yviquel, A. Lorence, K. Jerbi, A. Sanchez, G. Cocherel, and
M. Raulet, “Orcc: Multimedia development made easy,” in Proceedings
of the 21st ACM international conference on Multimedia, 2013, pp. 863–
866.

[21] J. Kodosky, “LabVIEW,” in Proceedings of the ACM on Programming
Languages, vol. 4, no. June. ACM, 2020, pp. 1–54.

[22] J. Boutellier, J. Wu, H. Huttunen, and S. S. Bhattacharyya, “PRUNE:
Dynamic and decidable dataflow for signal processing on heterogeneous
platforms,” IEEE Transactions on Signal Processing, vol. 66, no. 3, pp.
654–665, 2018.

[23] J. Eker and J. W. Janneck, “CAL language report: Specification of the
CAL actor language,” University of California, Berkeley, Berkeley, Tech.
Rep., 2003.

[24] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
“Preesm: A dataflow-based rapid prototyping framework for simplifying
multicore dsp programming,” in Education and Research Conference
(EDERC), European Embedded Design in, Sept 2014, pp. 36–40.

[25] T. Jin, G.-T. Bercea, T. D. Le, T. Chen, G. Su, H. Imai, Y. Negishi,
A. Leu, K. O’Brien, K. Kawachiya et al., “Compiling onnx neural
network models using mlir,” arXiv preprint arXiv:2008.08272, 2020.


