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Abstract

In this paper we show the relations between 4-valued logics (and more precisely of
the DDT logic) and the use of bi-oriented graphs. Further on we focus on the use of bi-
oriented graphs for non conventional preference modelling. More specifically we show
how bi-oriented graphs can be used in order to represent extended preference structures
of the type definable using the DDT logic (which has been created with the purpose of
modelling hesitation in preference statements). We then study how transitive closure
can be extended within such extended preference structures.

Keywords: DDT logic, bi-oriented graphs, signed graphs, transitive closure,
preference modelling

1. Introduction

Preference modelling is an important issue for many domains: decision analysis,
social choice theory, game theory, fair division, etc. (see [17]). A classical way to
represent preferences is to use a binary relation defined on the set of alternatives, such
as "alternative a is at least as good as alternative b" (which we denote by aSb). The
usual semantics associated to binary relations is that the sentence aSb can either be true
or false and nothing more. However, such a semantic does not really fit our intuition,
because it can be the case that we cannot clearly state if aSb is the case or not, either
because of ignorance (we have very little/poor/unreliable information) or because of
contradictions (we actually have to much information ...).

Such further epistemic states (ignorance and contradiction) cannot be captured by
classic logic which only admits true or not true (false) interpretations for any sentence
(propositional or first order).

In order to be able to explicitly distinguish the four epistemic states (true false,
unknown, contradiction) we may use Belnap’s logic ([2], [3]) and more precisely an
extension of Belnap’s logic. The DDT logic ([10, 11, 25, 30]) is a first order four valued
logic (a logic accepting 4 values i.e. true, false, true and false, neither true nor false,
epistemic states) including a weak negation. In this logic, negation does not coincide
with complementation and the reasons for which an expression can be regarded as true
are not complementary to the reasons for which it can be regarded as false. Therefore it
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could be seen as a logic about uncertainty and hesitation. The principal idea introduced
by Belnap was to define a logic where the truth values are partially ordered on a bi-
lattice. The DDT logic has been explicitly conceived as a language for preference
modelling, a language aiming at capturing hesitation and qualitative uncertainty (see
[27]) when decision makers express their preferences.

Graphs have been extensively used (among others) as a language for preference
modelling (see [24])1. A preference relation S on a set of alternatives A may be rep-
resented by a directed graph G = (A,E) (A being the set of nodes/alternatives and E
being the set of edges related to S). The holding convention is that the presence of an
arc from a to b stands for the relation aSb being true, while the absence of the arc stands
for aSb being not true, hence false (no other epistemic state being considered). Under
such a perspective, graph theory, as we know, fits conventional preference modelling
(where only these two epistemic states are considered), but does not fit for more sophis-
ticated models allowing an explicit representation of ignorance and/or contradiction as
with DDT. For this reason, in order to pursue the use of the DDT semantics in pref-
erence modelling it turned out natural to consider bi-oriented graphs as an appropriate
formalism.

Bi-oriented graphs were introduced by Tutte [31]. A bi-oriented graph is a graph,
where each edge is regarded as a set of two half-edges, each half-edge of the graph
being equipped with a sign + or -. This concept was already studied for a long time
in the theory of homology and algebraic topology [16]. In the 50s the combinatorial
aspects of bi-oriented graphs were studied by Harary [14] who defined in 1953 the
notion of signed graph (see also [33]).

In our article, we start by showing the relation between DDT semantics and bi-
oriented graphs. After this, we analyse the consequences for preference modelling. A
special attention is given to the notion of transitivity closure in this new representation.
Transitivity closure is commonly used in preference modelling in order to transform a
generic preference relation to an ordering relation. Being in a four valued case, there
exist different notions of transitivity that can be defined. In this article we propose
eight types of transitivity and we analyse the use of different combinations, some of
them providing unique representations for transitive closures.

The paper is organised as follows. In Section 2 we briefly introduce four valued
logics as well as the specific language DDT which is a first order language of this type.
We also show how this language is used for preference modelling purposes (actually
it has been developed for this reason: see [25], [27]). In Section 3 we introduce the
principal elements of bi-oriented graphs. In Section 4 we show the existing connec-
tions between DDT logic and bi-oriented graphs by just extending the latter to directed
graphes. We show, however, that the definition of transitive closure, as conceived in the
classical theory of signed graphs is not appropriate for preference modelling purposes.
In Section 5 we introduce new types of transitivities, and we generalise and characterise
them in Section 6, showing where and how these apply. Section 6 pay special attention
to the closure of combination of transitivities. In Section 7 we show the application

1including some cases of non conventional preference structures, using valued graphs (see [15]; for a
general survey see [21])
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of the previously introduced concepts to the transitive closure of a whole graph. We
conclude with some remarks and further research directions.

2. The DDT logic (four-valued logic)

2.1. Generalities

Belnap’s original proposition ([2]) aimed at capturing situations where hesitation
in establishing the truth of a sentence can be associated either to ignorance (poor infor-
mation) or to contradiction (excess of information). In order to distinguish these two
types of uncertainty, he suggested the use of four values forming a bi-lattice. The DDT
logic ([25]) is a four-valued first order language extending Belnap’s logic in two ways:
- introducing a weak negation which allows to establish a Boolean algebra (an idea
inspired to the work of Dubarle; see [12]);
- introducing first order semantics, thus allowing to work with variables.

The language is based on a net distinction between the “negation” (which repre-
sents the part of the universe of discourse verifying a negated predicate and the “com-
plement” (which represents the part of the universe which does not verify a predicate)
since the two concepts do not necessarily coincide. The four values t (true), f (false),
u (unknown) and k (contradiction), capture four epistemic states derived from the pres-
ence of information supporting or not a certain sentence. If α is a sentence then:
- α is true (t): there is evidence supporting α and there is no evidence against it;
- α is false (f ): there is no evidence supporting α and there is evidence against it;
- α is unknown (u): there is neither evidence supporting α nor against it;
- α is contradictory (k): there is both evidence supporting α and against it.

The differences between the strong negation (¬), the complement (∼) and the weak
negation (≁) are presented in Table 1. The reader will note the Boolean algebra prop-
erties this structure allows. It is easy to check that ∼ α ≡ ¬ ≁ ¬ ≁ α. Binary
connectives are established using the usual Boolean algebra principle (conjunction be-
ing the glb (see [3], [25]) and disjunction being the lub2 (see [3], [25]) on the bi-lattice
of the truth values; for details see [25]).

α ¬α ∼ α ≁ α ∼≁ α ¬ ≁ α ¬ ∼≁ α ¬ ∼ α

t f f k u k u t
k k u t f f t u
u u k f t t f k
f t t u k u k f

Table 1: The truth tables of ∼ , ≁ and ¬ and their combinations

We give now the definition of some strong monadic operators enabling to obtain "non
contradictory" (only true or false) statements for a sentence α.

2glb: greatest lower bound, lub: least upper bound
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Definition 2.1.
Tα ≡ α ∧ ∼ ¬α: α is true
Kα ≡≁ α ∧ ≁ ¬α: α is contradictory
Uα ≡ ¬ ≁ α ∧ ¬ ≁ ¬α: α is unknown
Fα ≡ ¬α ∧ ∼ α: α is false
∆α ≡ Tα ∨ Kα: there is presence of truth in claiming α
∆¬α ≡ Fα ∨ Kα: there is presence of truth in claiming ¬α
¬∆α ≡ Fα ∨ Uα: there is no presence of truth in claiming α
¬∆¬α ≡ Tα ∨ Uα: there is no presence of truth in claiming ¬α

Obviously we get:
Tα ≡ ∆α ∧ ¬∆¬α
Fα ≡ ¬∆α ∧∆¬α
Uα ≡ ¬∆α ∧ ¬∆¬α
Kα ≡ ∆α ∧∆¬α

2.2. DDT and preference modelling
As already mentioned, the DDT logic has been conceived as a language aiming

at capturing hesitation when preference statements need to be considered in decision
making settings (see [1], [9], [13], [19], [22], [26], [27], [28], [29]).

The basic idea is simple. Consider the typical binary relation used in preference
modelling: S(x, y), to be read as “x is at least as good as y”. Given a set A (on which
S applies), we can define a universe of discourse A × A for the predicate S. If now
we allow the interpretations of S in A× A to be four valued, instead of binary valued
as in conventional preference modelling, we obtain a more rich preference modelling
language where:
- hesitation about a preference statement can be explicitly considered (for instance
∆S(x, y) will stand for “there is presence of truth in claiming that x is at least as good
as y” or that there are sufficient positive reasons to claim it, see [27]);
- it is possible to construct richer preference structures beyond the well known ⟨P, I, J⟩
(preference, indifference, incomparability) ones, allowing for explicit preference rela-
tions about conflicting preferences, ignorance about preference etc. (see [28]);
- it is possible to give new and/or more elegant proofs for representation theorems al-
lowing for numerical representations for interval preference structures (see [26], [29]);
- it is possible to conceive new procedures aiming at exploiting such rich preference
structures in order to produce a recommendation (see [13], [19], [22]).

With respect to this framework, the reader will note that many of the representation
theorems as well as many of the decision support procedures explicitly need to consider
extended notions of transitivity, either well known ones such as “semi-transitivity” and
“Ferrers” ([21]), or new ones ([23], [18], [20], [26]). Under such a perspective a prob-
lem still open in the relevant literature concerns the extension and/or generalisation
of the concept of transitive closure, a key issue in many decision support procedures.
However, this calls for extending graph theory in order to be able to take into account
the new preference structures the DDT logic allows. For this purpose it turned out natu-
ral to consider bi-oriented graphs as an appropriate extension of graph theory functional
to the DDT language.
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3. Bi-oriented graphs

Bi-oriented graphs were introduced by Tutte [31]. Then they were studied by sev-
eral researchers ([7], [16], [34]), interested in the study of the flows in the bi-oriented
graphs, but the notations and the results used in this paper are those used by Bessouf
(see [4]and [5]), in which the notions of paths, connectivity and transitive closure were
studied.

Consider an undirected graph G = (V,E) (V being the set of vertices and E being
the set of edges). We denote the edge e between nodes x and y by xy. The set of the
half-edges of G is a set Φ(G) defined as follows:

Φ(G) = {(xy, x) ∈ E × V }
Thus, each edge e between any two vertices x and y is represented by its two half-

edges (xy, x) and (xy, y).

Definition 3.1 (Signature). [4], [5]. A bi-orientation of G is a signature of its half-
edges

τ : Φ(G) 7→ {−1,+1}

A bi-oriented graph is a graph endowed with a bi-orientation τ , denoted as
Gτ = (V,E; τ) or simply (if there is no ambiguity) by Gτ = (V,E).

The Four possible bi-orientations of the edge xy are shown in Figure 1.

✉ ✉+ −
x y

✉ ✉− −
x y

✉ ✉+ +

x y
✉ ✉− +

x y

Figure 1: Possible bi-orientations

Example 3.2. Let Gτ = (V,E) be a bi-oriented graph with V = {1, 2, 3, 4}, E =
{e1, e2, e3, e4} and τ(e1, 1) = τ(e1, 2) = +1, τ(e2, 2) = −τ(e2, 3) = −1, τ(e3, 4) =
−τ(e3, 3) = +1, τ(e4, 1) = τ(e4, 4) = −1

u u

u u

+

− +

+ +

−

− −

4 3

1 2

e3

e1

e4 e2

Figure 2: Example of bi-oriented graph

We present in the following some notions that we will use in the rest of the article.
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Definition 3.3 (Reorientation, Rotation). Let Gτ = (V,E) be a bi-oriented graph
with x, y ∈ V and xy ∈ E.

• Reoriention of xy denoted by R(.): take the opposite sign of each half-edge:

R(τ(xy, x)) = −τ(xy, x), R(τ(xy, y) = −τ(xy, y)

• Rotation of xy denoted by O(.): permute the signatures of half-edges.

O(τ(xy, x)) = τ(xy, y), O(τ(xy, y) = τ(xy, x)

Definition 3.4 (Positive-negative edge). [4], [5]. Let Gτ = (V,E) be a bi-oriented
graph and W (resp. W ) be a function defined on V (resp. E) as follows:

W : V → Z

W (x) =
∑

e∈E,x∈e τ(e, x)
W : E → {−2, 0, 2}
W (e) =

∑
x∈V,x∈e τ(e, x)

An edge e of E is called a positive (resp. negative ) edge , if W (e) = 0 (resp. W (e) =
±2). Gτ is called all positive (resp. all negative) bi-oriented graph, if ∀e ∈ Gτ :
W (e) = 0 (resp. W (e) = ±2). An elementary cycle C in Gτ is called a negative
cycle, if the number of its edges such that W (e) = ±2 is odd.

Briefly, W (x) represents the sum of the signatures of half-edges leaving x and
W (e) represents the sum of signatures of half-edges of e.

Transitivity is an important concept in preference modeling, since it facilitates the
construction of orders and rankings. When a graph representing preferences does not
satisfy transitivity it is often the case that we apply transitive closure in order to intro-
duce some “rationality principle”. Before presenting the definition of the transitivity in
bi-oriented graphs, we need to introduce the notion of “b-path”.

Definition 3.5 (b-path). [4],[5] Let Gτ = (V,E) be a bi-oriented graph, and x, y,
x1, x2, . . . , xk be nodes in Gτ . Let P : (x, x1, x2, . . . , xk, y) be a chain connecting x
and y in Gτ (∀i, (xixi+1) ∈ E and (xx1), (xky) ∈ E, with possible cycles) such that
τ(xx1, x) = α and τ(xky, y) = β, then P is denoted by P(α,β)(x, y) and is called
b-path from xα to yβ if the following conditions hold:

i. τ(xi−1xi, xi) + τ(xixi+1, xi) = 0, ∀i ∈ {2, k − 1}

ii. τ(xx1, x1) + τ(x1x2, x1) = 0 and τ(xk−1xk, xk) + τ(xky, xk) = 0

iii. P(α,β)(x, y) is minimal wrt to k for the property (i)-(ii).

Examples of b-paths with some cycles can be seen in Figure 3. Note that (a, a1, b) is
not a b-path since τ(aa1, a1)+τ(a1b, a1) ̸= 0 and there are two b-paths between x and
y with different signatures: P(+,+)(x, y) with (x, x1, x2, x3, y) and P(−,+)(x, y) with
(x, x3, y). Remark that if P(α,β)(x, y) is a b-path from xα to yβ , then P(β,α)(y, x) is
also a b-path from yβ to xα.

We can now define the transitivity in bi-oriented graphs.
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Figure 3: b-paths : P(+,+)(a, b) with (a, a1, a2, a3, a1, b), P(+,+)(x, y) with (x, x1, x2, x, x3, y) and
P(−,+)(x, y) with (x, x3, y)

Definition 3.6. (Transitivity in Bi-oriented Graphs) [6]. Let Gτ = (V,E) be a
bi-oriented graph with |V | ≥ 3. Gτ is transitive if for any vertices x and y (not
necessarily distinct) such that there is an (α, β) b-path from x to y in Gτ , there is an
edge (xαyβ) in Gτ .

The two graphs represented in Figure 3 are not transitive because of many violations.
For instance, in the graph on the left, we see that there is a b-path P(+,+)(a,b) but
there is no arc (a+, b+). Note that there are many other violations ((a+, a+2 ), (a

+, a−3 ),
(a+1 , a

−
3 ), ...). A way to handle non transitive graphs is to find a transitive closure of

this graph by adding “missing arcs”. We present in the following the definition of a
transitive closure on a bi-oriented graph given by Bessouf and her colleagues ([6]).

Definition 3.7. (Transitive Closure in Bi-oriented Graphs) [6]. Let Gτ = (V,E)
be a bi-oriented graph with |V | ≥ 3. The transitive closure of Gτ is the graph denoted
Ft(Gτ ) = (V,E′, τ) such that for all b-paths P(α,β)(x, y) ofGτ there is an edge (xy) ∈
E′ such that τ(xy, x) = α, τ(xy, y) = β.

u u u u
x y z w

α µ λ γ δ β

initial bi-oriented graph Gτ with µ+ λ = γ + δ = 0

u u u u
x y z w

.
...............................................

...............................................
..............................................

.............................................
............................................ ........................................... ........................................... ............................................ .............................................

..........................................
....

..................................
.............

............................
...................

.

.....................
.....................

.............

........................
........................

......

............................
.........................

.................................
...................

..........................................
.........

.................................................. ................................................. ................................................ ................................................ .................................................
..................................................

...................................................

....................................................

.....................................................

......................................................

.......................................................

.
...............................................

...............................................
..............................................

.............................................
............................................ ........................................... ........................................... ............................................ .............................................

..........................................
....

..................................
.............

............................
...................

α
α
α µ λ

λ

γ

γ
δ

β
β
β

transitive closure Ft(Gτ )

Figure 4: An example of transitive closure of bi-oriented graph
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Remark 3.8. The transitive closure adds a unique arc between two nodes x and y if
they are only connected by a unique b-path. The uniqueness is due to the fact that
the signatures of the added arc between x and y does not depend on the order of
intermediate added arcs in the b-path. Let us explain it with an example: Consider the
graph Gτ presented in Figure 4. Gτ is not transitive. Ft(Gτ ) represents it’s transitive
closure where three new arcs are added.

Note that if a chain (x, y, z, w) is a Pα,β(x,w) b-path then

• x, y, z is a Pα,γ(x, z) b-path with γ = τ(yz, z),

• y, z, w is Pλ,β(y, w) b-path with λ = τ(yz, y).

Hence, in Figure 4 the edges (xα, zγ) and (yλ, wβ) must be added in the transitive
closure. Remark that adding (xα, zγ) creates a new b-path Pα,β(x,w) with nodes
(x, z, w). Similarly adding (yλ, wβ) creates a new b-pathPα,β(x,w) with nodes (x, y, w).
This shows us that the transitive closure is associative in the sense that when there is
a b-path with the chain (x, y, z, w), we can first do the transitive closure on the chain
(x, y, z) and do the transitive closure of this with the edge (zw) or we can first do the
transitive closure on the chain (y, z, w) and do the transitive closure of this with the
edge (xy). This notion of associativity can be easily generalized to the case of b-path
with k nodes. In other terms, the transitive closure of any sequence of arcs, if exists, is
unique when the nodes are connected by not more then one b-path (it does not depend
on the order of added edges for a b-path containing smaller b-paths).

Remark 3.9. Let us analyse now what happens if there are more then one b-path be-
tween two nodes or if there is already an arc between them: One can not no more
guarantee the uniqueness of added signatures. The right hand graph of Figure 3 shows
that the transitive closure provides two different signatures between x and y since there
are P(+,+)(x, y) and P(−,+)(x, y).

Note that preference modelling is based on binary relations which need a represen-
tation with directed graphs (x being preferred to y is different from y being preferred
to x). Hence, we need to extend the notion of bi-oriented graph to directed ones.This
is essentially straightforward: given any two nodes x and y of Gτ we keep the notation
xy for any arc, but we distinguish the edges xy and yx as two different arcs: we get
two edges xy and yx and four signatures τ(xy, x), τ(xy, y), τ(yx, y), τ(yx, x) which
are independent (for examples see Figure 6 and 7 in section 4). We can easily translate
the definition of transitive-closure in the directed case, except that the existence of a
b-path Pα,β(x, y) does not imply the existence of a b-path Pβ,α(y, x) in the directed
graph. The operations of re-orientation and rotation are identical as in Definition 3.3.
We introduce two new operations as in the following.

Definition 3.10 (Left-switching, Right-switching). LetGτ = (V,E) be a bi-oriented
graph with x, y ∈ V and (xy) ∈ E.

• Left-switching of xy denoted by Hl(.): take the opposite sign for left

8



Hl(τ(xy, x)) = −τ(xy, x), (Hl(τ(xy, y)) = τ(xy, y)

• Right-switching of xy denoted by Hr(.): take the opposite sign for right

Hr(τ(xy, x)) = τ(xy, x), (Hr(τ(xy, y)) = −τ(xy, y)

4. The relations between bi-oriented graphs and the four valued logic (DDT logic)

Let A be a discrete countable set and let S be the binary relation “at least as good
as” applied upon A. The four strong monadic operators on S, TS(x, y), FS(x, y),
US(x, y) and KS(x, y), are defined as follows:
TS(x,y): there exist sufficient positive reasons to establish S(x, y) and there are not
enough negative reasons to establish ¬S(x, y); S(x, y) is true
FS(x,y): there do not exist sufficient positive reasons to establish S(x, y) and there
exist enough negative reasons to establish ¬S(x, y); S(x, y) is false.
US(x,y): there do not exist sufficient positive reasons to establish S(x, y) and there are
not enough negative reasons to establish ¬S(x, y); S(x, y) is unknown.
KS(x,y): there exist sufficient positive reasons to establish S(x, y) and sufficient neg-
ative reasons to establish ¬S(x, y); S(x, y) is contradictory.

More formally, we accept that S and ¬S are not complementary and they do not
cover the whole set of possible situations. We can express this idea by introducing the
sentence ∆S(x, y):
• ∆S(x, y): there is presence of truth in claiming that x is at least as good as y (pres-
ence of positive reasons)
• ∆¬S(x, y): there is presence of truth in claiming that x is not at least as good as y
(presence of negative reasons)
• ¬∆S(x, y): there is no presence of truth in claiming that x is at least as good as y
(absence of positive reasons)
• ¬∆¬S(x, y): there is no presence of truth in claiming that x is not at least as good
as y (absence of negative reasons)

Consequently we have:
TS(x, y) ⇔ ∆S(x, y) ∧ ¬∆¬S(x, y)
FS(x, y) ⇔ ¬∆S(x, y) ∧∆¬S(x, y)
US(x, y) ⇔ ¬∆S(x, y) ∧ ¬∆¬S(x, y)
KS(x, y) ⇔ ∆S(x, y) ∧∆¬S(x, y)

The result of such definitions is that we can extend the notion of preference structure
(see [27], [28]) and obtain precise definitions for structures such as strict preference
(TS(x, y)∧FS(y, x)) and weak preference (KS(x, y)∧FS(y, x)). We add to Tsouk-
iàs and Vincke’s results a graphic representation given as follows: Let S be the binary
relation given above defined on A and G be a bi-oriented digraph with nodes in A.
∀x, y ∈ A we put:

9



• ∆S(x, y) → τ(xy, x) = +1
• ¬∆S(x, y) → τ(xy, x) = −1
• ∆¬S(x, y) → τ(xy, y) = +1
• ¬∆¬S(x, y) → τ(xy, y) = −1

Henceforth, a bi-oriented digraph endowed with the relation S will be noted Gτ =
(A,S). The graphic representation of TS(x, y),FS(x, y),KS(x, y) and US(x, y) is
given in Figure 5, the orientation of the edges means that the relation S(x, y) is from x
to y.

u u>
+ −

x y
u u

TS(x, y)
>

− +

x y
u u

FS(x, y)
>

+ +

x y
u u

KS(x, y)
>

− −
x yUS(x, y)

Figure 5: Bi-oriented graphs of TS, FS, KS, US from x to y

Generally speaking, in preference modelling there is no relation between xSy and
ySx. Considering that each of these sentences is four valued, there are 16 different
possible combinations between xSy and ySx. Some of them are easy to interpret, for
instance, (TS(x, y),TS(y, x)) shows an indifference between x and y while others are
more complicated such as (KS(x, y),US(y, x)). Other examples are given in Figure
6 (the strict preference relation (TS(x, y)∧FS(y, x)), according to [27]) and in Figure
7 (the weak preference relation (KS(x, y) ∧ FS(y, x), according to [22],[27]).

Remark 4.1. For the rest of our article, we suppose that our graphs are fully “signed”,
in the sense that for any two nodes x and y, the signatures τ(xy, x), τ(xy, y), τ(yx, y),
τ(yx, x) are known. For the sake of visibility, if it is not necessary to emphasize, we
will omit to draw arcs which are unknown (τ(xy, x) = −1, τ(xy, y) = −1). This is
consistent with the convention adopted in conventional digraphs: non true arcs (false
arcs) are omitted, but we know (or conventionally consider them) they are false.

.
.......................................

......................................
..................................... .................................... ................................... ................................... .................................... ..................................... ......................................
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TS(x, y)

FS(y, x)

Figure 6: x is strictly preferred to y

Let ϕ be a predicate admitting a representation through a bi-oriented digraph (in other
terms, a binary relation admitting four truth values). We indicate by:
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KS(x, y)

FS(y, x)

Figure 7: x is weakly preferred to y

• Hr(ϕ) (resp.Hl(ϕ)) the right switching (resp. left switching) of ϕ.
• R(ϕ) the reorientation of ϕ.
• T (ϕ) the rotation of ϕ.

Proposition 4.2. Let ψ ∈ {T,F,K,U} and S be the usual relation, then :

1. Hr(ψ(S)) = ψ(≁ S)

2. Hl(ψ(S)) = ψ(∼≁ S)

3. R(ψ(S)) = ψ(∼ S)

4. T (ψ(S)) = ψ(¬S)

Proof. From Definition 2.1 it is easy to show that for any given formula ϕ:
- T¬ϕ ≡ Fϕ, T ≁ ϕ ≡ Kϕ, T ∼ ϕ ≡ Fϕ, T ∼≁ ϕ ≡ Uϕ
- K¬ϕ ≡ Kϕ, K ≁ ϕ ≡ Tϕ, K ∼ ϕ ≡ Uϕ, K ∼≁ ϕ ≡ Fϕ
- U¬ϕ ≡ Uϕ, U ≁ ϕ ≡ Fϕ, U ∼ ϕ ≡ Kϕ, U ∼≁ ϕ ≡ Tϕ
- F¬ϕ ≡ Tϕ, F ≁ ϕ ≡ Uϕ, F ∼ ϕ ≡ Tϕ, F ∼≁ ϕ ≡ Kϕ
Applying the definition of Hr, Hl, R and T of an edge from Definition 3.3 and from
Figure 5 we complete the proof.

The result can be shown in the following table.

ψ Hr(ψ(S)) Hl(ψ(S)) R(ψ(S)) T (ψ(S))
TS KS US FS FS
FS US KS TS TS
KS TS FS US KS
US FS TS KS US

Once established a first correspondence between the extended preference structures
introduced in [27] and [28] it is tempting to check whether the definition of transitivity
and of transitive closure as introduced in Definition 3.7, can be used for preference
modelling and decision making purposes.

We showed in the last section that the transitive closure is associative and the tran-
sitive closure of any sequence of arcs forming a unique b-path, if exists, is unique (see
Remark 3.8)However, as we will show in the next Proposition, the computing of the
signatures of the arcs added due to the transitive closure is not at all satisfactory with
respect to the semantics of preference modelling.
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Proposition 4.3. Let (Gτ ) be a bi-oriented digraph endowed with the binary relation
S, such that Gτ = (A,S). Adopting the operation of transitivity in Ft(Gτ ) as intro-
duced in Definition 3.6 ∀x, y and z ∈ A we get the following3:

TS(x, y) ∧TS(y, z) → TS(x, z)
TS(x, y) ∧KS(y, z) → KS(x, z)
FS(x, y) ∧ FS(y, z) → FS(x, z)
FS(x, y) ∧US(y, z) → US(x, z)
US(x, y) ∧TS(y, z) → US(x, z)
US(x, y) ∧KS(y, z) → FS(x, z)
KS(x, y) ∧ FS(y, z) → KS(x, z)
KS(x, y) ∧US(y, z) → TS(x, z)

Proof. Obvious. Remark that only half of the 16 situations between S(x, y), S(y, z)
are covered by the previous proposition since within the other 8 situations, the chain
xyz is not a b-path. This has some non intuitive conclusions for preference modelling:

• One can not conclude US(x, z) even if US(x, y) and US(y, z) hold. The same
remark is also valid for the case KS(x, y) and KS(y, z) .

• Implications shown in Proposition 4.3 are not symmetric with respect to the left-
hand components of the implication. For instance, while TS(x, y)∧KS(y, z) →
KS(x, z) holds, there is NO implication in form of “KS(x, y) ∧ TS(y, z) →
KS(x, z)” since the chain xyz is not a b-path.

We think that such a symmetry of the left-hand components is necessary and co-
herent with the semantic of the preference modelling.

As a direct consequence of Remark 3.9, one can not guarantee the uniqueness of
added/changed signatures at the end of the transitive closure. For instance, if we have
FS(x, y),US(y, z),TS(x, t) and KS(t, z). The transitive closure implies US(x, z)
because of the b-path xyz and KS(x, z) because of the b-path xtz.

Moreover, the fact that a transitive closure between x, y and z needs τ(xy, y) +
τ(yz, y) = 0 has no meaning for preference modeling (why do we need ∆¬S(x, y) +
∆S(x, y) = 0 in order to define the transitive in preference modelling?).

For all these reasons, in the next section, we will propose some new interpretations
and definitions of transitivity distinguishing positive and negative reasons. Our propo-
sitions will be motivated from a preference modelling point of view and we will use
bi-oriented digraph modelling.

5. New Transitivities

As commented at the end of the last section, we introduce a number of transitivity
definitions based on the DDT language, all of them satisfying the symmetry on the
left-hand components of the transitivity. ∀x, y, z such that x ̸= y, x ̸= z and y ̸= z :

3Note that the remaining 8 cases do not provide a b-path, hence they are not concerned by transitive
closure.
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1. ∆S(x, y) ∧∆S(y, z) → ∆S(x, z) (transitivity of positive reasons: ∆S)
2. ¬∆S(x, y)∧¬∆S(y, z) → ¬∆S(x, z) (negative transitivity of positive reasons:

∆S)

The above definitions represent how transitivity applies to the positive part of the
preference modelling reasoning. Substituting to ∆S, ∆¬S we get the equivalent notion
of transitivity for the negative part of the preference modelling reasoning.

3. ∆¬S(x, y) ∧∆¬S(y, z) → ∆¬S(x, z) (transitivity of negative reasons: ∆¬S)
4. ¬∆¬S(x, y) ∧ ¬∆¬S(y, z) → ¬∆¬S(x, z) (negative transitivity of negative

reasons: ∆¬S)

These four definitions of transitivity combine the same type of information (pres-
ence or absence of positive or negative reasons), hence they respect the symmetry con-
dition that we are looking for by definition. We denote these as “direct transitivity”.
We further introduce four new definitions of transitivity, hereby shown as cases 5, 6, 7
and 8 where we combine positive and negative reasons aiming at creating (positive or
negative) reasons. Such a definition being not symmetric on the left-hand components
of the transitivity, we will impose the symmetry. ∀x, y, z such that x ̸= y, x ̸= z and
y ̸= z:

5. ∆S(x, y) ∧ ¬∆¬S(y, z) → ∆S(x, z) (creating positive reasons)
¬∆¬S(x, y) ∧∆S(y, z) → ∆S(x, z)

6. ∆¬S(x, y) ∧ ¬∆S(y, z) → ¬∆S(x, z) (eliminating positive reasons)
¬∆S(x, y) ∧∆¬S(y, z) → ¬∆S(x, z)

7. ∆¬S(x, y) ∧ ¬∆S(y, z) → ∆¬S(x, z) (creating negative reasons)
¬∆S(x, y) ∧∆¬S(y, z) → ∆¬S(x, z)

8. ∆S(x, y) ∧ ¬∆¬S(y, z) → ¬∆¬S(x, z) (eliminating negative reasons)
¬∆¬S(x, y) ∧∆S(y, z) → ¬∆¬S(x, z)

We will denote such type of transitivity as indirect and present graphically the eight
definitions of transitivity in Figure 8 where only considered signatures are presented.
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Let’s see now what happens if we assume any of the above 8 transitivity holding.
There are 255 of such combinations (28 − 1). The interested reader can check them in
Annex A (at the end of the paper). Table 2 presents the result when each of the above
transitive closures holds alone. Each type of transitivity is represented by its number;
for instance the first table numbered 1 represents the transitivity of positive reasons.
Table 3 presents the results when the four direct and the four indirect definitions of
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Figure 8: Graphical representation of the 8 transitive closures

transitivity hold simultaneously. Finally, the case where all 8 definitions of transitivity
hold simultaneously is presented in Table 4The tables stand for sentences of the type
ψS(x, y) ∧ ψS(y, z) where ψ ∈ {T,K,U,F} (rows will stand for S(x, y) and
columns for S(y, z)).

Discussion. First of all the reader should note that there are no other possible “rational”
definitions of transitivity we can define within this framework. The four direct defini-
tions of transitivity represent the natural extension of the notion of transitivity within
our framework (symmetric combination of the presence or the absence of positive or
negative reasons). The four indirect ones combine asymmetrically the presence (or ab-
sence) of positive (or negative reasons), but with a symmetric result (on the left-hand
components). Analysing the different combinations of these such definitions of transi-
tivity we can observe that:
- Direct transitivity of T,F,K,U (meaning that TS(x, y) and TS(y, z) implies TS(x, z),
etc.) is obtainable by using the definitions labelled 1,2,3 and 4 simultaneously. The
only simultaneous uses of transitivity satisfying this property contain definitions 1,2,3
and 4.
- Definitions labelled 5,6,7 and 8 when applied simultaneously they will yield only true
or false statements (see Table 3).
- All the tables are symmetric with respect to the diagonal.
- Definitions 5 and 6 have a special attitude when we have to combine unknown cases
with contradictory ones. They provide contradictory conclusions. For instance, with
(K and U), 5 implies ∆S while 6 implies ¬∆S. Hence, we conclude that if we impose
5 and 6 together, we will not have any conclusion for K and U (similarly for U and
K). Because of a similar reasoning, there are no conclusion for (K and U) or (U and
K) when 7 and 8 are imposed together.
- More detailed analysis of the 255 combinations allows to reveal which are the min-
imal conditions in order to obtain a precise result (i.e. transitivity of ∆S or of KS
etc.).

6. Generalisation of Transitive Closure

Let’s try to establish a more general and formal framework about transitivity. As a
concept transitivity implies the capacity to transfer pieces of information along the arcs
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1 TS FS KS US
TS ∆S - ∆S -
FS - - - -
KS ∆S - ∆S -
US - - - -

2 TS FS KS US
TS - - - -
FS - ¬∆S - ¬∆S
KS - - - -
US - ¬∆S - ¬∆S

3 TS FS KS US
TS - - - -
FS - ∆¬S ∆¬S -
KS - ∆¬S ∆¬S -
US - - - -

4 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - - - -
KS - - - -
US ¬∆¬S - - ¬∆¬S

5 TS FS KS US
TS ∆S - ∆S ∆S
FS - - - -
KS ∆S - - ∆S
US ∆S - ∆S -

6 TS FS KS US
TS - - - -
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S - ¬∆S
US - ¬∆S ¬∆S -

7 TS FS KS US
TS - - - -
FS - ∆¬S ∆¬S ∆¬S
KS - ∆¬S - ∆¬S
US - ∆¬S ∆¬S -

8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - - - -
KS ¬∆¬S - - ¬∆¬S
US ¬∆¬S - ¬∆¬S -

Table 2: The eight basic transitive closures

1234 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS ∆¬S ¬∆S
KS ∆S ∆¬S KS -
US ¬∆¬S ¬∆S - US

5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - -
US TS FS - -

Table 3: Applying transitive closures 1,2,3 and 4 or 5,6,7 and 8 simultaneously

12345678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS -
US TS FS - US

Table 4: Combining all eight transitive closures
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of a graph. If an information holds (or not) in a sequence of arcs we make the hypoth-
esis that this information also holds (or not) for the arc connecting the extremes of the
path. Presence of information can be transferred (transitivity) as well the absence of
information (negative transitivity). This notion of “information transfert” is introduced
in the case of classical graphs by the definition of a transitive closure. Let us remind
how transitive closure works in the case of directed graphs G(A,S) : for all x, y, z, if
S(x, y) and S(y, z) hold, then we will add S(x, z) if the arc does not exist4. In the
same way one can define “negative transitive closure” meaning that for all x, y, z, if
neither S(x, y) nor S(y, z) hold, then we will remove S(x, z) if the arc does already
exist.

The aim of this section is to try to define transitive closures when bi-oriented di-
graphs are used. We saw in the previous section that different type of definitions of
transitivity can be defined with bi-oriented digraphs. We saw also that the definition
of transitive closure (Definition 3.7) is not satisfying for preference modelling. In this
section we will first define the type of chains where an information transfer is mean-
ingful, then we will analyse the consequences of a generalisation of transitive closure
where the definitions of transitivity introduced in Section 5 are used.

Let us start by “acceptable” chains for an information transfer. As it will be clear
in Definition 6.1, we will accept all the chains except the ones containing consecutive
T and F (or the inverse, F and T) or K and U (or the inverse, U and K).

Definition 6.1. A t-path is any sequence of directed bi-oriented edges which does not
contain any sequence x, y, z such that:

- τ(xy, x) = 1;
- τ(xy, y) = −1;
- τ(yz, y) = −1;
- τ(yz, z) = 1;

or

- τ(xy, x) = −1;
- τ(xy, y) = 1;
- τ(yz, y) = 1;
- τ(yz, z) = −1;

or

- τ(xy, x) = −1;
- τ(xy, y) = −1;
- τ(yz, y) = 1;
- τ(yz, z) = 1;

or

- τ(xy, x) = 1;
- τ(xy, y) = 1;
- τ(yz, y) = −1;
- τ(yz, z) = −1.

Remark: The edges of the sequence x, y, z in the Definition 6.1 are positive edges
in the first case and are negative edges in the second case (see Definition 3.4). The
reader will note that it does not make any sense to establish a transitive closure among
edges which do not form a t-path, why to combine a true value with a false one or a
contradictory information with an unknown one? As we showed in previous section,
there exist 255 possible combinations of the eight definitions of transitivity. Hence, we
will not formally define the closures of different combinations of transitivities one by

4If we interpret this by classical logic, saying that the existence of an arc S(x, y) means that the affirma-
tion S(x, y) is true and the absence S(x, y) is false, then we can say that the transitive closure replace the
value false of S(x, z) by the value true if S(x, y) and S(y, z) are true.
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one, but present a general idea of transitive closure when a combination of definitions
of transitivity is used. Remark that all the definitions are in form of an implication:
if....then..... Hence, we say that a transitive closure of a combination of definitions of
transitivity consists on adding the signature defined in the right hand of the implication
if the left hand is satisfied ; and we will do this only on t-paths. If the new signatures
are in contradiction with the existing ones, the existing ones are replaced by the new
ones. Before analysing closures in bi-oriented digraphs, let us remind that in the case of
classical digraphs, a simultaneous use of transitive closure and negative transitive clo-
sure5 generally leads to inconsistencies. Let us show it by a simple example. Consider
the case A = {x, y, z, t} with only S(x, z), S(z, y). The (positive) transitive closure
will add S(x, y), while the (negative) transitive closure will keep ¬S(x, y) because of
¬S(x, t) and ¬S(t, y).

Let us analyse know, what happens if we want to use all the 8 definitions of tran-
sitivity simultaneously. Let us denote “generalized transitivity” the combination of
the eight definitions of transitivity presented in the previous section. Definition 6.2
presents “generalized transitivity” in form of implications.

Definition 6.2. Let Gτ = (A,S) be a bi-oriented digraph, S satisfies generalized
transitivity if and only if ∀x, y, z ∈ A:
- IF τ(xy, x) = τ(yz, y) AND τ(xy, y) = τ(yz, z) THEN
- τ(xz, x) = τ(xy, x) = τ(yz, y) AND τ(xz, z) = τ(xy, y) = τ(yz, z)
- OTHERWISE
- τ(xz, x) = max(τ(xy, x), τ(yz, z)) ∗ τ(xy, x) ∗min(τ(xy, y), τ(yz, y)) ∗ τ(xy, y)
- τ(xz, z) = min(τ(xy, x), τ(yz, z)) ∗ τ(xy, x) ∗max(τ(xy, y), τ(yz, y)) ∗ τ(xy, y)

It is easy to check that this definition generalises the eight definitions of transitivity
introduced in Section 5 and described in Figure 8.

Let us analyse what happens if we want to use a generalised transitivity closure.
We start by a simple case which is a graph in form of a chain.

Proposition 6.3. Let G(A,S) be a bi-oriented digraph in form of a chain.The paths
which will be created if the generalized transitive closure is applied within a t-path,
are not always t-paths.

Proof. It is sufficient to consider a sequence of three edges from x to y to z to w
such that τ(xy, x) = 1, τ(xy, y) = −1, τ(yz, y) = −1, τ(yz, z) = −1, τ(zw, z) =
−1, τ(zw,w) = 1. The sequence xyzw is a t-path but establishing transitive closure
between x and z provides TS(x, z) then the chain xzw is no more a t-path (in the same
way adding FS(y, w) will result in a sequence xyw which is not a t-path).

In other terms it might be the case that despite a sequence of arcs is a t-path it may
happen that we can not apply the closure on all the arcs through successive transitive
closures (for instance, in the example of the proof we can not add signatures on the arc
between x and w even if xyzw is a t-path.) Another interesting proposition concern
chains which are not t-paths.

5∀x, y, z ¬S(x, y) ∧ ¬S(y, z) =⇒ ¬S(x, z)
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Proposition 6.4. Let G(A,S) be a bi-oriented digraph in form of a chain. A sequence
of arcs which is not a t-path can admit “shortest” paths which are t-paths, constructed
if generalized transitive closures is applied.

Proof. It is sufficient to consider a sequence of three edges from x to y to z to w
such that τ(xy, x) = 1, τ(xy, y) = 1, τ(yz, y) = −1, τ(yz, z) = −1, τ(zw, z) =
−1, τ(zw,w) = 1. The sequence xyzw is not a t-path, but the sequence yzw it is.
The transitive closure will yield the signature τ(yw, y) = −1, τ(yw,w) = 1 and
this allows to establish a t-path xyw. The transitive closure will yield the signature
τ(xw, x) = −1, τ(xw,w) = 1.

We can introduce categories of graphs for which the generalized transitive closure
does not induce the previously mentioned situations.

Definition 6.5. We define as strong t-path (and we denote it a ts-path) any t-path
which remains such under any sequence of generalized transitive closures.

The reader can easily verify that given a bi-oriented digraph Gτ = (A,S) with all
negative signatures, every t-path is a ts-path. Same result applies in case of all positive
signatures.

As we already mentioned, when new signatures are added because of a closure, it is
important to know if there could be created multiple inconsistent signatures. Proposi-
tion 6.6 shows that when the graph is in form of a chain then this situation is impossible
because the new computed signatures are unique. Before presenting Proposition 6.6,
let us analyse how a closure is done on a chain containing only four nodes, (xyzt).

Proposition 6.6. Let G(A,S) be a bi-oriented graph in form of a chain. The closure
of generalized transitivity applied on t-paths of G(A,S) yields a unique signature for
any pair of arcs of G(A,S).

Proof.
In Table 5 we show the signature of the transitive closure when all 8 possible clo-

sures apply simultaneously: the signature is unique (or it does not exist because of the
presence of a non t-path). The reader will note that this table corresponds exactly to
Table 4. In order to complete the proof we need to check what happens for all possible
combinations of the 8 possible transitive closures. But this is exactly what the 255
tables in Annex show. For each of them we can construct the corresponding signature
table as in Table 5. And this completes the proof.

As a result of Proposition 6.6 we get the following Corollary.

Corollary 6.7. If we exchange the signature of two consecutive arcs in a bi-oriented
digraph, the generalized transitive closure (as defined in Definition 6.2) keeps the same
signature.
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τ(xy, x) τ(xy, y) τ(yz, y) τ(yz, z) τ(xz, x) τ(xz, z)
+ + + + + +
+ + + - + -
+ + - + - +
+ + - - not t-path
+ - + + + -
+ - + - + -
+ - - + not t-path
+ - - - + -
- + + + - +
- + + - not t-path
- + - + - +
- + - - - +
- - + + not t-path
- - + - + -
- - - + - +
- - - - - -

Table 5: Table of signatures

Proof.Direct from Table 5 and then from the 255 Tables in Annex A.

We saw that when the generalized transitive closure is applied to a digraph in form
of a chain then the new signatures are unique. However, we will see that this is not
always the case if the graph is not a simple chain.

LetG(A,S) be a bi-oriented digraph withA = {x, y, z, t} and TS(x, y),TS(y, z),
KS(x, t),KS(t, z). If we use a transitive closure combining all 8 definitions of tran-
sitivity we have to add TS(x, z) because of TS(x, y), TS(y, z) but also KS(x, z)
because of KS(x, t), KS(t, z).

This remind us the remark related to the simultaneous use of transitive closure and
negative transitive closure in the case of classical digraphs. The reason for which we
get an inconsistency is related to the fact that some definitions of transitivity add pos-
itive signatures while other negative ones. For instance, if we want to use transitivity
1 and 2 together (see Table 2) and if there exist two different t-paths between x and y,
one with TS(x, t),KS(t, y) and another with FS(x,w),US(w, y), a transitive clo-
sure combining the definitions of transitivity 1+2 will result in inconsistency since we
have to add ∆S(x, y) and ¬∆S(x, y). Miming what happens with classical digraphs,
in order to define transitive closures for an ordinary bi-oriented digraph we need to
introduce a distinction between “positive” and “negative” transitive closures.

In Section 5 we showed that transitive closures labelled 1,3,5 and 7 introduce rea-
sons (positive or negative): we will call such closures “positive”. Instead, transitive
closures labelled 2,4,6 and 8 eliminate reasons (positive or negative): we will call such
closures “negative”. We extend here the notion of transitivity and negative transitiv-
ity in regular bi-oriented digraphs. With this distinction in mind we can now state the
following result.
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Proposition 6.8. Let G(A,S) be a bi oriented digraph. The simultaneous application
of any combination of “positive transitive closures” (definitions 1, 3, 5 and 7, see
Table 6) or of any combination of “negative transitive closures” (definitions 2,4,6,8,
see Table 7) yields a unique signature for G(A,S).

Proof.Consider any sequence of 3 edges xy, yz, zw such that they form a t-path (admit-
ting transitive closures). Then consider Table 5 and take into account only the positive
(resp. negative) signs. Positive (resp. negative) transitive closures will simply add pos-
itive (resp. negative) signatures to the arcs xz, yw and xw because of proposition 6.6
and corollary 6.7.

Proposition 6.9. There does not exist a combination of definitions of transitivity with
more than 4 definitions guarantying the uniqueness of signatures after the closure. The
largest combinations are the following: (1,3,5,7), (2,4,6,8), (1,4,5,8) and (3,2,6,7).

Proof.The necessary condition in order to have a unique signature is to use defini-
tions of transitivity which do not add and remove the same type of reasons (positive
or negative ones). For instance, transitivity 1 can not be used with transitivity 2 or
6, since transitivity 1 adds positive reasons while transitivity 2 and 6 remove positive
reasons; however 1 can be used together with 4 since 1 adds positive reasons and 4
removes negative reasons. Using similar reasoning, one can conclude that 1 and 5 are
not compatible with 2 and 6 ; 3 and 7 are not compatible with 4 and 8. As a conse-
quence, combinations (1,3,5,7), (2,4,6,8), (1,4,5,8) and (2,3, 6,7) (see Tables 6, 7 and
8) and their sub-sets are the only combinations for which the uniqueness of signatures
is guaranteed by transitive closures.

1357 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S KS KS
US ∆S ∆¬S KS -

Table 6: Applying transitive closures 1,3,5 and 7 simultaneously

2468 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ¬∆¬S ¬∆S - US
US ¬∆¬S ¬∆S US US

Table 7: Applying transitive closures 2,4,6 and 8 simultaneously

Let’s discuss briefly these results. On the one hand we have a result consisting in
being sure that if a signature is added after a closure in a chain then it is unique.

On the other hand we still have the possibility that a signature can be computed
even in case part of the sequence is not a t-path (see Proposition 6.4). This may have
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1458 TS FS KS US
TS TS - TS TS
FS - - - -
KS TS - ∆S TS
US TS - TS ¬∆¬S

2367 TS FS KS US
TS - - - -
FS - FS FS FS
KS - FS ∆¬S FS
US - FS FS ¬∆S

Table 8: Applying transitive closures 1,4,5 and 8 or 2,3,6 and 7 simultaneously

a practical consequence. We can design a “strict” algorithm computing signatures
for arcs who connect nodes for which there is no path containing a non t-path. This
reduces the number of computable signatures to a minimum. We can also design a
“large” algorithm which will compute all possible signatures even in the case part
of the path contains a “non t-path”. The former can be considered a computing of
“necessary” signatures through transitive closure, while the latter should be viewed as
the computing of “possible” signatures through transitive closure.

Another practical consequence of using the arcs signatures is the generalisation of
the concept of “preference flow”, a concept introduced for decision making purposes
in [8]. This concept has been introduced in preference modelling in order to exploit
a preference graph for prescriptive purposes (computing the maximal subset of the
graph, a kernel, a minimal covering subset etc.) and essentially computes the difference
between the incoming and outcoming arcs of any node in the graph (see also [32]).

Considering the usual signature notation for bi-oriented digraphs we denote as a flow
between two vertices x and y the function
φ(xy) : A×A 7→ {−4,−2, 0, 2, 4} such that:
φ(xy) = τ(xy, x)− τ(xy, y)− τ(yx, y) + τ(yx, x).
Clearly φ(xy) = −φ(yx).

Given a pair of vertices x and y within a bi-oriented digraph we can now distinguish
three possible situations:
- strong asymmetry whenever φ(xy) = 4 (φ(yx) = −4);
- weak asymmetry whenever φ(xy) = 2 (φ(yx) = −2);
- symmetry whenever φ(xy) = 0 (φ(yx) = 0);

This is coherent with the intuition ([28]) that preferences with no hesitation should
“count more” with respect to preferences where the decision maker may have (for
several different reasons) some hesitation. In case we consider a decision problem
where a ranking is expected to be constructed out of a graph of preferences (which
may include hesitation) this idea opens promising perspectives since it allows to count
differently strong asymmetric relations and weak asymmetric relations, allowing thus
a more fine ranking of the set of alternatives (see also the method suggested in [13]).
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7. Direct and indirect transitive Closures in the bi-oriented digraphs

The transitive closure of bi-oriented graphs defined in Section 3, which is condi-
tioned by the existence of a b-path is not symmetric with respect to the left side of the
implication. On the other hand the “symmetric” transitive closures defined in section
5, which are called direct and indirect transitive closures for a bi-oriented digraph Gτ

do not require the notion of the b-path. In the following Gτ is a bi-oriented digraph
representing the relation S upon A, Gτ = (A,S). However, there are some special
cases (although simple) where the two different notions of transitivity yield the same
result, which we show in the following.

Proposition 7.1. Let Gτ be an all positive bi-oriented digraph (i.e, ∀e ∈ A :W (e) =
0). The transitive closure of Gτ , is the graph denoted Ft(Gτ ) = (A,Ft(S)) such that
e = {xα, yβ} ∈ Ft(S) if there exists a b-path P(α,β)(x, y) in Gτ .

Proof. The edges of P(α,β)(x, y) are of the types T or F, and according to the directed
transitive closures of F and T which are given in tables 3 and 4, we have: T∧T → T
and F ∧ F → F, from where the result.

Corollary 7.2. Gτ is a partial graph of Ft(Gτ ).

Proof. It is obvious from the proposition.

Corollary 7.3. Ft(Gτ ) is an all positive bi-oriented digraph, such that
∀e ∈ Ft(S) :W (e) = 0.

Proof. The transitive closure of P(α,β)(x, y) is the positive edge e = {xα, yβ} which
is of type T or F, and they are positive edges with W (F) =W (T) = 0 .

As expected a bi-oriented digraph where only exist chains of all positively signed
arcs (in the same way) can be transitively closed with the same positive signature.

Proposition 7.4. Let Gτ be an all negative bi-oriented digraph such that
∀e ∈ S :W (e) = −2. The transitive closure of Gτ , is the graph denoted
Ft(Gτ ) = (A,Ft(S)) such that e = {x−, y−} ∈ Ft(S) if there exists a ts-path,
Q(x−, y−) : x−e1x1e2x2 . . . xkeky

− in Gτ .

Proof. According to the directed transitive closure of U given in tables 3 and 4 we
have: U ∧U → U, from where the result.

Corollary 7.5. Gτ is a partial graph of Ft(Gτ ).

Proof. It is obvious from the proposition.

Corollary 7.6. Ft(Gτ ) is an all negative bi-oriented digraph, such that ∀e ∈ Ft(S) :
W (e) = −2.

Proof. The closure of Q(x−, y−) is a negative edge e = {x−, y−} which of type U
and U is a negative edge with W (U) = −2.
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Proposition 7.7. Let Gτ be an all negative bi-oriented digraph such that
∀e ∈ S :W (e) = +2. The transitive closure of Gτ , is the graph denoted
Ft(Gτ ) = (A,Ft(S)) such that e = {x+, y+} ∈ Ft(S) if there exists a ts-path,
Q(x+, y+) : x+e1x1e2x2 . . . xkeky

+ in Gτ .

Proof. According to the directed transitive closure of K given in tables 3 and 4 we
have: K ∧K → K, from where the result.

Corollary 7.8. Gτ is a partial graph of Ft(Gτ ).

Proof. It is obvious from the proposition.

Corollary 7.9. Ft(Gτ ) is a negative graph, such that ∀e ∈ Ft(S) :W (e) = +2.

Proof. The closure of Q(x+, y+) is a negative edge e = {x+, y+} which is of type K
and K is a negative edge with W (K) = +2.

In other terms the results we obtained in case we have chains of T arcs (and we ap-
ply positive transitive closures) or of F arcs (and we apply negative transitive closures)
hold also in case we have chains of K arcs or chains of U arcs.

Proposition 7.10. Let Gτ be a bi-oriented digraph. The transitive closure of Gτ , is
the graph denoted Ft(Gτ ) = (A,Ft(S)) such that e = {x−, y+} ∈ Ft(S) if there
exists a t-path, Q(xα, yβ) : xαe1x1e2x2 . . . xkeky

β in Gτ , which is not necessarily a
b-path from xα to yβ , and does not admit edges of type T.

Proof. According to the indirect transitive closures of F, U and K given in tables 3
and 4 we have: U ∧ F → F, F ∧K → F, F ∧ F → F, from where the result.

Corollary 7.11. Gτ is a partial graph of Ft(Gτ .

Proof. It is obvious from the proposition.

Proposition 7.12. Let Gτ be a bi-oriented digraph. The transitive closure of Gτ , is
the graph denoted Ft(Gτ ) = (A,Ft(S)) such that e = {x+, y−} ∈ Ft(S) if there is
a t-path, Q(xα, yβ) : xαe1x1e2x2 . . . xkeky

β ∈ Gτ , which is not necessarily a b-path
from xα to yβ and does not admit edges of the type F.

Proof. According to the indirect transitive closures of T, U and K given in tables 3
and 4 of we have: U ∧T → T, K ∧T → T, T ∧T → T, from where the result.

Corollary 7.13. Gτ is a partial graph of Ft(Gτ ).

Proof. It is obvious from the proposition.

The last two results confirm the idea that using the positive or the negative transitive
closures we can obtain a transitively closed bi-oriented digraph in case we have chains
which do not contain at the same time T and F arcs.

Remarks:
• The direct transitive closure which are given in Proposition 7.1 are identical to

the definition of the transitive closure of the bi-oriented digraphs given in Definition
3.7.
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• The transitive closures which are given in Proposition 7.1 require the existence
of a b-path, and they are known as direct positive transitive closures because they are
deduced from the direct transitive closures denoted (1) and (2) in section 5.

• The transitive closures which are given in Propositions 7.4 and 7.7 do not require
the existence of a b-path, and they are known as direct negative transitive closures be-
cause they are deduced from the direct transitive closures denoted (3) and (4)in section
5.

• The transitive closures which are given in Propositions 7.10 and 7.12 do not
require the existence of a b-path and they are known as hesitation or undirect transitive
closures, because they are deduced from the undirect transitive closures denoted (5) -
(8) in section 5.

Conclusions

In this paper we propose a first study about the use of signed graphs (more pre-
cisely bi-oriented digraphs) in order to complement the use of logical languages explic-
itly designed for preference modelling under hesitation. More precisely we show how
bi-oriented digraphs can be used as graphical representation for preference structures
based upon the DDT language (a first order four valued logic). In order to complete
such new tool we need to introduce new forms of transitive closures (more precisely 8
different forms of transitivity). The result is the establishment of graphical representa-
tion tools which enable to use graph theory when preferences are expressed under hesi-
tation and with multiple epistemic states. Two research directions can be followed from
these findings. The first concerns the development of ranking and rating procedures ex-
ploiting directly the preference structure including hesitation. The second concerns the
generalisation of the notion of transitivity as a process for tranfering/creating/revising
knowledge included in preference statements.
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Annexe A: the complete list of combinations

1 TS FS KS US
TS ∆S - ∆S -
FS - - - -
KS ∆S - ∆S -
US - - - -

2 TS FS KS US
TS - - - -
FS - ¬∆S - ¬∆S
KS - - - -
US - ¬∆S - ¬∆S

3 TS FS KS US
TS - - - -
FS - ∆¬S ∆¬S -
KS - ∆¬S ∆¬S -
US - - - -

4 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - - - -
KS - - - -
US ¬∆¬S - - ¬∆¬S

5 TS FS KS US
TS ∆S - ∆S ∆S
FS - - - -
KS ∆S - - ∆S
US ∆S - ∆S -

6 TS FS KS US
TS - - - -
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S - ¬∆S
US - ¬∆S ¬∆S -

7 TS FS KS US
TS - - - -
FS - ∆¬S ∆¬S ∆¬S
KS - ∆¬S - ∆¬S
US - ∆¬S ∆¬S -

8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - - - -
KS ¬∆¬S - - ¬∆¬S
US ¬∆¬S - ¬∆¬S -

1234567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS FS∆¬S
US TS FS ∆¬S US

123456 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS KS ¬∆¬S
US TS ¬∆S ¬∆¬S US

12345 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S KS ∆S
US TS FS ∆S US

1234 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS KS ¬∆S
US ¬∆¬S FS ¬∆S US

123 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS -
US TS FS - ¬∆S

12 45678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S -
US TS FS - US

1 345678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS -
US TS FS - ¬∆¬S

2345678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆¬S -
US TS FS - US
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12 TS FS KS US
TS ∆S - ∆S -
FS - ¬∆S - ¬∆S
KS ∆S - ∆S -
US - ¬∆S - ¬∆S

1 3 TS FS KS US
TS ∆S - ∆S -
FS - ¬∆S ¬∆S -
KS ∆S ¬∆S KS- -
US - - - -

1 4 TS FS KS US
TS - - ∆S ¬∆¬S
FS - - - -
KS ∆S - ∆S -
US ¬∆¬S - - ¬∆¬S

1 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - - - -
KS ∆S - ∆S ∆S
US ∆S - ∆S -

1 6 TS FS KS US
TS ∆S - ∆S -
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S ¬∆S
US - ¬∆S ¬∆S -

1 7 TS FS KS US
TS ∆S - ∆S -
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆S ∆¬S
US - ∆¬S ∆¬S -

1 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - - - -
KS TS - ∆S ¬∆¬S
US ¬∆¬S - ¬∆¬S -

78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ¬∆¬S ∆¬S - -
US ¬∆¬S - ∆¬S -

23 TS FS KS US
TS - - - -
FS - FS ∆¬S ¬∆S
KS - ∆¬S ∆¬S -
US - ¬∆S - ¬∆S

2 4 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ¬∆S - ¬∆S
KS - - - -
US ¬∆¬S ¬∆S - US

2 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S - ¬∆S
KS ∆S - - ∆S
US ∆S ¬∆S ∆S ¬∆S

2 6 TS FS KS US
TS - - - -
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S - ¬∆S
US - ¬∆S ¬∆S ¬∆S

2 7 TS FS KS US
TS - - - -
FS - FS ∆¬S FS
KS - ∆¬S - ∆¬S
US - FS ∆¬S ∆¬S

2 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S - ¬∆S
KS ¬∆¬S - - ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S ¬∆S

67 TS FS KS US
TS - - - -
FS - FS FS FS
KS - FS - FS
US - FS FS -

6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ¬∆¬S ¬∆S - US
US ¬∆¬S ¬∆S US -
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34 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ∆¬S ∆¬S -
KS - ∆¬S ∆S -
US ¬∆¬S - - ¬∆¬S

3 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S -
KS ∆S ∆¬S ∆¬S -
US ∆S - - -

3 6 TS FS KS US
TS - - - -
FS - FS FS ¬∆S
KS - FS ∆¬S ¬∆S
US - ¬∆S ¬∆S -

3 7 TS FS KS US
TS - - - -
FS - ∆¬S ∆¬S ∆¬S
KS - ∆¬S ∆¬S ∆¬S
US - ∆¬S ∆¬S -

3 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S -
KS ¬∆¬S ∆¬S ∆¬S ¬∆¬S
US ¬∆¬S - ¬∆¬S -

56 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S - -
US ∆S ¬∆S - -

5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S - KS
US ∆S ∆¬S KS -

5 8 TS FS KS US
TS TS - TS TS
FS - - - -
KS TS - - TS
US TS - TS -

45 TS FS KS US
TS TS - ∆S TS
FS - - - -
KS ∆S - - ∆S
US TS - ∆S ¬∆¬S

4 6 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S - ¬∆S
US ¬∆¬S ¬∆S ¬∆S ¬∆¬S

4 7 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS - ∆¬S - ∆¬S
US ¬∆¬S ∆¬S ∆¬S ¬∆¬S

4 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - - - -
KS ¬∆¬S - - ¬∆¬S
US ¬∆¬S - ¬∆¬S ¬∆¬S

1 45 TS FS KS US
TS TS - ∆S TS
FS - - - -
KS ∆S - ∆S ∆S
US TS - ∆S ¬∆¬S

1 4 6 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S ¬∆S
US ¬∆¬S ¬∆S ¬∆S ¬∆¬S

1 4 7 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆S ∆¬S
US ¬∆¬S ∆¬S ∆¬S ¬∆¬S

1 4 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - - - -
KS TS - ∆S ¬∆¬S
US ¬∆¬S - ¬∆¬S ¬∆¬S
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123 TS FS KS US
TS ∆S - ∆S -
FS - FS ∆¬S ¬∆S
KS ∆S ∆¬S KS -
US - ¬∆S - ¬∆S

12 4 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - ¬∆S - ¬∆S
KS ∆S - ∆S -
US ¬∆¬S ¬∆S - US

12 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S - ¬∆S
KS ∆S - ∆S ∆S
US ∆S ¬∆S ∆S ¬∆S

12 6 TS FS KS US
TS ∆S - ∆S -
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S ¬∆S
US - ¬∆S ¬∆S ¬∆S

12 7 TS FS KS US
TS ∆S - ∆S -
FS - FS ∆¬S FS
KS ∆S ∆¬S ∆S ∆¬S
US - FS ∆¬S ∆¬S

12 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S - ¬∆S
KS TS - ∆S ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S ¬∆S

1 67 TS FS KS US
TS ∆S - ∆S -
FS - FS FS FS
KS ∆S FS ∆S FS
US - FS FS -

1 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S US
US ¬∆¬S ¬∆S US -

1 34 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - ∆¬S ∆¬S -
KS ∆S ∆¬S KS ∆S
US ¬∆¬S - ∆S ¬∆¬S

1 3 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S -
KS ∆S ∆¬S KS ∆S
US ∆S - ∆S -

1 3 6 TS FS KS US
TS ∆S - ∆S -
FS - FS FS ¬∆S
KS ∆S FS KS ¬∆S
US - ¬∆S ¬∆S -

1 3 7 TS FS KS US
TS ∆S - ∆S -
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S KS ∆¬S
US - ∆¬S ∆¬S -

1 3 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S -
KS TS ∆¬S KS ¬∆¬S
US ¬∆¬S - ¬∆¬S -

1 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S ¬∆S
US ∆S ¬∆S ¬∆S -

1 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆S KS
US ∆S ∆¬S KS -

1 5 8 TS FS KS US
TS TS - TS TS
FS - - - -
KS TS - ∆S TS
US TS - TS -
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234 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS ∆¬S ¬∆S
KS - ∆¬S ∆S -
US ¬∆¬S ¬∆S - US

23 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S ¬∆S
KS ∆S ∆¬S ∆¬S ∆S
US ∆S ¬∆S ∆S ¬∆S

23 6 TS FS KS US
TS - - - -
FS - FS FS ¬∆S
KS - FS ∆¬S ¬∆S
US - ¬∆S ¬∆S ¬∆S

23 7 TS FS KS US
TS - - - -
FS - FS ∆¬S ∆¬S
KS - ∆¬S ∆¬S ∆¬S
US - ∆¬S ∆¬S ¬∆S

23 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S ¬∆S
KS ¬∆¬S ∆¬S ∆¬S ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S ¬∆S

2 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S - -
US ∆S ¬∆S - ¬∆S

2 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S FS
KS ∆S ∆¬S - KS
US ∆S FS KS ¬∆S

2 5 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S - ¬∆S
KS TS - - TS
US TS ¬∆S TS ¬∆S

2 45 TS FS KS US
TS TS - ∆S TS
FS - ¬∆S - ¬∆S
KS ∆ - - ∆S
US TS ¬∆S ∆S US

2 4 6 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S - ¬∆S
US ¬∆¬S ¬∆S ¬∆S US

2 4 7 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS ∆¬S FS
KS - ∆¬S - ∆¬S
US ¬∆¬S FS ∆¬S US

2 4 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S - ¬∆S
KS ¬∆¬S - - ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S US

1 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆S -
US ¬∆¬S ∆¬S - -

2 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S FS
KS ¬∆¬S ∆¬S - -
US ¬∆¬S FS - ¬∆S

2 67 TS FS KS US
TS - - - -
FS - FS FS FS
KS - FS - FS
US - FS FS ¬∆S

2 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ¬∆¬S ¬∆S - US
US ¬∆¬S ¬∆S US ¬∆S
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345 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S -
KS ∆ ∆¬S ∆¬S ∆S
US TS - ∆S ¬∆¬S

34 6 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS ¬∆S
KS - FS ∆¬S ¬∆S
US ¬∆¬S ¬∆S ¬∆S ¬∆¬S

34 7 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS - ∆¬S ∆¬S ∆¬S
US ¬∆¬S ∆¬S ∆¬S ¬∆¬S

34 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S -
KS ¬∆¬S ∆¬S ∆¬S ¬∆¬S
US ¬∆¬S - ¬∆¬S ¬∆¬S

3 67 TS FS KS US
TS - - - -
FS - FS FS FS
KS - FS ∆¬S FS
US - FS FS -

3 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS ¬∆S
KS ¬∆¬S FS ∆¬S US
US ¬∆¬S ¬∆S US -

4 67 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS FS
KS - FS - FS
US ¬∆¬S FS FS ¬∆¬S

4 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ¬∆¬S ¬∆S - US
US ¬∆¬S ¬∆S US ¬∆¬S

3 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ¬∆¬S ∆¬S ∆¬S -
US ¬∆¬S ∆¬S - -

3 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS ¬∆S
KS ∆S FS ∆¬S -
US ∆S ¬∆S - -

3 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆¬S KS
US ∆S ∆¬S KS -

3 5 8 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S -
KS TS ∆¬S ∆¬S TS
US TS - TS -

4 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ¬∆¬S ∆¬S - -
US ¬∆¬S ∆¬S - ¬∆¬S

456 TS FS KS US
TS TS - ∆S TS
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S - -
US TS ¬∆S - ¬∆¬S

45 7 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S - ∆¬S
US TS ∆¬S ∆¬S ¬∆¬S

45 8 TS FS KS US
TS TS - TS TS
FS - - - -
KS TS - - TS
US TS - TS ¬∆¬S
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1234 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS ∆¬S ¬∆S
KS ∆S ∆¬S KS -
US ¬∆¬S ¬∆S - US

123 5 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S ¬∆S
KS ∆S ∆¬S KS ∆S
US ∆S ¬∆S ∆S ¬∆S

123 6 TS FS KS US
TS ∆S - ∆S -
FS - FS FS ¬∆S
KS ∆S FS KS ¬∆S
US - ¬∆S ¬∆S ¬∆S

123 7 TS FS KS US
TS ∆S - ∆S -
FS - FS ∆¬S ∆¬S
KS ∆S ∆¬S KS ∆¬S
US - ∆¬S ∆¬S ¬∆S

123 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S ¬∆S
KS TS ∆¬S KS ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S ¬∆S

12 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S -
US ∆S ¬∆S - ¬∆S

12 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S FS
KS ∆S ∆¬S ∆S KS
US ∆S FS KS ¬∆S

12 5 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S - ¬∆S
KS TS - ∆S TS
US TS ¬∆S TS ¬∆S

12 45 TS FS KS US
TS TS - ∆S TS
FS - ¬∆S - ¬∆S
KS ∆ - ∆S ∆S
US TS ¬∆S ∆S US

12 4 6 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS - ¬∆S ∆S ¬∆S
US ¬∆¬S ¬∆S ¬∆S US

12 4 7 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS ∆¬S FS
KS - ∆¬S ∆S ∆¬S
US ¬∆¬S FS ∆¬S US

12 4 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S - ¬∆S
KS TS - ∆S ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S US

678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS - ¬∆S
US ¬∆¬S FS ¬∆S -

12 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S FS
KS TS ∆¬S ∆S -
US ¬∆¬S FS - ¬∆S

12 67 TS FS KS US
TS ∆S - ∆S -
FS - FS FS FS
KS ∆S FS ∆S FS
US - FS FS ¬∆S

12 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S US
US ¬∆¬S ¬∆S US ¬∆S
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1 345 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S -
KS ∆ ∆¬S KS ∆S
US TS - ∆S ¬∆¬S

1 34 6 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS ¬∆S
KS ∆S FS KS ¬∆S
US ¬∆¬S ¬∆S ¬∆S ¬∆¬S

1 34 7 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S KS ∆¬S
US ¬∆¬S ∆¬S ∆¬S ¬∆¬S

1 34 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S -
KS TS ∆¬S KS ¬∆¬S
US ¬∆¬S - ¬∆¬S ¬∆¬S

1 3 67 TS FS KS US
TS ∆S - ∆S -
FS - FS FS FS
KS ∆S FS KS FS
US - FS FS -

1 3 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS ¬∆S
KS TS FS KS US
US ¬∆¬S ¬∆S US -

1 4 67 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS FS
KS ∆S FS ∆S FS
US ¬∆¬S FS FS ¬∆¬S

1 4 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S US
US ¬∆¬S ¬∆S US ¬∆¬S

1 3 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S KS -
US ¬∆¬S ∆¬S - -

1 3 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS ¬∆S
KS ∆S FS KS -
US ∆S ¬∆S - -

1 3 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S KS KS
US ∆S ∆¬S KS -

1 3 5 8 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S -
KS TS ∆¬S KS TS
US TS - TS -

1 4 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆S -
US ¬∆¬S ∆¬S - ¬∆¬S

1 456 TS FS KS US
TS TS - ∆S TS
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S ∆S -
US TS ¬∆S - ¬∆¬S

1 45 7 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆S KS
US TS ∆¬S KS ¬∆¬S

1 45 8 TS FS KS US
TS TS - TS TS
FS - - - -
KS TS - ∆S TS
US TS - TS ¬∆¬S
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2345 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S -
KS ∆ ∆¬S ∆¬S ∆S
US TS - ∆S US

234 6 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS ¬∆S
KS - FS ∆¬S ¬∆S
US ¬∆¬S ¬∆S ¬∆S US

234 7 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS ∆¬S FS
KS - ∆¬S ∆¬S ∆¬S
US ¬∆¬S FS ∆¬S US

234 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S ¬∆S
KS ¬∆¬S ∆¬S ∆¬S ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S US

23 67 TS FS KS US
TS - - - -
FS - FS FS FS
KS - FS ∆¬S FS
US - FS FS ¬∆S

23 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS ¬∆S
KS ¬∆¬S FS ∆¬S US
US ¬∆¬S ¬∆S US ¬∆S

2 4 67 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS FS
KS - FS - FS
US ¬∆¬S FS FS US

2 4 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS ¬∆¬S ¬∆S - US
US ¬∆¬S ¬∆S US US

23 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S FS
KS ¬∆¬S ∆¬S ∆¬S -
US ¬∆¬S FS - -

23 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS ¬∆S
KS ∆S FS ∆¬S -
US ∆S ¬∆S - ¬∆S

23 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S FS
KS ∆S ∆¬S ∆¬S KS
US ∆S FS KS ¬∆S

23 5 8 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S ¬∆S
KS TS ∆¬S ∆¬S TS
US TS ¬∆S TS ¬∆S

2 4 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S FS
KS ¬∆¬S ∆¬S - -
US ¬∆¬S FS - US

2 456 TS FS KS US
TS TS - ∆S TS
FS - ¬∆S ¬∆S ¬∆S
KS ∆S ¬∆S - -
US TS ¬∆S - US

2 45 7 TS FS KS US
TS TS - ∆S TS
FS - FS ∆¬S FS
KS ∆S ∆¬S - KS
US TS FS KS US

2 45 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S - ¬∆S
KS TS - - TS
US TS ¬∆S TS US
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567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS - FS
US ∆S FS FS -

56 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S - ¬∆¬S
US TS ¬∆S ¬∆¬S -

5 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S - ∆S
US TS ∆¬S ∆S -

5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - -
US TS FS - -

1 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS ∆S -
US ∆S FS - -

1 56 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S ¬∆¬S
US TS ¬∆S ¬∆¬S -

1 5 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆S ∆S
US TS ∆¬S ∆S -

1 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S -

2 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS - -
US ∆S FS - ¬∆S

2 56 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S - ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆S

2 5 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S - ∆S
US TS FS ∆S ¬∆S

2 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS - ¬∆S
US ¬∆¬S FS ¬∆S ¬∆S

3 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS ∆¬S -
US ∆S FS - -

3 56 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS ∆¬S ¬∆¬S
US TS ¬∆S ¬∆¬S -

3 5 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆¬S ∆S
US TS ∆¬S ∆S -

3 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS ∆¬S ¬∆S
US ¬∆¬S FS ¬∆S -
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12345 TS FS KS US
TS TS - ∆S TS
FS - FS ∆¬S ¬∆S
KS ∆ ∆¬S KS ∆S
US TS ¬∆S ∆S US

1234 6 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS ¬∆S
KS ∆S FS KS ¬∆S
US ¬∆¬S ¬∆S ¬∆S US

1234 7 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS ∆¬S FS
KS ∆S ∆¬S KS ∆¬S
US ¬∆¬S FS ∆¬S US

1234 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S ¬∆S
KS TS ∆¬S KS ¬∆¬S
US ¬∆¬S ¬∆S ¬∆¬S US

123 67 TS FS KS US
TS ∆S - ∆S -
FS - FS FS FS
KS ∆S FS KS FS
US - FS FS ¬∆S

123 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS ¬∆S
KS TS FS KS US
US ¬∆¬S ¬∆S US ¬∆S

12 4 67 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS FS
KS ∆S FS ∆S FS
US ¬∆¬S FS FS US

12 4 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S US
US ¬∆¬S ¬∆S US US

123 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S FS
KS TS ∆¬S KS -
US ¬∆¬S FS - ¬∆S

123 56 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS ¬∆S
KS ∆S FS KS -
US ∆S ¬∆S - ¬∆S

123 5 7 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS ∆¬S FS
KS ∆S ∆¬S KS ∆¬SKS
US ∆S FS KS ¬∆S

123 5 8 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S ¬∆S
KS TS ∆¬S KS TS
US TS ¬∆S TS ¬∆S

12 4 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S FS
KS TS ∆¬S ∆S -
US ¬∆¬S FS - US

12 456 TS FS KS US
TS TS - ∆S TS
FS - FS FS ¬∆S
KS ∆S FS KS -
US TS ¬∆S - US

12 45 7 TS FS KS US
TS TS - ∆S TS
FS - FS ∆¬S FS
KS ∆S ∆¬S ∆S KS
US TS FS KS US

12 45 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S - ¬∆S
KS TS - ∆S TS
US TS ¬∆S TS US
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4567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - ∆¬S
US TS FS ∆¬S ¬∆¬S

456 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S - ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆¬S

45 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S - ∆S
US TS ∆¬S ∆S ¬∆¬S

4 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS - ¬∆S
US ¬∆¬S FS ¬∆S ¬∆¬S

12 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS ∆S ∆¬S
US ∆S FS ∆¬S ¬∆S

12 56 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆S

12 5 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S ∆S ∆S
US TS FS ∆S ¬∆S

12 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S ¬∆S

1 3 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS KS ∆¬S
US ∆S FS ∆¬S -

1 3 56 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS KS ¬∆¬S
US TS ¬∆S ¬∆¬S -

1 3 5 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S KS ∆S
US TS ∆¬S ∆S -

1 3 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS KS ¬∆S
US ¬∆¬S ¬∆S FS -

1 4567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S ∆¬S
US TS FS ∆¬S ¬∆¬S

1 456 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆¬S

1 45 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆S ∆S
US TS ∆¬S ∆S ¬∆¬S

1 4 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S ¬∆¬S
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34 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS ¬∆¬S ∆¬S ∆¬S -
US ¬∆¬S ∆¬S - ¬∆¬S

3456 TS FS KS US
TS TS - ∆S TS
FS - FS FS ¬∆S
KS ∆S FS ∆¬S -
US TS ¬∆S - ¬∆¬S

345 7 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S ∆¬S KS
US TS ∆¬S KS ¬∆¬S

345 8 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S -
KS TS ∆¬S ∆¬S TS
US TS - TS ¬∆¬S

34 67 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS FS
KS - FS ∆¬S FS
US ¬∆¬S FS FS ¬∆¬S

34 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS ¬∆S
KS ¬∆¬S FS ∆¬S US
US ¬∆¬S ¬∆S US ¬∆¬S

1 34 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S KS -
US ¬∆¬S ∆¬S - ¬∆¬S

1 3456 TS FS KS US
TS TS - ∆S TS
FS - FS FS ¬∆S
KS ∆S FS KS -
US TS ¬∆S - ¬∆¬S

1 345 7 TS FS KS US
TS TS - ∆S TS
FS - ∆¬S ∆¬S ∆¬S
KS ∆S ∆¬S KS KS
US TS ∆¬S KS ¬∆¬S

1 345 8 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S -
KS TS ∆¬S KS TS
US TS - TS ¬∆¬S

1 34 67 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS FS
KS ∆S FS KS FS
US ¬∆¬S FS FS ¬∆¬S

1 34 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS ¬∆S
KS TS FS KS US
US ¬∆¬S ¬∆S US ¬∆¬S

1 34567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS ∆¬S
US TS FS ∆¬S ¬∆¬S

1 3456 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS KS ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆¬S

1 345 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S KS ∆S
US TS ∆¬S ∆S ¬∆¬S

1 34 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S ¬∆¬S
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23 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS ∆¬S ∆¬S
US ∆S FS ∆¬S ¬∆S

23 56 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS ∆¬S ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆S

23 5 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S ∆¬S ∆S
US TS FS ∆S ¬∆S

23 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS ∆¬S ¬∆S
US ¬∆¬S FS ¬∆S ¬∆S

2 4567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - ∆¬S
US TS FS ∆¬S US

2 456 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S - ¬∆¬S
US TS ¬∆S ¬∆¬S US

2 45 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S - ∆S
US TS FS ∆S US

2 4 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS - ¬∆S
US ¬∆¬S FS ¬∆S US

34567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆¬S ∆¬S
US TS FS ∆¬S ¬∆¬S

3456 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS ∆¬S ¬∆S
US TS ¬∆S ¬∆S ¬∆¬S

345 78 TS FS KS US
TS TS - TS TS
FS - ∆¬S ∆¬S ∆¬S
KS TS ∆¬S ∆¬S ∆S
US TS ∆¬S ∆S ¬∆¬S

34 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S ¬∆¬S

1 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S -
US TS FS - -

2 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - -
US TS FS - ¬∆S

3 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ¬∆S -
US TS FS - -

45678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - -
US TS FS - ¬∆¬S
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234 78 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS ∆¬S FS
KS ¬∆¬S ∆¬S ∆¬S -
US ¬∆¬S FS - US

23456 TS FS KS US
TS TS - ∆S TS
FS - FS FS ¬∆S
KS ∆S FS ∆¬S -
US TS ¬∆S - US

2345 7 TS FS KS US
TS TS - ∆S TS
FS - FS ∆¬S FS
KS ∆S ∆¬S ∆¬S KS
US TS FS KS US

2345 8 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S ¬∆S
KS TS ∆¬S ∆¬S TS
US TS ¬∆S TS US

234 67 TS FS KS US
TS ¬∆¬S - - ¬∆¬S
FS - FS FS FS
KS - FS ∆¬S FS
US ¬∆¬S FS FS US

234 6 8 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS ¬∆S
KS ¬∆¬S FS ∆¬S US
US ¬∆¬S ¬∆S US US

1234 78 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS ∆¬S FS
KS TS ∆¬S KS -
US ¬∆¬S FS - US

123456 TS FS KS US
TS TS - ∆S TS
FS - FS FS ¬∆S
KS ∆S FS KS -
US TS ¬∆S - US

12345 7 TS FS KS US
TS TS - ∆S TS
FS - FS ∆¬S FS
KS ∆S ∆¬S KS KS
US TS FS KS US

12345 8 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S ¬∆S
KS TS ∆¬S KS TS
US TS ¬∆S TS US

1234 67 TS FS KS US
TS TS - ∆S ¬∆¬S
FS - FS FS FS
KS ∆S FS KS FS
US ¬∆¬S FS FS US

1234 6 8 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS ¬∆S
KS TS FS KS US
US ¬∆¬S ¬∆S US US

123 567 TS FS KS US
TS ∆S - ∆S ∆S
FS - FS FS FS
KS ∆S FS KS ∆¬S
US ∆S FS ∆¬S ¬∆S

123 56 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS KS ¬∆¬S
US TS ¬∆S ¬∆¬S ¬∆S

123 5 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S KS ∆S
US TS FS ∆S ¬∆S

123 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS KS ¬∆S
US ¬∆¬S FS ¬∆S ¬∆S
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12 4567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S ∆¬S
US TS FS ∆¬S US

12 456 8 TS FS KS US
TS TS - TS TS
FS - ¬∆S ¬∆S ¬∆S
KS TS ¬∆S ∆S ¬∆¬S
US TS ¬∆S ¬∆¬S US

12 45 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S ∆S ∆S
US TS FS ∆S US

12 4 678 TS FS KS US
TS TS - TS ¬∆¬S
FS - FS FS FS
KS TS FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S US

234567 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆¬S ∆¬S
US TS FS ∆¬S US

23456 8 TS FS KS US
TS TS - TS TS
FS - FS FS ¬∆S
KS TS FS ∆¬S ¬∆¬S
US TS ¬∆S ¬∆¬S US

2345 78 TS FS KS US
TS TS - TS TS
FS - FS ∆¬S FS
KS TS ∆¬S ∆¬S ∆S
US TS FS ∆S US

234 678 TS FS KS US
TS ¬∆¬S - ¬∆¬S ¬∆¬S
FS - FS FS FS
KS ¬∆¬S FS ∆S ¬∆S
US ¬∆¬S FS ¬∆S US

12 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S -
US TS FS - ¬∆S

1 3 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS -
US TS FS - -

345678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ¬∆S -
US TS FS - ¬∆¬S

1 45678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆S -
US TS FS - ¬∆¬S

23 5678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS ∆¬S -
US TS FS - ¬∆S

2 45678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS - -
US TS FS - US

12345678 TS FS KS US
TS TS - TS TS
FS - FS FS FS
KS TS FS KS -
US TS FS - US
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