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Let Γ be a non-elementary relatively hyperbolic group with a finite generating set. Consider a finitely supported admissible and symmetric probability measure µ on Γ and a probability measure ν on N with mean r. Let BRWpΓ, ν, µq be the branching random walk on Γ with offspring distribution ν and base motion given by the random walk with step distribution µ. It is known that for 1 ă r ď R with R the radius of convergence for the Green function of the random walk, the population of BRWpΓ, ν, µq survives forever, but eventually vacates every finite subset of Γ. We prove that in this regime, the growth rate of the trace of the branching random walk is equal to the growth rate ω Γ prq of the Green function of the underlying random walk. We also prove that the Hausdorff dimension of the limit set Λprq, which is the random subset of the Bowditch boundary consisting of all accumulation points of the trace of BRWpΓ, ν, µq, is equal to a constant times ω Γ prq.

1. Introduction 1.1. Background and motivation 1.2. Earlier results on hyperbolic groups 1.3. Main results 1.4. Parabolic gap and purely exponential growth of Green functions 1.5. Organization of the paper 2. Relatively hyperbolic groups and random walks 2.1. Relative hyperbolic groups 2.2. Floyd boundary 2.3. Transition points and Floyd geometry 2.4. Random walks on relatively hyperbolic groups 3. The growth rate of the Green function 3.1. Preliminary results 3.2. Upper bound 3.3. Lower bound via parabolic gap 3.4. Criteria for Green parabolic gap 3.5. Examples 4. The growth rate of the trace of the branching random walk 4.1. Upper bound 4.2. Lower bound 5. A lower bound for the Hausdorff dimension of the limit set 5.1. The limit set in the Floyd and Bowditch boundaries 5.2. The limit set in the ends boundary 6. An upper bound for the Hausdorff dimension of the limit set Appendix A. Convergence of random finite measures A.1. Random finite measures A.2. The weak topology on random finite measures A.3. A compactness criterion for random finite measures 1. Introduction 1.1. Background and motivation. Let pV, Eq be a locally finite connected infinite graph. A Branching Markov chain (BMC) on pV, Eq is defined as follows. One starts with a single particle at a fixed vertex v 0 P V . For n ě 1, each particle still alive at time n dies and gives birth to an independent random number of offspring particles, according to a probability measure ν on N " t1, 2, 3, . . .u, each of them independently moving on pV, Eq according to an underlying Markov chain on pV, Eq driven by a transition kernel ppx, yq, x, y P V . Sometimes in literature, the measure ν is distributed on Z ě0 " t0, 1, 2, . . .u but we will always assume that there is at least one offspring particle to avoid the extinction of the system. This is not serious restriction, as conditioning on non-extinction, one can assume that ν is distributed on N, see [AN04, Chapter 1]. We will also assume that the underlying Markov chain is irreducible, i.e. every vertex of the graph can be visited by the Markov chain with positive probability and that it is symmetric, i.e. ppx, yq " ppy, xq for all x, y P V . There is a large body of work dedicated to branching Markov chains on the real line and we refer to [START_REF] Shi | Branching random walks[END_REF] and references therein for more details. We also refer to [START_REF] Athreya | Branching processes[END_REF] for a general discussion and historical perspective on branching processes.

A branching Markov chain is called recurrent if with positive probability (and thus with probability 1), some (and thus every) vertex of the graph is visited by infinitely many particles of the BMC. It is called transient otherwise. Recurrence or transience of the BMC is governed by the expectation of the offspring distribution

Erνs " ÿ kě1 kνpkq and by the spectral radius ρ of the Markov chain defined by ρ " lim sup n p n px, yq 1{n , which is independent of x and y, provided the underlying Markov chain is irreducible. Here p n is the n-th convolution power of p defined by p n px, yq " ÿ z1,...,zn´1PV

ppx, z 1 qppz 1 , z 2 q ¨¨¨ppz n´1 , yq.

More precisely, if Erνs ď ρ ´1, then the branching Markov chain is transient, otherwise, it is recurrent, see [START_REF] Benjamini | Markov chains indexed by trees[END_REF][START_REF] Gantert | The critical branching Markov chain is transient. Markov Process[END_REF] and references therein. We will restrict our attention to the following context. We consider a finitely generated group Γ endowed with a finite generating set and a probability measure µ on Γ. For a given probability measure ν on N, the branching random walk BRWpΓ, ν, µq is the branching Markov chain on the Cayley graph of Γ driven by ν and by the µ-random walk, which is the Markov chain whose transition probability is given by ppx, yq :" µpx ´1yq. Since p is assumed to be symmetric, µ is symmetric in the sense that µpxq " µpx ´1q for every x P Γ. In this case, irreducibility of the random walk means that the support of µ generates Γ as a group. We also say that the random walk driven by µ is admissible.

In the transient case, we introduce the trace P of the branching random walk, which is the set of vertices that are ever visited by BRWpΓ, ν, µq. It is a random subset of Γ and it has been a fruitful line of research to study the geometric properties of P. When the group Γ is endowed with a geometric boundary BΓ, one can define the limit set Λ of P as the closure of P in BΓ, i.e. Λ " clpPq X BΓ. In hyperbolic context, the growth rate of P and the Hausdorff dimension of Λ for suited distance on the boundary BΓ has been related to asymptotic quantities involving Γ and µ as we explain below. Let us first mention that Benjamini and Müller [START_REF] Benjamini | On the trace of branching random walks[END_REF] studied qualitative properties of P and listed a certain number of conjectures. They proved in particular that P has exponential growth, while their method does not give quantitative results on the growth rate. Hutchcroft proved in [START_REF] Hutchcroft | Non-intersection of transient branching random walks[END_REF] that on any non-amenable group, two independent branching random walks almost surely intersect at most finitely often, which imply that P has infinitely many ends almost surely. This answers some of the questions in [START_REF] Benjamini | On the trace of branching random walks[END_REF]. Let us also mention that in a very recent work [START_REF] Kaimanovich | Limit distributions of branching random walks[END_REF], Kaimanovich and Woess studied limit behaviour of branching random walks in terms of geometric features of Γ with a very new angle. 1.2. Earlier results on hyperbolic groups. We introduce the Green function defined as G r px, yq " ÿ ně0 p n px ´1yqr n , x, y P Γ.

Its radius of convergence R is independent of x, y provided that the random walk driven by µ is admissible. We have R " ρ ´1, where ρ is the spectral radius introduced above. The groups under consideration in this paper will always be non-amenable, so by a landmark result of Kesten, R ą 1, see [START_REF] Woess | Random Walks on Infinite Graphs and Groups[END_REF]Corollary 12.5].

For every r ď R, we set H r pnq "

ÿ xPSn G r pe, xq
where S n is the sphere of radius n centered at e for the word distance and ω Γ prq " lim sup nÑ8 1 n log H r pnq.

We call ω Γ prq the growth rate of the Green function. It depends both on µ and on the chosen finite generating set of Γ. We also set P n " P X S n and M n " 7P n . We define the growth rate of BRWpΓ, ν, µq as lim sup 1 n log M n . Assume that Γ is a finitely generated free group endowed with its standard generating set and consider a branching random walk on Γ with Erνs " r P r1, ρ ´1s. Let λ ă 1 and for x, y P Γ, set d λ px, yq " λ n , where n is the biggest integer such that the prefixes of length n of x and y coincide. Then, d λ extends to a distance on Γ Y BΓ, where BΓ is the set of ends of Γ. Liggett [START_REF] Thomas | Branching random walks and contact processes on homogeneous trees[END_REF] and Hueter-Lalley [START_REF] Hueter | Anisotropic branching random walks on homogeneoustrees[END_REF] proved that whenever the underlying random walk is a symmetric, possibly anisotropic, nearest neighbor random walk on Γ, then the limit θprq " lim nÑ8 pM n q 1{n is well defined and is almost surely a constant. Moreover, the Hausdorff dimension of the limit set Λ in BΓ is equal to ´log λ θprq. Finally, the function θprq is continuous and strictly increasing on r1, ρ ´1s and has critical exponent 1{2 at ρ ´1, which means that there exists C ą 0 such that θpρ ´1q ´θprq " Furthermore, log θprq ď 1 2 v, where v " logp2q ´1q is the volume growth rate of the free group Γ with q generators.

In [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF], the authors extended these results to all hyperbolic groups and expressed log θ as the growth rate of the Green function, i.e.

θprq " e ωΓprq .

Here, BΓ is the Gromov boundary of Γ endowed with a visual distance d λ satisfying d λ pξ, ζqλ pξ|ζq , where p¨|¨q is the Gromov product, see [SWX20, Section 2.1] for more details. In particular, the Hausdorff dimension of the limit set was proven there to be ω Γ prq for r ă ρ ´1, but the critical case r " ρ ´1 remained open. As a particular case of our work, we will show that this is still true at r " ρ ´1, see Corollary 1.4.

1.3. Main results. Our goal in this paper is to generalize some of the aforementioned results to the class of relatively hyperbolic groups, whose precise definition is recalled in Section 2. Briefly, a finitely generated group Γ is called relatively hyperbolic if it admits a geometrically finite action on a proper geodesic hyperbolic space X. The Bowditch boundary of Γ is then the limit set of the orbit of a fixed base point x 0 in the Gromov boundary of X. It is unique up to Γ-equivariant homeomorphism. We say that Γ is non-elementary if its Bowditch boundary is infinite. Since their introduction by Gromov, these groups have been extensively studied by many authors and from different point of views. Besides the class of Gromov hyperbolic groups, the following groups of geometric and algebraic interests are the main archetypal examples:

(1) Fundamental groups of finite volume hyperbolic manifolds, and of more general finite volume Riemaniann manifolds with negatively pinched sectional curvature. (2) Infinitely ended groups, equivalently by Stalling's theorem, all non-trivial amalgamated free products and HNN extension over finite groups.

In particular, free products are the simplest combinatorial examples of relatively hyperbolic groups, on which branching random walks were studied by Candellero, Gilch and Müller [START_REF] Candellero | Branching random walks on free products of groups[END_REF]. We recover some of their results in this paper.

A finitely generated group Γ endowed with a finite generating set S is equipped with the word distance. Its volume growth rate is the growth rate of the balls for the word distance. We again refer to Section 2 for more details.

Theorem 1.1. Let Γ be a non-elementary relatively hyperbolic group endowed with a finite generating set. Consider a finitely supported admissible and symmetric probability measure µ on Γ and a probability measure ν on N with mean r P r1, Rs. Consider a branching random walk pΓ, ν, µq starting at e. Then, almost surely,

lim sup nÑ8 1 n log M n " ω Γ prq.
Moreover, the function r Þ Ñ ω Γ prq is increasing and continuous and satisfies that ω Γ prq ď v{2, where v is the volume growth rate of the group for the word distance.

We then investigate the limit behaviours of the branching random walk at infinity and we compute the Hausdorff dimension of the limit set of the trace in various compactifications of relatively hyperbolic groups. Introduced by Floyd [START_REF] Floyd | Group completions and limit sets of Kleinian groups[END_REF], the Floyd boundary can be constructed as a compactification for any locally finite graph, equipped with a rescaling of the graph distance called the Floyd distance. Generalizing Floyd's theorem [START_REF] Floyd | Group completions and limit sets of Kleinian groups[END_REF] for geometrically finite Kleinian groups, Gerasimov [START_REF] Gerasimov | Floyd maps for relatively hyperbolic groups[END_REF] proved that for any relatively hyperbolic groups, the Bowditch boundary can be realized as a quotient of the Floyd boundary of the Cayley graph. The Floyd distance depending on a parameter λ P rλ 0 , 1q is then transferred to the Bowditch boundary as the shortcut distance that will be described in Section 2.2.

Theorem 1.2. Under the assumption as Theorem 1.1, denote by Λprq the limit set of the branching random walk in the Bowditch boundary, endowed with the shortcut distance of parameter λ ă 1. Then, almost surely,

Hdim `Λprq ˘" ω Γ prq ´log λ .
Remark. The lower bound on the Hausdorff dimension actually holds for the limit set of the branching random walk in the Floyd boundary endowed with the Floyd distance (Proposition 5.1). We can only prove the upper bound for a subset of the Floyd boundary, see Proposition 6.1. In many interesting cases, the Floyd boundary is homeomorphic to the Bowditch boundary (eg. if parabolic subgroups are amenable), Moreover, under the technical condition that the volume growth rate v S pP q for every parabolic subgroup P is smaller than ω Γ prq, the above conclusion is still true for the whole Floyd boundary, see Corollary 6.2. In general, the identification of the Hausdorff dimension remains open for the full limit set in the Floyd boundary.

As above-mentioned, groups with infinitely many ends form a special class of relatively hyperbolic groups. Such groups can be compactified with the ends boundary, introduced by Freudenthal [START_REF] Freudenthal | Über die enden diskreter raüme und gruppen[END_REF]. A natural family of visual distances depending on a parameter λ on the ends boundary will be described in Section 5.2. Along the way, we prove the following Theorem, which both extends [CGM12, Theorem 3.5] to all groups with infinitely many ends and fix a gap in their proof, as we will explain in Section 5.2.

Theorem 1.3. Under the assumption as Theorem 1.1, if Γ is a group with infinitely many ends and Λprq is the limit set of the branching random walk in the ends boundary, endowed with the visual distance of parameter λ P p0, 1q, then almost surely, Hdim `Λprq ˘" ω Γ prq ´log λ .

Finally, for hyperbolic groups, the Bowditch boundary and the Gromov boundary coincide and the shortcut distance is bi-Lipschitz to the visual distance. We thus deduce from Theorem 1.2 the following, which resolves [SWX20, Conjecture 1.4].

Corollary 1.4. Under the assumption as Theorem 1.1, if Γ is a non-elementary hyperbolic group and if ΛpRq is the limit set of the branching random walk with mean offspring R in the Gromov boundary of Γ endowed with a visual distance of parameter λ ă 1, then almost surely, Hdim `ΛpRq ˘" ω Γ pRq ´log λ .

In the course of this investigation, we obtain much more precise information on the trace P of the branching random walk. We prove that P almost surely tracks the logarithm neighborhood of transition points along geodesics ending at conical limit points in the limit set. Recall that a point on a geodesic is called a transition point if it is not deep in a parabolic coset. We refer to Section 2 for a precise definition.

Theorem 1.5. Under the assumption as Theorem 1.1, there exists 0 ă κ ă 8 such that almost surely, for every conical point ξ P Λprq, we have

lim sup |x|Ñ8 dpx, Pq log |x| ď κ,
where x is taken over the set of transition points on re, ξs.

This should be compared with analogous results for random walks. Under finite first moment condition, a random walk on a hyperbolic group almost surely sub-linearly tracks geodesics from the basepoint e to the limit point of the random walk in the Gromov boundary. We refer to Kaimanovich [Kai00, Theorem 7.3] for a proof, see also [START_REF] Ledrappier | Some asymptotic properties of random walks in free groups[END_REF] for the case of trees. Sub-linear tracking of geodesics is one of the most important result in the study of random walks on groups with hyperbolic properties and is related to a celebrated multiplicative ergodic theorem of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF]. It was first coined by Kaimanovich in the context of symmetric spaces [START_REF] Kaimanovich | Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups[END_REF] and was then extended to groups with non-positive curvature by Karlsson and Margulis [START_REF] Karlsson | A multiplicative ergodic theorem and nonpositively curved spaces[END_REF] and to more general classes of group by Tiozzo [START_REF] Tiozzo | Sublinear deviation between geodesics and samples paths[END_REF], including mapping class groups. If the random walk has finite support, then the tracking is in fact logarithmic and this is true for all weakly hyperbolic groups, i.e. groups admitting a non-elementary action by isometries on a Gromov hyperbolic space, see [START_REF] Maher | Random walks on weakly hyperbolic groups[END_REF]Theorem 1.3]. If the group is relatively hyperbolic, then the random walk actually sub-linearly tracks transition points on the word geodesic in the Cayley graphs, see [DY20, Proposition 3.2]. Theorem 1.5 can thus be thought as a generalization of these results to branching random walks on relatively hyperbolic groups.

Let us finally say that we will not investigate the problem of the critical exponent of ω Γ prq in this paper. In [START_REF] Candellero | Branching random walks on free products of groups[END_REF], the authors show that for free products this critical exponent is not always 1{2, depending on µ and more precisely depending on whether the first derivative of the Green function is finite or infinite at its radius of convergence, see [CGM12, Theorem 3.10]. It might be possible to prove that it is in fact 1{2 whenever the underlying random walk is spectrally non-degenerate, combining techniques of [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF], [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups II : the non spectrally degenerate case[END_REF] and of the present paper. We refer to Definition 3.11 for the definition of spectral degeneracy of a random walk. 1.4. Parabolic gap and purely exponential growth of Green functions. Among the results of [START_REF] Candellero | Branching random walks on free products of groups[END_REF], the authors claimed that the Hausdorff dimension of the limit set intersected with the set of ends of each free factor is strictly less than that of the whole limit set of the branching random walk (see their Corollary 3.7). However, their proof is incorrect on assuming that the quantity H r pnq as defined above is sub-multiplicative, see the last remark in Section 3.5 for more details. In our study, the sub-multiplicativity of H r pnq turns out to be a subtle property and we propose a sufficient criterion called a parabolic gap condition, which is inspired by the work of [START_REF] Dal'bo | Séries de Poincaré des groupes géométriquement finis[END_REF] and that we now introduce. Note that assuming that the parabolic gap condition holds, we recover their result [CGM12, Corollary 3.7], see the last remark in Section 5.

Let Γ be a non-elementary relatively hyperbolic group. Let P be a parabolic subgroup. We set

H P,r pnq " ÿ xPSnXP G r pe, xq
and ω P prq " lim sup nÑ8 1 n log H P,r pnq.

Thus, ω Γ prq is the growth rate of the sum of the Green functions along spheres, while ω P prq is the same growth rate, but restricted to the parabolic subgroup P . We will see below that ω Γ and ω P can be expressed as the critical exponent of a twisted Poincaré series. It follows from the definition that ω P ď ω Γ .

Definition 1.6. If ω P prq ă ω Γ prq, we say that Γ has a parabolic gap along P for the Green function at r. If for every P , for every r P p1, Rs, ω P prq ă ω Γ prq, then we say that Γ has a parabolic gap for the Green function.

Note that this notion only depends on the underlying random walk driven by µ, not on the offspring distribution of the branching random walk.

Theorem 1.7. Let Γ be a non-elementary relatively hyperbolic group. Consider a finitely supported admissible and symmetric probability measure µ on Γ. If Γ has a parabolic gap for the Green function, then the sum of Green functions along spheres is roughly multiplicative and has purely exponential growth, in the sense that for all 1 ă r ď R, there exist C " Cprq ě 1 and C 1 " C 1 prq ě 1 such that for all n, 1 C H r pn `mq ď H r pnqH r pmq ď CH r pn `mq

and 1 C 1 e nωΓprq ď H r pnq ď C 1 e nωΓprq .
Remark. Actually, C and C 1 can be chosen independently of r in the two upper bounds, which do not require a parabolic gap to hold by Lemma 3.2.

We will prove two criteria for having a parabolic gap, see Corollary 3.9 and Proposition 3.10. In particular, we will prove that whenever parabolic subgroups are amenable, ω P prq ă ω Γ prq for all r ă R. Moreover, if parabolic subgroups have sub-exponential growth, then we also have ω P pRq ă ω Γ pRq.

Let us discuss the notion of parabolic gap and compare it to similar notions in different settings. Consider a finitely generated group Γ acting via isometries on a metric space pX, dq. Then, one can endow Γ with a left-invariant distance by declaring dpg, hq " dpg ¨x0 , h ¨x0 q, where x 0 is a fixed point in X. We define the volume growth rate for any subgroup P ă Γ as follows:

v X pP q " lim sup nÑ8 1 n log `7Bpe, nq X P ˘" lim sup nÑ8 1 n log `7 tg P P : dpx 0 , g ¨x0 q ď nu ˘.

Choosing X to be the Cayley graph associated with a finite generating set S, endowed with the graph distance, we recover the word distance on Γ. Then the volume growth rate of a subgroup P , also denoted by v S pP q, is the standard terminology.

If Γ is relatively hyperbolic, then it acts by isometries on a proper geodesic hyperbolic space pX, dq. We say in this context that Γ has a parabolic gap (also referred as critical gap in literature) if for every parabolic subgroup P , v X pP q ă v X pΓq. This definition makes sense in larger contexts than relatively hyperbolic groups and this property was studied a lot in literature, see for instance [START_REF] Dal'bo | Séries de Poincaré des groupes géométriquement finis[END_REF], [START_REF] Dal'bo | On the growth of quotients of Kleinian groups[END_REF], [START_REF] Pit | Finitude des mesures de Gibbs sur les variétés non compactes à courbure négative pincée[END_REF], [START_REF] Peigné | Orbital counting for some convergent groups[END_REF], [START_REF] Roblin | Ergodicité et équidistribution en courbure négative[END_REF], [START_REF] Schapira | Regularity of entropy, geodesic currents and entropy at infinity[END_REF], [START_REF] Vidotto | Ergodic properties of some negatively curved manifolds with infinite measure[END_REF] and references therein. For typical cases, we have v X pP q ă v X pΓq. On the other hand, it was shown in [START_REF] Peigné | On some exotic Schottky groups[END_REF] that there exists a relatively hyperbolic group acting geometrically finitely on a Cartan-Hadamard manifold with pinched negative curvature which does not have the critical gap property, i.e. v X pΓq " v X pP q for some P .

On the contrary, when endowing Γ with a word distance given by a finite generating set S, this cannot happen, since in this context, it was proved in [START_REF] Dahmani | Growth of quasiconvex subgroups[END_REF] that one always has v S pP q ă v S pΓq.

Before going further, recall that the critical exponents v X pΓq and v X pP q coincide with the exponential radius of convergence of a suited Poincaré series. Namely, define

Θ s pΓq " ÿ gPΓ e ´sdpx0,g¨x0q " ÿ ně0 ÿ nďdpx0,g¨x0qăn`1 e ´sn .
Then, for s ă v X pΓq, Θ s pΓq diverges and for s ą v X pΓq, it converges. Similarly, replacing Γ by any subgroup P in the above formula defines the corresponding Θ s pP q and v X pP q. Now, consider a probability measure µ on a relatively hyperbolic group Γ and for r ą 0, set

Iprq " ÿ gPΓ G r pe, gqG r pg, eq.
The following result is well-known, see for instance [GL13, Proposition 1.9]. For every r, we have

Iprq " d dr `rG r pe, eq ˘.

Thus, for r ă R, this quantity converges and for r ą R, it diverges. Consider the r-symmetrized Green distance d G,r defined as

d G,r pg, hq " ´log G r pg, hq G r pe, eq ´log G r ph, gq G r pe, eq
which is a generalization of the Green distance introduced by Blachère and Brofferio [START_REF] Blachère | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF]. Then, the quantity Iprq is exactly the Poincaré series associated with the distance d G,r . The only difference with the previous setting is that the parameter r is part of the definition of the distance. The quantity ´log R is analogous to the critical exponent v X pΓq. It is more complicated to define a notion of parabolic gap, because we cannot interpret ´log R as the radius of convergence of the Poincaré series, which is not a power series in r. However, the analogous notion which was coined in [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF] is called spectral degeneracy. We will properly introduce this notion below and we refer to [Dus22a, Section 3.3] and [DPT22, Section 1.3] for more explanations on this analogy. Anyway, by results of Cartwright [START_REF] Cartwright | Some examples of random walks on free products of discrete groups[END_REF], [START_REF] Cartwright | On the asymptotic behaviour of convolution powers of probabilities on discrete groups[END_REF] and of Candellero and Gilch [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF], it is possible to construct both a spectrally degenerate random walk and a spectrally non-degenerate one on a relatively hyperbolic group, although every known example is in the class of free products.

Back to our critical gap condition, we will see that the critical exponent ω Γ prq is the radius of convergence of a twisted Poincaré series s Þ Ñ Θ r,s pΓq defined by (4), involving both the Green function G r pe, xq and the word distance. We saw above that there are sufficient conditions to have a parabolic gap, but it is difficult to tell if one can construct an example where ω P prq " ω Γ prq. Answering this question would require new material. However, the last example of Section 3.5 below suggests that it might happen (see the famous example in the geometric context in [START_REF] Peigné | On some exotic Schottky groups[END_REF]). We prove there that if there exists a finitely generated group P endowed with a finitely supported admissible random walk with convergent twisted Poincaré series Θ r,s at some r ď R, then for a suited random walk on the free product Γ " P ˚Zd , we have ω Γ pr 1 q " ω P pr 1 q for some r 1 . See the comments at the end of Section 3.5 for further details. 1.5. Organization of the paper. We now outline the contents of the paper and explain the global strategy of our proofs. In Section 2, we recall the definition of relatively hyperbolic groups, of the Floyd distance and of the Floyd boundary. We relate the Floyd distance with geometric properties of such groups and list a number of preliminary results that will be used throughout the paper. Finally, we recall the relative Ancona inequalities that will be a crucial tool.

In Section 3, we study the growth rate of the Green function ω Γ prq. We prove in particular that it is increasing and continuous and bounded by v{2, see Corollary 3.4, Corollary 3.5. We also prove Theorem 1.7, see Lemma 3.7, by using classical methods for Poincaré series, inspired by [START_REF] Yang | Statistically convex-cocompact actions of groups with contracting elements[END_REF]. Finally, we discuss the notion of parabolic gap through examples in the last part of the section.

Section 4 is dedicated to the growth rate of the branching random walk and we prove that it is almost surely equal to the growth rate ω Γ prq of the Green function, see Proposition 4.1. In particular, this ends the proof of Theorem 1.1. The upper-bound lim sup 1 n log M n ď ω Γ prq is very general and does not involve relative hyperbolicity. The lower-bound is more difficult to obtain and we have to restrict our attention to points x P Γ such that a geodesic from e to x spends a uniformly bounded amount of time L in every parabolic coset. Such geodesics are Morse in the sense of [START_REF] Cordes | Morse boundaries of proper geodesic metric spaces[END_REF], see also [START_REF] Cong | Divergence spectra and Morse boundaries of relatively hyperbolic groups[END_REF] for a study a Morse geodesics in relatively hyperbolic groups. Morse geodesics form a proper subset of the whole Bowditch boundary, which is typically too small to serve as a model for the Poisson boundary and thus is too small to give much information about asymptotic properties of finitely supported random walks, see in particular the comments in the introduction of [START_REF] Qing | Sublinearly Morse boundary II: Proper geodesic spaces[END_REF], where a bigger boundary called the sub-linear Morse boundary is introduced. We can nevertheless prove that the growth rate of the Green function restricted to Morse directions converges to the growth rate of the whole Green function, as L tends to infinity, see Lemma 4.7. This is enough to adapt the arguments of [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF] for hyperbolic groups, which allows us to conclude the proof.

Finally, in the two last sections, we study the Hausdorff dimension of the limit set and we prove Theorem 1.2, Theorem 1.3 and Corollary 1.4. We start with the lower bound in Section 5. Following [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF], we use the Frostman lemma and show that for every h ă ω Γ prq{ ´log λ, there exists with positive probability a finite measure χ on Λ such that the integral ż ż δ e px, yq ´hdχpxqdχpyq is finite, where δ e is the shortcut distance on the Bowditch boundary. However, the proof in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF] has a gap and we need to find a new strategy to construct the measure χ, which will be defined as a random Patterson-Sullivan type measure on the limit set. The construction is performed by using convergence results for random finite measures, whose proofs are postponed to the Appendix. Our strategy also applies to groups with infinitely many ends and we prove Theorem 1.3. The upper-bound for the Hausdorff dimension is proved in Section 6. We first prove Theorem 1.5, see Lemma 6.11. This allows us to cover the limit set with suited shadows and to conclude as in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF]. Note that the covering by shadows in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF] only works for r ă ρ ´1 and Theorem 1.5 is one of the needed step to cover the case r " ρ ´1.

2. Relatively hyperbolic groups and random walks 2.1. Relative hyperbolic groups. Consider a finitely generated group Γ acting properly via isometries on a proper Gromov hyperbolic space X. Define the limit set Λ Γ as the adherence of Γ in the Gromov boundary BX of X, that is, fixing a base point x 0 in X, Λ Γ is the set of all possible limits of sequences g n ¨x0 in BX, g n P Γ. A point ξ P Λ Γ is called conical if there is a sequence g n of Γ and distinct points ξ 1 , ξ 2 in Λ Γ such that g n ξ converges to ξ 1 and g n ζ converges to ξ 2 for all ζ ‰ ξ in Λ Γ . A point ξ P Λ Γ is called parabolic if its stabilizer in Γ is infinite, fixes exactly ξ in Λ Γ and contains no loxodromic element. A parabolic limit point ξ in Λ Γ is called bounded parabolic if its stabilizer in Γ is infinite and acts co-compactly on Λ Γ ztξu. Say that the action of Γ on X is geometrically finite if the limit set only consists of conical limit points and bounded parabolic limit points. There are in literature several equivalent definitions of relatively hyperbolic groups. Following Bowditch [START_REF] Bowditch | Relatively hyperbolic group[END_REF], we say that a finitely generated group Γ is relatively hyperbolic with respect to a collection of subgroups P 0 if it acts via a geometrically finite action on a proper geodesic Gromov hyperbolic space X, such that the stabilizers of parabolic limit points for this action are exactly the conjugates of the groups in P 0 , which are called maximal parabolic subgroups or simply parabolic subgroups if there is no ambiguity. By [Bow12, Proposition 6.15], there is a finite number of conjugacy classes of parabolic subgroups, so in other words, P 0 needs to be finite.

The limit set Λ Γ is called the Bowditch boundary of Γ. It is unique up to equivariant homeomorphism and we will denote it by B B Γ in the sequel. A relatively hyperbolic group is called non-elementary if its Bowditch boundary is infinite.

Relatively hyperbolic groups are modelled on finite co-volume Kleinian groups. In this case, the group acts via a geometrically finite action on the hyperbolic space H n and there is a collection of separated horoballs such that the action on the complement of these horoballs is co-compact. The parabolic subgroups are exactly the stabilizers of the horoballs. Moreover, the Bowditch boundary is the ideal boundary S n´1 of H n and parabolic limit points are the centers of the horoballs.

In [START_REF] Bowditch | Relatively hyperbolic group[END_REF], Bowditch gives another definition of relative hyperbolicity, mimicking the above geometric description of Kleinian groups. Given a hyperbolic space X, one can define a coarse notion of horoballs. A finitely generated group Γ acting properly via isometries on a proper geodesic hyperbolic space X is relatively hyperbolic if only if there exists a Γ-invariant family of sufficiently separated horoballs centered at points in the Gromov boundary of X such that Γ acts co-compactly on the complement of these horoballs. The parabolic subgroups are then exactly the stabilizers of these horoballs. We also refer to [START_REF] Osin | Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems[END_REF], [START_REF] Farb | Relatively hyperbolic groups[END_REF], [START_REF] Drut | Tree graded spaces and asymptotic cones of groups[END_REF] and references therein for alternative definitions of relatively hyperbolic groups.

We set P " tgP : g P Γ, P P P 0 u and we call P the collection of all parabolic cosets. Let us also fix some notations. Given a finite generating S on Γ, let CaypΓ, Sq be the Cayley graph with respect to S. The graph combinatorial distance is called the word distance. We denote the n-sphere centered at the identity e by S n " tx P Γ : dpe, xq " nu. We will frequently write |x| :" dpe, xq. Finally, we will denote by v the volume growth rate of Γ with respect to S, which is defined by v " lim sup 1 n log 7Bpe, nq.

The word distance on relatively hyperbolic groups has purely exponential growth in the following sense.

Lemma 2.1. [Yan22, Theorem 1.9] There exists c ą 0 such that for every n ě 0, we have 1 c e vn ď 7S n ď ce vn .

2.2. Floyd boundary. We first recall the definition of the Floyd distance and the Floyd boundary and their relation with the Bowditch boundary. This boundary was introduced by Floyd in [START_REF] Floyd | Group completions and limit sets of Kleinian groups[END_REF] and we also refer to [START_REF] Karlsson | Free subgroups of groups with nontrivial Floyd boundary[END_REF] for more details.

Let Γ be a finitely generated group and let CaypΓ, Sq denote its Cayley graph associated with a finite generating set S. Let f : N Ñ R ě0 be a function satisfying that ÿ ně0 f pnq ă 8 and that there exists λ P p0, 1q such that 1 ě f pn `1q{f pnq ě λ for all n P N. The function f is then called the rescaling function or the Floyd function. In the following, we will always choose an exponential Floyd function, that is f pnq " λ n for some λ P p0, 1q. Fix a basepoint o P Γ and rescale CaypΓ, Sq by declaring the length of an edge σ to be f pdpo, σqq. The induced length distance on CaypΓ, Sq is called the Floyd distance with respect to the basepoint o and Floyd function f and is denoted by δ f,o p., .q. Whenever f is of the form f pnq " λ n , we will write δ λ,o " δ f,o and if λ is fixed, δ o " δ λ,o .

The Floyd compactification Γ F is the Cauchy completion of CaypΓ, Sq endowed with the Floyd distance. The Floyd boundary is then defined as B F Γ " Γ F zCaypΓ, Sq. Different choices of base-points yield bi-Lipschitz Floyd distances because (1) @x, y P Γ, δ f,o px, yq ď λ ´dpo,o 1 q δ f,o 1 px, yq so the corresponding Floyd compactifications are bi-Lipschitz. Note that the topology may depend on the choice of the rescaling function and the generating set.

The following fact proved in [START_REF] Karlsson | Free subgroups of groups with nontrivial Floyd boundary[END_REF] plays a crucial role in understanding the Floyd geometry.

Lemma 2.2. [Kar03, Lemma 1] For any δ ą 0, there exists a function κ " κpδq with the following property. If x, y, z P Γ are three points so that δ x py, zq ě δ then dpx, ry, zsq ď κ.

If 7B F Γ ě 3, Karlsson proved in [START_REF] Karlsson | Free subgroups of groups with nontrivial Floyd boundary[END_REF] that Γ acts by homeomorphism on B F Γ as a convergence group action. By the general theory of convergence groups, the elements in Γ are subdivided into the classes of elliptic, parabolic and loxodromic elements. The latter two being infinite order elements have exactly one and two fixed points in B F Γ accordingly. Moreover, in this case the Floyd boundary contains uncountable many points and so the cardinality of B F Γ is either 0, 1, 2 or uncountably infinite. By [Kar03, Proposition 7], 7B F Γ " 2 exactly when the group Γ is virtually infinite cyclic. Following Karlsson, we say that the Floyd boundary is trivial if it is finite. The non-triviality of Floyd boundary does not depend on the choice of generating sets [Yan14, Lemma 7.1]. We will only have to deal with groups with non-trivial Floyd boundary.

We now assume that Γ is non-elementary relatively hyperbolic. We denote by B B Γ its Bowditch boundary. The following is due to Gerasimov.

Theorem 2.3. [Ger12, Map Theorem] There exists λ 0 P p0, 1q such that for every λ P rλ 0 , 1q, the identity on Γ extends to a continuous and equivariant surjection φ from the Floyd compactification to the Bowditch compactification of Γ.

Actually, Gerasimov only stated the existence of the map φ for one Floyd function f 0 " λ n 0 , but then Gerasimov and Potyagailo proved that the same result holds for any Floyd function f ě f 0 , see [GP13, Corollary 2.8]. They also proved that the preimage of a conical limit point is reduced to a single point and described the preimage of a parabolic limit point in terms of the action of Γ on B F Γ, see precisely [GP13, Theorem A]. From now on, the parameter λ will always be assumed to be contained in rλ 0 , 1q.

The Floyd distance can be transferred to a distance on the Bowditch boundary using the map φ. The resulting distance is called the shortcut distance and we denote it by δ e,λ or δ e if λ is fixed. It is the largest distance on the Bowditch boundary satisfying that for every ξ, ζ P B F Γ, (2) δe,λ pφpξq, φpζqq ď δ e,λ pξ, ζq.

We refer to [GP15, Section 4] for more details on its construction. If Γ is hyperbolic, then the Gromov, Bowditch and Floyd boundary all coincide. Thus, the shortcut distance and the Floyd distance are the same. Furthermore, by [PY19, Proposition 6.1], the visual distance and the Floyd distance are bi-Lipschitz.

The next couple of lemmas will be used later on.

Lemma 2.4. Suppose that Γ admits a non-trivial Floyd boundary. Then there exist a finite set F of elements and constants c ě 1, δ ą 0 with the following property: for any two elements g, h P Γ, there exists f P F such that gf h labels a c-quasi-geodesic and maxtdpg, re, gf hsq, dpgf, re, gf hsqu ď and δ g pe, gf hq ě δ.

Proof. Note that if the Floyd boundary of Γ is nontrivial, then Γ is not virtually cyclic, and every hyperbolic element is strongly contracting [START_REF] Yang | Growth tightness for groups with contracting elements[END_REF]. Thus, the extension lemma in [START_REF] Yang | Statistically convex-cocompact actions of groups with contracting elements[END_REF] applies in this setting. Namely, let F any set of three independent hyperbolic elements. Set F n " tf n : f P F u for given n ě 1. Then for any sufficiently large n 0 , and for any g, h P Γ there exists f P F n0 such that gf h labels a c-quasi-geodesic for a uniform constant c.

It remains to prove that δ g pe, gf 2n0 hq has a uniformly lower bound δ when n 0 is large. Indeed, since every f P F is a hyperbolic element with two distinct fixed points, there exists δ " δpF q ą 0 such that δ e pf ´n0 , f n0 q ě δ for any f P F and n ě 1. Since gf 2n0 h labels a c´quasi-geodesic, we see that dpe, f n0 re, hsq and dpe, f ´n0 re, g ´1sq increase to 8 as n Ñ 8. By Lemma 2.2, we have for n ě n 0 δ e pf n , f n hq ă δ{4 and δ e pf ´n0 , f ´n0 g ´1q ă δ{4. Thus, δ e pf ´n0 g ´1, f n0 hq ą δ{2, and then δ gf n 0 pe, gf 2n0 hq ě δ{2. Consequently, there exists δ 1 " δ 1 pδ, n 0 q such that δ g pe, gf 2n0 hq ě δ 1 .

Floyd and Bowditch boundaries are visual: any two distinct points can be connected by a geodesic. This enables us to define the notion of shadows on both of them, that will be used in our arguments. Given K ą 0 and x P Γ, let Π K pxq be the set of boundary points ξ for which some geodesic between e and ξ intersects Bpx, Kq. We call Π K pxq the big shadow at x of width K. Balls and shadows are related by [PY19, Lemmas 4.13, 4.14, 4.15]. We prove here a slight generalization of these results.

Lemma 2.5. There exists C such that the diameter of the big shadow Π K pgq is bounded by CKλ |x|´K for either the Floyd distance on the Floyd boundary or the shortcut distance on the Bowditch boundary.

Proof. By (2) we only need to give the proof for the Floyd boundary. Let ξ, ζ in Π K pgq and let re, ξs and re, ζs be two geodesics intersecting Bpx, Kq at y and z respectively. Then, following back re, ξs from ξ to y, then following a path from y to z that stays inside Bpx, Kq and finally following the geodesic re, ζs from z to ζ yields a path from ξ to ζ of Floyd length at most

ÿ kě|x|´K λ k `2Kλ |x|´K `ÿ kě|x|´K λ k ď CKλ |x|´K .
This concludes the proof.

Transition points and Floyd geometry.

In contrast with hyperbolic groups, the Cayley graph of relatively hyperbolic groups is not Gromov hyperbolic anymore, so the thin triangle property and the Morse property do not hold in general. However, a certain kind of "relative" Morse property persists and is manifested in a notion of transition points introduced in [START_REF] Hruska | Relative hyperbolicity and relative quasiconvexity for countable groups[END_REF] (see also [START_REF] Drut | Tree graded spaces and asymptotic cones of groups[END_REF][START_REF] Gerasimov | Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity[END_REF]).

Recall that P " tgP : g P Γ, P P P 0 u is the collection of all parabolic cosets.

Definition 2.6. Let P P P be a parabolic coset and η, L ą 0 be fixed constants. A point p on a geodesic α is called pη, Lq-deep in P if Bpp, 2Lq X α Ď N η pP q. It is called pη, Lq-transitional if it is not pη, Lq-deep in any parabolic coset P P P.

According to the definition, it is clear that an pη, L 1 q-transition point is an pη, L 2 q-transition point for L 1 ď L 2 . The parameters η, L ą 0 are usually chosen via the bounded intersection property of the collection P (see [DS05, Lemma 4.7]): for any η ą 0 there exists L " Lpηq ą 0 such that for any two P ‰ P 1 P P we have diam `Nη pP q X N η pP 1 q ˘ď L.

Lemma 2.7. [GP15, Proposition 5.6], [DS05, Theorem 4.1]. For large enough η, there exists L " Lpηq such that any point of a geodesic α can be pη, Lq-deep in at most one P P P. Moreover, if it is pη, Lq-deep in P , the entry and exit points of α at N η pP q are pη, Lq-transitional.

The following result which refines Lemma 2.2 explains the application of the Floyd geometry in relatively hyperbolic groups.

Lemma 2.8. [GP15, Corollary 5.10][PY19, Lemma 2.9].. For every large enough η, there exist L " Lpηq and δ " δpηq ą 0 such that if x is an pη, Lq-transition point on a geodesic α with endpoints α ´and α `, then δ x pα ´, α `q ě δ. Conversely, for any δ, η ą 0, there exists L " Lpδ, ηq ą 0 such that if x is a point on a geodesic α with δ x pα ´, α `q ě δ, then x is an pη, Lq-transition point.

The following is called the relative thin triangle property for transition points. It is folklore and was proved at several places, using different terminology, see for instance Lemma 2.9. For large enough η, there exist Lpηq such that for every L ě Lpηq, there exists C " Cpη, Lq such that for every triple of points px, y, zq that are either conical limit points or elements of Γ, any pη, Lq-transition point on one of the side of the geodesic triangle with vertices x, y, z is within C of an pη, Lq-transition point on one of the two other sides.

In what follows, we fix η and Lpηq so that any pair pη, Lq satisfies the above lemmas for L ě Lpηq.

2.4.

Random walks on relatively hyperbolic groups. Let Γ be a relatively hyperbolic group and let µ be a finitely supported symmetric admissible probability measure on Γ. Let ρ be the spectral radius of the random walk and R its inverse. We collect here some results that will be used all along the paper. Recall that η and Lpηq are fixed such that for every L ě Lpηq, any pη, Lq-transition point satisfies the results in Section 2.3.

A very useful set of inequalities relating the Green functions along geodesics were first proved by Ancona [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF] in hyperbolic groups and used to identify the Martin boundary with the Gromov boundary. These inequalities were recently extended up to the spectral radius by Gouëzel-Lalley in co-compact Fuchisan groups [START_REF] Gouëzel | Random walks on co-compact Fuchsian groups[END_REF] and by Gouëzel in general hyperbolic groups [START_REF] Gouëzel | Local limit theorem for symmetric random walks in Gromov-hyperbolic groups[END_REF]. They state that there exists C, depending only on the hyperbolicity parameters of the group, such that for every x, y, z P Γ such that y is on a geodesic from x to z, for every r ď R, 1 C G r px, yqG r py, zq ď G r px, zq ď CG r px, yqG r py, zq.

The only non-trivial part is the upper-bound. In relatively hyperbolic groups, a relative version of Ancona inequalities in terms of Floyd distance was obtained in [START_REF] Gekhtman | Martin boundary covers Floyd boundary[END_REF] to establish a surjective map from the Martin boundary to the Floyd boundary.

Ancona inequalities are one of the main ingredient in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF] for studying branching random walks on hyperbolic groups. In the present paper, we will make very crucial use of the relative Ancona inequalities extended up to the spectral radius in [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF].

Proposition 2.10 (Relative Ancona inequalities). [DG21, Theorem 3.6] For every L ě Lpηq and K ě 0, there exists C " Cpη, Kq such that the following holds. Let x, y, z P Γ and assume that y is within K of an pη, Lq-transition point on rx, zs. Then for every r ď R, we have 1 C G r px, yqG r py, zq ď G r px, zq ď CG r px, yqG r py, zq.

Note that there also exists a strong form of relative Ancona inequalities in [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF], although we will not need them in this paper. The following result is one of the step into proving relative Ancona inequalities in [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF]. It will be useful in this paper. If A Ă Γ and if x, y P Γ, for every r ď R we denote by G r px, y; Aq the Green function from x to y restricted to trajectories staying in A, except maybe at the end points, i.e. G r px, y; Aq " ÿ ně0 ÿ z1,...,zn´1PA

µpx ´1z 1 qµpz ´1 1 z 2 q ¨¨¨µpz ´1 n´1 yqr n .
Lemma 2.11. [DG21, Proposition 3.5] For every L ě Lpηq, there exist δ ą 1 and K 0 ą 0 such that the following holds. For every x, y, z P Γ such that y is an pη, Lq-transition point on rx, zs and for every K ě K 0 , we have G R px, z; Bpy, Kq c q ď e ´eδK .

Finally, we will also use the following result, proved in [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF].

Lemma 2.12. Let P P P be a parabolic coset. For every M ě 0, there exists η 0 such that for η ě η 0 , we have G R pe, x; N η pP q c q ď e ´M dpx,π Nη pP q peqq , where N η pP q is the η-neighborhood of P and π NηpP q peq is the projection of e on N η pP q.

Proof. In [DG21, Lemma 4.6] this result is stated for the first return kernel to N η pP q, i.e. the quantity G R px 0 , x; N η pP q c q where x 0 P N η pP q, but the proof can be applied here. Indeed it is shown without assuming that x 0 P N η pP q that the whole contribution of trajectories from x 0 to x staying outside N η pP q is bounded by e ´lhpηq G R px 0 , xq, where 1 c l ď dpπ NηpP q x 0 q, xq ď cl for some c ą 0 and hpηq is a function of η going to infinity as η goes to infinity, see the before last equation of the proof of [DG21, Lemma 4.6]. In particular, applying this to x 0 " e, we get that for large enough η, G R pe, x; N η pP q c q ď e ´M dpx,π Nη pP q peqq . This concludes the proof.

3. The growth rate of the Green function 3.1. Preliminary results. Recall the following definitions from the introduction. Let Γ be a finitely generated group endowed with a finite generating set. Let µ be a symmetric probability measure whose finite support generates Γ. Denote by ρ the spectral radius of µ and by R its inverse. Set p n px, yq " µ ‹n px ´1yq for n ě 1 and p 0 px, yq " δ x pyq. Then, R is the radius of convergence of the Green function G r px, yq :"

8 ÿ n"0 r n p n px, yq.
For 1 ď r ď R, we consider the sum of the r-Green function over the n-sphere We first record a few simple facts about H r pnq.

Lemma 3.1. The following statements are true:

(1) There exists C ą 1 such that for any 1 ď r ď R and n ě 1

C ´1H r pn `1q ď H r pnq ď CH r pn `1q.
(2) There exists a constant C ą 0 such that 1 C ď H 1 pnq ď C for any n ě 1. In particular, ω Γ p1q " 0.

(3) The function r Þ Ñ ω Γ prq is strictly increasing on r1, Rs and continuous on r1, Rq. Consequently, ω Γ prq ą 0 for r ą 1.

Proof. Since the random walk is irreducible and Γ-invariant, there exist l ě 1 and a uniform number p 0 ą 0 such that p l px, yq ą p 0 for any x, y P Γ with dpx, yq " 1. Thus, if x ‰ 1 ‰ y, we have p n pe, xq ě p 0 ¨pn´l pe, yq for n ě l. This implies G r pe, xq ě p 0 G r pe, yq. Thus, we have H r pn `1q ě p 0 H r pnq. For the other inequality, note that every y P S n`1 is adjacent to at most N " 7S 1 elements x P S n . We then obtain H r pn `1q ď N p0 H r pnq. This proves the first statement. We introduce the partial shadow r Π K pxq of width K at x as the set of limit points such that some geodesic re, ξs intersects the ball Bpx, Kq at a transition point. By the Shadow Lemma [DG20, Proposition 4.4] for harmonic measures, there exists K ą 0 such that G 1 pe, xqνp r Π K pxqq for any x P Γ, which means that the ratio of these two quantities is bounded away from 0 and infinity. Note that for each n ě 1, any conical limit point can be covered in a uniform number of shadows at x P S n . We thus obtain that the sum ř xPSn νp r Π K pxqq coarsely gives the measure of the whole set of conical limit points, so is uniformly bounded from above and below. The second statement follows.

Finally let us prove the third statement. Let 1 ď s ă r. Since the random walk is finitely supported, there exists c 1 ą 0 such that for every x, p m pe, xq " 0 for every m ď c 1 |x|. Thus, we have

G s pe, xq " ÿ měc1|x| s m p m pe, xq ď ´s r ¯c1|x| ÿ měc1|x| r m p m pe, xq " ´s r ¯c1|x| G r pe, xq
and so

(3)

G s pe, xq ď ´s r ¯c1|x| G r pe, xq.
Thus, H s pnq ď `s r ˘c1n H r pnq and ω Γ prq ´ωΓ psq ě c 1 plog r ´log sq. Therefore ω Γ prq is strictly increasing on r1, Rs.

For δ ą 0 we choose c 2 so that v ď c 2 plog R ´logpR ´δqq. Note that since the underlying random walk is symmetric, for every x and every m, we have p m pe, xqp m pe, xq ď p 2m pe, eq and by [Woe00, Lemma 1.9], p 2m pe, eq ď R ´2m . Thus, p m pe, xq ď R ´m for every x P Γ and n ě 0. Consequently, by Lemma 2.1, we have for 1 ď r ď R ´δ, ÿ It follows that ω Γ prq ´ωΓ psq ď c 2 plog r ´log sq. Since δ ą 0 is arbitrary, we prove that ω Γ prq is continuous in 1 ď r ă R.

Our goal in the remainder of this section is to compare H r pnq with e nωΓprq .

3.2. Upper bound. We start with the following lemma.

Lemma 3.2. There exists constants C, C 1 ą 1 such that for any 1 ď r ď R and any integer n, m ě 1, we have H r pmqH r pnq ď CH r pm `nq, and H r pnq ď C 1 e nωΓprq . In particular, the following limit exists This proves the first part of the lemma. The second part follows from the Fekete sub-additive lemma.

ω Γ prq " lim nÑ8 log H r pnq n " sup n log C ´1H r pnq n . Set l " maxtdpe, f q : f P F u`4 ,
Corollary 3.4. The function r P r1, Rs Þ Ñ ω Γ prq is increasing and continuous.

Proof. We proved in Lemma 3.1 that ω Γ is increasing and continuous on r1, Rq. By Lemma 3.2, it can be expressed as a supremum of continuous functions, hence it is lower semi-continuous by [AB06, Lemma 2.41].

We deduce that it is left continuous at R.

Corollary 3.5. For every r ď R, ω Γ prq ď v{2.

Proof. By the Cauchy-Schwarz inequality,

˜ÿ xPSn G r pe, xq ¸2 ď |S n | ÿ xPSn G r pe, xq 2 .
For any r ă R, by [GL13, Proposition 1.9],

cprq "

ÿ xPΓ G r pe, xq 2 ă 8, so ω Γ prq ď lim sup 1 2n plog cprq `log |S n |q " 1 2 v.
This proves the desired inequality for r ă R. By Corollary 3.4, r Þ Ñ ω Γ prq is continuous, so the inequality also holds at R.

3.3.

Lower bound via parabolic gap. For 1 ď r ď R and s ě 0, we consider the following Poincaré series:

(4) Θ r,s pΓq :" ÿ hPΓ G r pe, hqe ´sdpe,hq .

We can rearrange the terms in Θ r,s pΓq as follows Θ r,s pΓq " ÿ ně0 H r pnqe ´sn so that H r pnq appears in the place of 7S n in the usual Poincare series. Thus, for each r fixed, ω Γ prq is the exponential radius of convergence of the series Θ r,s pΓq in s.

Similarly, for any subgroup P Ă Γ, we can consider the associated Poincaré series Θ r,s pP q "

ÿ ně0 ÿ xPP XSn G r pe, xqe ´sdpe,xq
and its growth rate

ω P prq " lim sup 1 n log ÿ xPP XSn G r pe, xq,
which is the exponential radius of convergence of the series s Þ Ñ Θ r,s pP q.

Definition 3.6. We say that Γ has parabolic gap for the Green functions if for every parabolic subgroup P P P 0 , ω P prq ă ω Γ prq for every 1 ă r ď R.

Lemma 3.7. Suppose that Γ has a parabolic gap for the Green function. For every 1 ă r ď R, there exists C " Cprq ą 1 such that H r pn `mq ď CH r pnqH r pmq and there exists a constant C 1 " C 1 prq ą 1 such that for any 1 ă r ď R µ , we have 1 C 1 e nωΓprq ď H r pnq ď C 1 e nωΓprq for every n ě 1.

Proof. Let P 0 be the finite set of maximal parabolic subgroup up to conjugacy. Set K r pnq :" max

P PP0 ÿ xPSnXP G r pe, xq.
Step 1. First, the following holds This corresponds to the case k " j " 0.

If y is deep in some P -coset X, let u, v be the entry and exit points of γ in N η pXq (possibly u " e or v " x). Then u, v are transition points so again the relative Ancona inequalities show G r pe, xq ď CG r pe, uqG r pe, u ´1vqG r pe, v ´1xq.

Summing up G r pe, xq over all x P S n according to k " dpu, yq and l " dpy, vq, we obtain (5).

Step 2. By assumption, ω P prq ă ω Γ prq for every P P P 0 . Then for any given ω Γ prq ą ω ą ω P prq, there exists c 1 " c 1 prq ą 0 such that K r piq ď c 1 e i¨ω for any i ě 1. For ω ą 0, we define a ω pnq " e ´ωn ¨Hr pnq.

Then a re-arrangement of (5) gives rise to the form as follows: Lemma 3.8. Assume that there exists an injective map ι : WpAq Ñ WpA, Bq such that the evaluation map Φ : WpA, Bq Ñ G is injective on the subset ιpWpAqq as well. Set X :" ΦpιpWpA, Bqq and assume that B is finite. Then Θ r,s pAq converges at s " ω X prq. In particular, if Θ r,s pAq diverges at s " ω A prq then ω X prq ą ω A prq.

Proof. Since Φ : WpA, Bq Ñ G is injective, each element in the image X has a unique alternating product form over

A \ B. Set C 1 " max bPB tdpe, bqu ă 8, C 2 " min bPB ! Grp1,bq Grp1,1q
) ă 8 where B is a finite set by assumption. For a word W " a 1 b 1 a 2 ¨¨¨a n b n P WpA, Bq, we have

dpe, a 1 b 1 ¨¨¨a n b n q ď ÿ 1ďiďn `dpe, a i q `C1 ˘, and G r pe, a 1 b 1 ¨¨¨a n b n q ě C n 2 ź 1ďiďn `Gr pe, a i q ˘.
As a consequence, we estimate the Poincaré series of X as follows:

ř gPX G r pe, gqe ´s¨dpe,gq ě 8 ř n"1 ˆř aPA G r pe, aqe ´s¨dpe,aq ˙n ¨pC 2 e ´sC1 q n . By contradiction, assume that ř aPA G r pe, aqe ´ωX prq¨dpe,aq " 8. Then there exists some s ą ω X prq such that ř aPA G r pe, aqe ´s¨dpe,aq ¨C2 e ´sC1 ą 1. By the above estimates, this implies the series Θ X pr, sq diverges at s, so s ď ω X prq, which is a contradiction.

Corollary 3.9. Let P P P 0 . If the series Θ r,s pP q " ÿ pPP G r pe, pqe ´sdpe,pq diverges at s " ω P prq then ω P prq ă ω Γ prq.

Proof. For any hyperbolic element h and sufficiently large integer n ě 1, the subgroup generated by P and h n is a free product P ˚xh n y. Thus, the evaluation map Φ : WpA, Bq Ñ G is injective on WpAq seen as a subset of WpA, Bq, where A " P and B " th n , h ´nu.

Here is a second criterion for the parabolic gap.

Proposition 3.10. Let P P P 0 . For every 1 ă r ď R, if ω P prq ď 0, then ω P prq ă ω Γ prq.

Proof. By Lemma 3.1, for every 1 ă r, ω Γ prq ą 0.

3.5. Examples. We now give various examples of different possible situations. In Example A, we give a criterion for having ω P prq ď 0, which automatically implies that ω P prq ă ω Γ prq. In Example B, we construct an example where ω P prq ą 0, but we still have ω P prq ă ω Γ prq. Example C is devoted to construct an example where ω P prq " ω Γ prq, assuming that P satisfies some properties. We first recall some terminology from [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF]. Let r ď R and let P be a parabolic subgroup. Denote by p r,P the first return transition kernel to P associated with rµ, i.e. for every x, y P P , (7) p r,P px, yq " ÿ ně1 ÿ z1,...,znRP

r n µpx ´1z 1 qµpz ´1 1 z 2 q...µpz ´1 n yq.
Also denote by G r,P t its associated Green function at t, i.e.

G r,P t px, yq " ÿ ně0 t n p r,P n px, yq, where p r,P n is the nth convolution power of p r,P . Finally, denote by R P prq the inverse of the spectral radius of p r,P . Then by [DG21, Lemma 4.4], G r,P 1 pe, xq " G r pe, xq which is finite, so in particular R P prq ě 1. Definition 3.11. We say that the random walk is spectrally degenerate along P if R P pRq " 1. It is called spectrally non-degenerate if it is not spectrally degenerate along any parabolic subgroup.

Example A.

Proposition 3.12. Let P be a parabolic subgroup. Assume that P is amenable. Then for every 1 ă r ă R, ω P prq ă 0. In particular, for every 1 ă r ă R, ω P prq ă ω Γ prq. Moreover, if the random walk is not spectrally degenerate along P , then ω P pRq ď 0 ă ω Γ pRq.

Proof. Fix r ă R and choose s such that r ă s ă R. Denote by p s,P the first return transition kernel to P associated with sµ and by G s,P its associated Green function as above. By [DG21, Lemma 4.15], the spectral radius of p s,P is strictly less than 1, because s ă R. Since the underlying random walk driven by µ is symmetric, p s,P is a symmetric P -invariant transition kernel on P . By amenability, this transition kernel is necessarily sub-Markov, see [Woe00, Corollary 12.5]. Let t ă 1 be such that ps " 1 t p s,P is Markov. Then, letting r G s be the Green function associated with ps , for any x P P we have G 

: f Þ Ñ ˜x Þ Ñ ÿ y ps px, yqf pyq
acting on the space of 1 functions, i.e. summable functions on P . The 1 -norm of r P s is 1, so its 1 -spectral radius is bounded by 1. In particular, 1{t is bigger than the 1 -spectral radius, so by definition, I ´t r P s is invertible in the space of summable functions. Moreover, the inverse is of the form

r Q s " ÿ ně0 t n r P n s .
Consider the function f defined by f pxq " 1 if x " e and 0 otherwise. Then, r Q s f pxq " r G s t pe, x ´1q. Since the function f is summable, r Q s f also is summable, and so the Green function r G s at t is summable. This proves (8).

Since for every x P Γ. Summing over P X S n , we see that ω P prq ă ω P psq and so ω P prq ă 0. Finally, if the random walk is not spectrally degenerate along P , then by definition the spectral radius of p R,P is strictly less than 1. The same proof shows that ω P pRq ď 0.

When the parabolic subgroup P has sub-exponential growth, we do not need spectral non-degeneracy to get that ω P pRq ď 0. Proposition 3.13. Let P be a maximal parabolic subgroup. Assume that P has sub-exponential growth. Then for every 1 ď r ď R, ω P prq ď 0. In particular, for every 1 ă r ď R, ω P prq ă ω Γ prq.

Proof. Let s ą 0. There exists C ě 0 such that for every x P Γ, G R pe, xq ď C. In particular, for every r ď R, Θ r,s pP q ď C ÿ ně0 7pP X S n qe ´sn ă `8.

Thus, Θ r,s pP q is finite for every positive s and so ω P prq ď 0.

3.5.2. Adapted random walks on free products. Before giving other examples, let us briefly recall some terminology and basic properties of random walks on free products. Consider a free product Γ " Γ 0 ˚Γ1 . Let µ 0 be an admissible probability measure on Γ 0 , µ 1 an admissible probability measure on Γ 1 and define

µ α " αµ 1 `p1 ´αqµ 0 .
Then µ α is an admissible probability measure on Γ. Moreover, if both µ 0 and µ 1 are symmetric, respectively finitely supported, then so is µ α . Such a probability measure is called adapted to the free product structure and it can only move inside one of the free factors Γ 0 or Γ 1 at each step. Adapted probability measures on free products have been considered by many authors, see [START_REF] Cartwright | Some examples of random walks on free products of discrete groups[END_REF], [START_REF] Cartwright | On the asymptotic behaviour of convolution powers of probabilities on discrete groups[END_REF], [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF], [START_REF] Candellero | Branching random walks on free products of groups[END_REF], [START_REF] Woess | A description of the Martin boundary for nearest neighbour random walks on free products[END_REF] and [START_REF] Woess | Nearest neighbour random walks on free products of discrete groups[END_REF] for instance. For convenience we will assume that the random walk driven by µ i on Γ i is transient at the spectral radius, i.e. the Green function is finite at its radius of convergence. This is not very restrictive, since by the Varapoulos Theorem, only groups with quadratic growth, i.e. groups that are virtually Z or Z 2 , can carry an admissible random walk which is not transient at the spectral radius. Actually, Varapoulos [START_REF] Theodoros | Théorie du potentiel sur des groupes et des variétés[END_REF] proved that only groups with quadratic growth can carry a non-transient (at r " 1) random walk, but a standard argument due to Guivarc'h [START_REF] Guivarc | Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire[END_REF] allows one to reduce non-transience at r " R to non-transience at r " 1 by the use of a suited h-process, see [START_REF] Woess | Random Walks on Infinite Graphs and Groups[END_REF] for more details and in particular [Woe00, Theorem 7.8] for a complete proof.

Denote by G µi the Green function on Γ i associated with µ i , i " 0, 1 and by R µi the radius of convergence of G µi , i.e. the inverse of the spectral radius of µ i . Also, as in the previous example, denote by p s,Γ0 the first return kernel to Γ 0 associated with sµ α and by G s,Γ0 t the associated Green function. We first relate G µ0 and G s,Γ0 which are two Green functions associated with different transition kernels on the same group Γ 0 . Because µ α is adapted to the free product structure, the first return kernel p s,Γ0 can be written as p s,Γ0 pe, xq " p1 ´αqsµ 0 `ws,α δ e,x , where w s,α is the weight of the first return to e, starting with a step in Γ 1 . Thus, [Woe00, Lemma 9.2] shows that for any x, y P Γ 0 , (9) We also set

G s,Γ0 t px, yq " 1 1 ´ws,α t G µ0 p1´αqst 
ζ 1 psq " αs 1 ´w1 s,α
, where w 1 s,α is the weight of the first return to e, starting with a step in Γ 0 . Then, by symmetry, we also have for any x, y P Γ 1 , (11)

G s px, yq " 1 1 ´w1 s,α G µ1
ζ1psq px, yq.

Let R α be the inverse of the spectral radius of µ α and let R µ0 be the inverse of the spectral radius of µ 0 on Γ 0 . Lemma 3.14. As α tends to 0, R α and ζ 0 pR α q both converge to R µ0 . Moreover, w r,α converges to 0 and the convergence is uniform in r ď R α .

Proof. We first show that R α is a continuous function of α. Let P α be the convolution operator

P α : f Þ Ñ ˜x Þ Ñ ÿ y µ α px ´1yqf pyq ¸.
Claim. In the 2 operator norm, P α is a continuous function of α.

Proof of the claim. We first show that P α is continuous in the 1 and 8 operator norms. Fix α 0 . Note that µ α has a finite support included in a fixed finite set Σ, so µ α pxq uniformly converges to µ α0 pxq as α tends to α 0 . Let f be an 8 function. Then, for every x, ˇˇˇˆP α ´Pα0 ˙f pxq ˇˇˇď ÿ yPΓ ˇˇµ α px ´1yq ´µα0 px ´1yq ˇˇ}f } 8 .

The only possible y such that we do not have µ α0 px ´1yq " 0 and µ α px ´1yq " 0 are in xΣ. This yields ÿ yPΓ ˇˇµ α px ´1yq ´µα0 px ´1yq ˇˇ" ÿ y 1 PΣ ˇˇµ α py 1 q ´µα0 py 1 q ˇˇ.

Therefore, for every ą 0, if α is close enough to α 0 , ˇˇˇˆP α ´Pα0 ˙f pxq ˇˇˇď }f } 8 .

This proves continuity for the 8 operator norm. Now, let f be an 1 function. Then,

› › › › ˆPα ´Pα0 ˙f › › › › 1 ď ÿ x,yPΓ
ˇˇµ α py ´1xq ´µα0 py ´1xq ˇˇ|f pyq|.

Fix y. Then, as above, ÿ xPΓ ˇˇµ α py ´1xq ´µα0 py ´1xq ˇˇ" ÿ

x 1 PΣ ˇˇµ α px 1 q ´µα0 px 1 q ˇˇ.

Let ą 0. Then if α is close enough to α 0 this last sum is bounded by , independently of y. Consequently,

› › › › ˆPα ´Pα0 ˙f › › › › 1 ď ÿ yPΓ |f pyq| " }f } 1 .
This proves continuity for the 1 operator norm. The Riesz-Thorin interpolation theorem [Fol99, Theorem (6.27)] shows that P α converges to P α0 for the p operator norm, for every 1 ď p ď `8. This proves the claim, taking p " 2.

Since R α is the inverse of the spectral radius of P α , continuity of R α follows. To conclude it thus suffices to prove that w r,α uniformly converges to 0. By [Woe00, Proposition 9.18], w r,α " ÿ ně1 P α pX n " e, X k ‰ e, 1 ď k ă n, first step chosen using αµ 1 q r n and by the Markov property,

w r,α " rαµ 1 peq `r ÿ x‰ePΓ1 P α pX 1 " xq ÿ ně1 P α `Xn " x ´1, X k ‰ x ´1, k ă n ˘rn . Set (12) F r pe, xq " ÿ ně1 P α pX n " x, X k ‰ x, k ă nq r n
and for i " 0, 1, x P Γ i , (13) F i r pe, xq "

ÿ ně1 P µi pX n " x, X k ‰ x, k ă nq r n .
Then, by [Woe00, Lemma 1.13 (b)], for x P Γ, G r pe, xq " F r pe, xqG r pe, eq and for x P Γ i , G i r pe, xq " F i r pe, xqG i r pe, eq. Thus, by (10), we have F r pe, xq " F i ζiprq pe, xq and so we recover [Woe00, Proposition 9.18]. In particular,

w r,α ď αR α ˜µ1 peq `ÿ xPΓ1 µ 1 pxqF 1 Rµ 1 pe, x ´1q ¸.
Finally, F 1 Rµ 1 pe, x ´1q is finite since we assume that the random walk on Γ 1 is transient at the spectral radius. Thus, there exists a constant C such that w r,α ď αC and so w r,α uniformly converges to 0.

Lemma 3.15. There exists α 0 such that for α P r0, α 0 s, the quantity w 1 r,α stays bounded away from 1. In particular, as α tends to 0, ζ 1 prq converges to 0 and the convergence is uniform in 1 ď r ď R α .

Proof. By [Woe00, Proposition 9.18], w 1 r,α ď U prq "

ÿ ně1 P α pX n " e, X k ‰ e, 1 ď k ă nqr n .
Also, by [Woe00, Lemma 1.13],

G r pe, eq " 1 1 ´U prq .

Note that G r pe, eq depends on α, but according to Lemma 3.14 and (10), G r pe, eq is uniformly bounded for α in a fixed neighborhood of 0. Consequently, U prq stays bounded away from 1.

3.5.3. Example B. Here is now an example where ω P prq ą 0 and ω P prq ă ω Γ prq. Consider the group Γ " F 2 ˚Zd , where F 2 is the free group with two generators. In other words, with the notations above, we set Γ 0 " F 2 and Γ 1 " Z d . Then Γ is hyperbolic relative to Γ 0 and Γ 1 .

We choose d ě 3 so that every finitely supported admissible random walk on Γ 1 is transient at the spectral radius. Choose an adapted measure µ α " αµ 1 `p1 ´αqµ 0 as above. Then, µ 0 is a probability measure on the non-amenable group F 2 whose finite support generates F 2 , hence, R µ0 ą 1. According to Lemma 3.14, we can thus fix α so that ζ 0 prq ą 1 for every r in a neighborhood of R α , say r 0 ă r ď R α . Now that α is fixed, we omit it in the notations. By (10),

ÿ xPF2XSn G r pe, xq " 1 1 ´wr ÿ xPF2XSn G µ0
ζ0prq pe, xq.

Since ζ 0 prq ą 1, [GL13, Note 1.7] shows that ř xPF2XSn G µ0 ζ0prq pe, xq diverges as n tends to infinity. In particular, we see that ω F2 prq ě 0. On the other hand, by (3), for s ą r, ω F2 psq ą ω F2 prq, so for large enough r, ω F2 prq ą 0.

We also deduce from (10) that ω F2 prq " ω µ0 pζ 0 prqq, where ω µ0 is the growth rate of the Green function associated with µ 0 on F 2 . Since F 2 is hyperbolic, by [SWX20, Theorem 3.1], the Green function has purely exponential growth, i.e. ÿ xPF2XSn G µ0 r pe, xqe nωµ 0 prq .

Consequently, the Poincaré series Θ r,s pF 2 q " ÿ xPF2 G r pe, xqe ´sdpe,xq diverges at s " ω F2 prq. By Corollary 3.9, ω F2 prq ă ω Γ prq.

Example C.

Finally, here is a last example. We assume that there exists a finitely generated group Γ 0 endowed with an admissible finitely supported probability measure µ 0 such that for some r 0 ă R µ0 , the Poincaré series Θ r0,s pΓ 0 q " ÿ xPΓ0 G µ0 r0 pe, xqe ´sdpe,xq converges at s " ω µ0 pr 0 q ą 0. We consider the free product Γ " Γ 0 ˚Γ1 where Γ 1 " Z d , d ě 3. As above, Γ is hyperbolic relative to Γ 0 and Γ 1 . We consider the adapted measure µ α " αµ 1 `p1 ´αqµ 0 . We will prove that for some r, ω Γ0 prq " ω Γ prq. By Lemma 3.14, ζ 0 pR α q converges to R µ0 as α converges to 0. Thus, for small enough α, there exists r α such that ζ 0 pr α q " r 0 . Also, by Lemma 3.15, ζ 1 pr α q converges to 0 and w 1 r,α stays bounded away from 1 as α tends to 0. By (11), for every ą 0, there exists α such that for every x ‰ e P Γ 1 , (14) G r pe, xq ď .

Every element x P Γ can be written as x " a 1 b 1 ...a k b k , where a i P Γ 0 , b i P Γ 1 and a i ‰ e except maybe a 1 and b i ‰ e except maybe b k . Moreover, since the random walk is adapted to the free product structure, it has to pass through a 1 b 1 ...a k before reaching a 1 b 1 ...a k b k . Consequently, G r pe, xq G r pe, eq " G r pe, a 1 b 1 ...a k q G r pe, eq G r pe, b k q G r pe, eq , see also [START_REF] Woess | A description of the Martin boundary for nearest neighbour random walks on free products[END_REF](3.3)]. Note that this is an exact version of the relative Ancona inequalities in the specific case of adapted random walks on free products. We thus get Θ r,s pΓq " ÿ xPΓ G r pe, xqe ´sdpe,xq ď G r pe, eq ÿ kě0 ¨ÿ aPΓ0zteu G r pe, aq G r pe, eq e ´sdpe,aq 'k ¨ÿ bPΓ1zteu G r pe, bq G r pe, eq e ´sdpe,bq 'k .

(15) By (10), ω Γ0 pr α q " ω µ0 pr 0 q, so ω Γ pr α q ě ω µ0 pr 0 q ą 0. Therefore, This proves that the Poincaré series Θ rα,ωΓprαq pΓq is convergent. According to Lemma 3.7, we deduce that ω P pr α q " ω Γ pr α q for some parabolic group P . Since Γ 1 " Z d has polynomial growth, by Proposition 3.13, we necessarily have P " Γ 0 .

ÿ
Remark. We assumed that the Poincaré series of Γ 0 was convergent at its critical exponent for some r 0 ă R µ0 . However, this was only for convenience. If this Poincaré series is convergent for r " R µ0 , then we can make the same construction and choose instead r α " R α . We only need to know that ζ 0 pR α q " R µ0 for small enough α. The fact that ζ 0 pR α q " R µ0 is equivalent to the fact that µ α is spectrally degenerate along Γ 0 , so we just need to ensure that for small enough α, µ α is spectrally degenerate along Γ 0 . Now, if the Poincaré series is convergent for r " R µ0 , then ř xPSnXΓ0 G µ0 Rµ 0 pe, xq ď Ce ´ωµ 0 pRµ 0 q and so

ÿ xPΓ0 G µ0 Rµ 0 pe, xqG µ0
Rµ 0 px, eq ď CΘ r0,ωµ 0 pr 0 q.

By [GL13, Proposition 1.9], this implies that the first derivative of the Green function t Þ Ñ G µ0 t pe, eq is finite at R µ0 . Using the work of [CG12, Section 7], we can then construct such a spectrally degenerate probability µ α along Γ 0 for small enough α.

Remark. In [CGM12, Lemma 4.7], the authors prove that ω P prq ă ω Γ prq always holds. However, their proof is incorrect. Indeed, they use the following inequality

ÿ xPSn`mXP G r pe, xq ď C ÿ xPSnXP G r pe, xq ÿ xPSmXP G r pe, xq.
Proving such an inequality would require that for any x P S n`m and any y P S n on a geodesic from e to x, we have G r pe, xq ď CG r pe, yqG r py, xq.

This in turn would require Ancona inequalities for the group P . It is an open question whether the fact that Ancona inequalities hold for any geodesic implies that the group is hyperbolic, but it is easy to prove that they do not hold in a parabolic subgroup P if P is virtually abelian, see for instance [DG20, Section 5.2].

Let us give some final remarks to conclude this discussion. The last example raises the following question.

Question 3.16. Does there exist a finitely generated group Γ 0 endowed with an admissible finitely supported probability measure µ 0 such that for some r ď R µ0 , the Poincaré series Θ r,s pΓ 0 q converges at s " ω Γ0 prq ą 0 ?

If there is a positive answer to this question, then as we saw, there exists a relatively hyperbolic group Γ endowed with an admissible finitely supported probability measure µ and a parabolic subgroup P for which ω P prq " ω Γ prq at some r. Moreover, if the measure µ 0 is symmetric, then we can choose the measure µ to be symmetric as well.

On the contrary, if this question has a negative answer, then Corollary 3.9 suggests that we always have ω P prq ă ω Γ prq. However, this corollary requires the Poincaré series Θ r,s pP q " ÿ pPP G r pe, pqe ´sdpe,pq to be divergent, where G s pe, pq is the Green function associated with the measure µ on Γ. Using [DG21, Lemma 4.4] as above, we can rewrite this Poincaré series as Θ r,s pP q " ÿ pPP G r,P 1 pe, pqe ´sdpe,pq , where G r,P 1 is the Green function at 1 associated with the first return kernel p r,P defined in (7). Unfortunately, this first return kernel is not in general finitely supported, so even if Question 3.16 has a negative answer, we cannot deduce that this Poincaré series is divergent, hence we cannot deduce that ω P prq ă ω Γ prq.

The growth rate of the trace of the branching random walk

Recall that P n is the set of points in S n that are eventually visited by some particle of the branching random walk and that M n " 7P n . In this section, we compare the growth rate of the Green function ω Γ prq with the growth rate of the branching random walk log lim sup M 1{n n . Our goal is to prove the following proposition. The proof of [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF], which relies on the Borel-Cantelli lemma uses the purely exponential growth of the growth rate for the Green function. However, only a small adaptation is needed to apply it here. We rewrite it for convenience.

Proof. For x P Γ, we denote by Z x the number of particles of the branching random walk that ever visit x. The many-to-one formula states that ErZ x s " G r pe, xq. ErM n s pe ωΓprq ` q n ď H r pnq pe ωΓprq ` q n . By definition, ω Γ prq " log lim sup H r pnq 1{n , so there are at most finitely many n such that H r pnq 1{n ě e ωΓprq ` {2.

Therefore, ÿ n H r pnq pe ωΓprq ` q n ă 8. The statement of the lemma is thus a consequence of the Borel-Cantelli lemma. 4.2. Lower bound. Before proving the lower bound, we first recall some geometric lemmas about relatively hyperbolic groups. Let P " tgP : g P Γ, P P P 0 u be the collection of all parabolic cosets. Recall that η and Lpηq are fixed so that for L ě Lpηq, any pη, Lq-transition point satisfies the results of Section 2.3. Definition 4.3. For L ě Lpηq, an pη, Lq-transition point on a geodesic is called an L-transition point. A geodesic α is called L-transitional if every point on α is an L-transition point.

Lemma 4.4. Let L ě Lpηq. There exists K such that the following holds. For every x, y, z P Γ, if both rx, zs and ry, zs are L-transitional, then there exists a point w within K of an L-transition point on rx, zs, an L-transition point on ry, zs and an L-transition point on rx, ys.

Proof. Let x, y, z satisfy the statement of the lemma. Applying Lemma 2.9, consider the last point w 0 on rz, xs which is within C of rz, ys and let w be the next point on rz, xs. Since w also is L-transitional, by definition of w 0 , w is within C of an L-transition point on rx, ys. Moreover, w is within C `1 of an L-transitional point on ry, zs.

Lemma 4.5. There exists a constant C such that the following holds. Let x 0 , x 1 , x 2 be three points in Γ. Then, there exist w 0 , w 1 , w 2 such that for i mod 3, dpx i , x i`1 q ě dpx i , w i q `dpw i , w i`1 q `dpw i`1 , x i`1 q ´C. Moreover, w i and w i`1 are within C of an L-transition point on rx i , x i`1 s. Finally, if rx i , x i`1 s is Ltransitional, then dpw i , w i`1 q ď C 1 , where C 1 only depends on L.

It will be convenient to rely on similar results proved in [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF]. However, the terminology is a bit different and [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF] uses the notion of relative geodesics. Let us briefly introduce this notion. Let P 0 be the chosen set of representatives of conjugacy classes of parabolic subgroups and let S be a finite generating set of Γ. Following Osin [START_REF] Osin | Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems[END_REF], the relative graph is the Cayley graph of Γ endowed with the (possibly infinite) generating set S Ť Ť P PP0 P . It is quasi-isometric to the coned-off graph introduced by Farb [Far98] who gave one of the first definitions of relatively hyperbolic groups. The relative graph is hyperbolic. A relative geodesic is a geodesic in the relative graph. By [Hru10, Proposition 8.13], if x, y P Γ, then any point on a relative geodesic from x to y is within a uniformly bounded distance of a transition point on a geodesic from x to y (in the Cayley graph of Γ).

Proof of Lemma 4.5. Consider the projection of x 0 on a relative geodesic from x 1 to x 2 in the relative Cayley graph. If several projections exist, choose the closest possible to x 1 . Denote this projection by w 1 and let w 2 be the point on this relative geodesic just after w 1 .

By [Dus22a, Lemma 4.16], any relative geodesic from x 0 to x 1 passes at a point v within a bounded distance of w 1 . We prove by contradiction that v is within a bounded distance of the projection of x 2 on a relative geodesic from x 0 to x 1 the closest to x 1 . Denote by v 1 such a projection. Then applying again [Dus22a, Lemma 4.16], the relative geodesic from x 2 to x 1 we chose would pass at a point w 1 1 within a bounded distance of v 1 . If dpv, v 1 q is large, then dpw 1 , w 1 1 q is also large. Now, if w 1 is before w 1 1 on the relative geodesic, this contradicts the definition of v 1 and if w 1 1 is before w 1 , this contradicts the definition of w 1 .

Finally, denote by w 0 the point just before v on the relative geodesic from x 0 to x 1 . Then, applying [Dus22a, Lemma 4.16] one last time, a relative geodesic from x i to x i`1 passes within a bounded distance of w i and w i`1 . Since points on a relative geodesics are within a bounded distance of transition points (see [START_REF] Hruska | Relative hyperbolicity and relative quasiconvexity for countable groups[END_REF]Proposition 8.13]), this proves the two first properties of the points w i .

Notice that the points w i , w i`1 are chosen within a bounded distance of successive points on a relative geodesic from x i to x i`1 . If the geodesic rx i , x i`1 s is L-transitional, then the corresponding relative geodesic has bounded jumps in parabolic subgroups, hence the distance between w i and w i`1 is bounded. This concludes the last part of the lemma.

We define

S n,L " tx P S n : re, xs is L-transitionalu . Set M n,L " 7P n X S n,L . We first consider the lower bound for the quantity lim nÑ8 Proposition 4.6. For every L ě Lpηq and r P r1, ρ ´1s, there is a constant c L ą 0 such that c ´1 L e ω Γ,L prq ď H r,L pnq ď c L e ω Γ,L prq , n ě 0.

Proof. For x P S n`m,L , the point y " re, xs X S n is in S n,L and y ´1x P S m,L . By the relatively Ancona inequalities, there is a constant c 1 ą 0 such that G r pe, xq ď c 1 G r pe, yqG r pe, y ´1xq.

Thus we have that Let F be the finite set given by Lemma 2.4. Set l " max tdpe, f q : f P F u `4 . Lemma 4.7. For r P r1, ρ ´1s, lim LÑ8 ω Γ,L prq " ω Γ prq.

Proof. For n 0 P N and x i P S n0 , 1 ď i ď m, we can choose f i P F so that the conditions in Lemma 2.4 hold with g, h replaced by x 1 f 1 x 2 ¨¨¨x i´1 f i´1 x i , x i`1 . In particular,

x " x 1 f 1 x 2 ¨¨¨f m´1 x m P pn0`lqm ď k"pn0´lqm S k, L
for L sufficiently large, where l " max tdpe, f q : f P F u `4 . Since F is a fixed finite set, we have that G r pe, xq ě c m 1 G r pe, x 1 q ¨¨¨G r pe, x m q with c 1 " min f PF Grpe, f q Grpe, eq . By Lemma 3.3, there is c 2 ą 0 such that each x has at most c m 2 possible representations in the form of x " x 1 f 1 x 2 ¨¨¨f m´1 x m . Therefore G r pe, x 1 q ¨¨¨G r pe, x m q " c m 3 rH r pn 0 qs m with c 3 " c 1 c ´1 2 . This and Proposition 4.6 imply that 2c L lme pn0`lqmω Γ,L prq ě c m 3 rH r pn 0 qs m .

Letting first m Ñ 8 and then L Ñ 8, we have for every n 0 P N,

lim inf LÑ8 ω Γ,L prq ě 1 n 0
`l plog c 3 `log H r pn 0 qq , which completes the proof of this lemma. Now we are ready to estimate the second moment of M n,L , which will help us find a lower bound. Let x and y be in S n,L . By Lemma 4.4, there exists w " wpx, yq P Γ such that w is within a bounded distance of transition points of re, xs and re, ys respectively. Lemma 4.8. For 1 ď r ă ρ ´1 and x, y P S n,L , there exists a positive constant c ą 0 such that ÿ zPΓ G r pe, zqG r pz, xqG r pz, yq ď cG r pe, wqG r pw, xqG r pw, yq.

Proof. Let κ " C `K. where C and K are given by Lemma 2.9 and Lemma 4.4. Define Ω 1 " tz P Γ : dpw, uq ď κ for some transition point u P re, zsu , and Ω 2 " tz P Γ : dpw, u i q ď κ for transition points u 1 on rz, xs and u 2 on rz, ysu . By Lemma 2.9 and Lemma 4.4, Γ " Ω 1 Y Ω 2 .

Assume z P Ω 1 . Applying Lemma 4.5 to px, y, zq, we get the existence of transition points v, v 1 on rx, ys such that v is within a bounded distance of a transition point on rz, xs and v 1 is within a bounded distance of a transition point on rz, ys. Moreover, since re, xs and re, ys are L-transitional, dpv, v 1 q is bounded. Combining all this, we see that v is within a bounded distance of transition points on rx, ys, rx, zs and ry, zs. Now, applying Lemma 4.4 to pw, x, yq, we have that v is within a bounded distance of either a transition point on rw, xs or on rw, ys. We assume without loss of generality that the latter holds. 

‰

. We first recall the following result from [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF] whose proof has nothing to do with hyperbolicity and holds for any finitely generated group Γ. As above, for every x P Γ, we denote by Z x the number of particles that ever visit x. Lemma 4.9. Assume that ν has finite second moment. Then, there exists C such that for every x, y P Γ,

ErZ x Z y s ď C ÿ zPΓ G r pe, zqG r pz, xqG r pz, yq.
We deduce the following result.

Proposition 4.10. Assume that ν has finite second moment and that r ă ρ ´1. Then there exists C L such that ErM n,L s ě C L e nω Γ,L prq .

Proof. As in the proof of [SWX20, Lemma 4.4], we deduce from Lemma 4.9 that PpZ x ě 1q ě cG r pe, xq.

Since ErM n,L s " ř xPS n,L PpZ x ě 1q, the result follows from Proposition 4.6.

Corollary 4.11. Assume that ν has finite second moment. For r P p1, ρ ´1q and L sufficiently large, there exists a positive constant c such that

E " M 2 n,L ‰ ď c pErM n,L sq 2 .
Proof. By Lemma 4.7 and the fact that ω Γ prq ą 1, we have ω Γ,L prq ą 1 for sufficiently large L. Applying Proposition 4.6 and Lemma 4.8,

E " M 2 n,L ‰ ďc 1 ÿ x,yPS n,L ÿ zPΓ G r pe, zqG r pz, xqG r pz, yq ďc 2 n ÿ k"0 ÿ wPS k,L ÿ x,yPS n,L
G r pe, wqG r pw, xqG r pw, yq

ďc 3 n ÿ k"0 e p2n´kqω Γ,L prq ďc 4 pErM n,L sq 2 .
This yields the desired bound.

We can now prove the lower bound and finish the proof of Proposition 4.1.

Proof of Proposition 4.1. We first fix r ă ρ ´1 and assume that ν has finite second moment. By Proposition 4.10,

P ´Mn,L ě c 1 2 e ω Γ,L prqn ¯ě P ˆMn,L ě 1 2
ErM n,L s ȧnd so, by the Paley-Zygmund inequality and Corollary 4.11, for some c 2 ą 0,

P ´Mn,L ě c 1 2 e ω Γ,L prqn ¯ě `ErM n,L s ˘2 E rM 2 n s ě c 2 .
Thus, with positive probability, the events

! M 1{n n,L ě `c1 2 ˘1{n e ω Γ,L prq
) occur for infinitely many n and so, with positive probability, lim sup 1 n log M n,L ě ω Γ,L prq. By definition, M n ě M n,L , hence for every large enough L, with positive probability (a priori depending on L), we have lim sup We conclude as in [START_REF] Sidoravicius | Limit set of branching random walks on hyperbolic groups[END_REF]. For every ą 0, we can construct a probability measure ν 1 with mean r ´ and with finite second moment so that ν stochastically dominates ν 1 . Denoting by M 1 n the number of vertices in S n ever visited by a branching random walk driven by µ and ν 1 , we see that M n stochastically dominates M 1 n and so

P ˆlim sup 1 n log M n ě ω Γ pr ´ q ˙ě P ˆlim sup 1 n log M 1 n ě ω Γ pr ´ q ˙" 1.
Since ω P prq is continuous by Corollary 3.4, we deduce that lim sup 1 n log M n ě ω Γ prq almost surely.

5.

A lower bound for the Hausdorff dimension of the limit set 5.1. The limit set in the Floyd and Bowditch boundaries. For r ď ρ ´1, we let Λ F prq and Λ B prq be the limit sets of the branching random walk whose offspring distribution has mean r in the Floyd and Bowditch boundary respectively.

Proposition 5.1. Let r ď ρ ´1. Almost surely, HdimpΛ F prq, δ e q ě ´1 log λ ω Γ prq and HdimpΛ B prq, δ e q ě ´1 log λ ω Γ prq.

By (2), it is enough to prove the lower bound for the shortcut distance on the Bowditch boundary. For simplicity, we write Λ " Λ B prq and X " Γ Y B B Γ.

Let h ă ´1 log λ ω Γ prq. We will prove that with positive probability, there exists a positive finite measure χ on the limit set Λ such that ż Λ ż Λ δ e px, yq ´hdχpxqdχpyq ă `8.

Recall that P n,L is the set of L-transitional points in S n that are ever visited by the branching random walk and M n,L is the cardinality of P n,L . Using Lemma 4.7, we fix L such that

(18) h ă ´1 log λ ω Γ,L prq. Let A n be the event " M n,L ě 1 2 ErM n,L s * .
By the Paley-Zygmund inequality and Corollary 4.11, there exists p ą 0 such that PpA n q ě p. Also, for any C ě 0, PpM n,L ě CErM n,L sq ď 1{C. Therefore, for large enough C, the event B n defined by

" 1 2 ErM n,L s ď M n,L ď CErM n,L s *
satisfies PpB n q ě p{2. We define for every n a random measure χ n by

(19) χ n " 1 Bn 1 E rM n,L s ÿ xPP n,L

Dpxq

where Dpxq is the Dirac measure at x.

Our goal is to apply a compactness theorem to the sequence χ n and find a limit random measure χ. In [START_REF] Crauel | Random probability measures on Polish spaces[END_REF], the author proves a compactness criterion for random probability measures. Here the measure χ n is not almost surely a probability measure, however some of the results of [START_REF] Crauel | Random probability measures on Polish spaces[END_REF] still hold in our context. References and proofs are postponed to the Appendix.

Note that

Erχ n pXqs ď C, so χ n is a random finite measure in the sense of Definition A.1. We define the measure π Ω pχ n q on Ω by setting, for every event A,

π Ω pχ n qpAq " E r1 A χ n pXqs " E " 1 A 1 Bn M n,L ErM n,L s  .
Then, π Ω pχ n qpAq ď CPpAq. Since X is compact, any subset of M Ω pXq is tight in the sense of Definition A.13. Moreover, any point of Γ is isolated in X. By Corollary A.18, the closure of tχ n u is compact for the weak topology on random finite measures. This is the smallest topology such that for every random bounded continuous function, the map µ Þ Ñ µpf q is continuous, where a random bounded continuous function is a function f : px, ωq Þ Ñ f px, ωq such that for every ω, f p¨, ωq is bounded continuous, for every x, f px, ¨q is measurable and the map ω Þ Ñ }f p¨, ωq} 8 is P-essentially bounded.

Thus, there exists a sub-net pχ α q αPA such that χ α converges to some random finite measure χ. This means that there exists a directed set A and a monotone final function h : A Ñ N such that for every α P A, χ α " χ hpαq and such that χ α eventually lies in every neighborhood of χ. We refer to [AB06, Definition 2.11, Definition 2.15, Theorem 2.31] for more details on nets and a characterization of compactness in terms of convergent sub-nets. This implies that for every random bounded continuous function f , we have (20) χ α pf q ÝÑ αÑ8 χpf q.

Since p 4 ď Erχ α pXqs ď C, the same holds for χ, applying (20) to the function 1 Ω 1 X . Therefore, with positive probability, χ is not the null-measure.

Note that χ α pP Y Λq " χ α pXq and that P Y Λ is a random closed set in the sense of Definition A.5. Thus, by Proposition A.11, which is analogous to the classical Portmanteau theorem, we have

χpP Y Λq ě lim sup α χ α pP Y Λq " lim sup α χ α pXq " χpXq.
Also, the topology on Γ Y B B Γ extends the discrete topology of Γ. Thus, any compact K Ă Γ is closed and open, so the function 1 K is continuous. Applying convergence to this function and noting that for large enough n,we have χ n pKq " 0, hence for large enough α, χ α pKq " 0 we get that χpKq " 0. Since Γ can be written as a countable union of compact sets, we get that ErχpPqs ď ErχpΓqs " 0. Thus, χ almost surely gives full measure to Λ.

We can now finish the proof of Proposition 5.1.

Proof of Proposition 5.1. First, as in the proof of Proposition 4.1, we can construct a branching random walk pΓ, µ, ν 1 q such that ν 1 has mean r ´ , has finite second momment and is stochastically dominated by ν. As a consequence, we can assume that r ă ρ ´1 and that ν has finite second moment. We slightly modify the distance δ e and set for x, y

P Γ Y B B Γ δe px, yq " # δ e px, yq if x ‰ y λ dpe,xq if x " y
where by definition λ 8 " 0. Note that for x, y P B B Γ, δe px, yq " δ e px, yq.

Claim. The function px, yq

P pΓ Y B B Γq ˆpΓ Y B B Γq Þ Ñ δe px, yq is continuous.
Proof of the claim. Let x n , y n converge to x, y. If x ‰ y, then x n ‰ y n , so δe px n , y n q " δ e px n , y n q for large enough n, which converges to δ e px, yq " δe px, yq. Now if x " y, there are two cases. First, if x P Γ, then x n " y n " x and so δe px n , y n q " δe px, yq for large enough n.

Second, assume that x " y P B B Γ. We have to prove that δe px n , y n q converges to 0 as n tends to infinity. Up to extracting sub-sequences, we can assume that either x n " y n for every n or that x n ‰ y n for every n. In the former sub-case, δe px n , y n q " λ dpe,xnq which tends to 0 since x n tends to infinity. In the latter, δe px n , y n q " δ e px n , y n q, which concludes the proof.

Let W n " ż ż δe px, yq ´hdχ n pxqdχ n pyq " 1 Bn 1 E rM n,L s 2 ÿ x,yPP n,L δe px, yq ´h. ( 21 
)
Claim. The expectation ErW n s is uniformly bounded.

Proof of the claim. By Lemma 4.4, for every x, y P P n,L there exists a point w n which is within a bounded distance of transition point on re, xs and on re, ys. We denote by d n the supremum of dpe, w n q for such a point Combining (21), ( 22) and Proposition 4.6, we get

ErW n s ď C L e ´2nω Γ,L prq n`C ÿ k"0 λ ´hk e ω Γ,L prqp2n´kq ď C 1 L n`C ÿ k"0 pλ ´he ´ωΓ,L prq q k .
By our choice of L (18), this last quantity is uniformly bounded.

For any κ ě 0, the function κ ^δ e px, yq ´h is bounded continuous on X ˆX. Thus,

E "ż ż κ ^δ e px, yq ´hdχ α pxqdχ α pyq  ÝÑ αÑ8 E "ż ż κ ^δ e px, yq ´hdχpxqdχpyq  .
By what precedes, we have that for every α,

E "ż ż δe px, yq ´hdχ α pxqdχ α pyq  ď C
for some uniform C. By the Fatou Lemma applied to the measure π X pχq on X defined for every Borelian subset B of X by π X pBq " ErχpBqs, we have

E "ż ż δe px, yq ´hdχpxqdχpyq  ď lim inf κÑ8 E "ż ż κ ^δ e px, yq ´hdχpxqdχpyq  .
For every κ, for every α,

E "ż ż κ ^δ e px, yq ´hdχ α pxqdχ α pyq  ď E "ż ż δe px, yq ´hdχ α pxqdχ α pyq  ď C
and letting α go to infinity, we get

E "ż ż κ ^δ e px, yq ´hdχpxqdχpyq  ď C.
This bound being uniform in κ, we finally get that

E "ż ż δe px, yq ´hdχpxqdχpyq  ď C.
Consequently, P-almost surely, ż ż δe px, yq ´hdχpxqdχpyq ă `8.

Recall that δe " δ e on B B Γ. Thus, with positive probability, there exists a finite measure χ on Λ which is not the null-measure and such that ż ż δ e px, yq ´hdχpxqdχpyq ă `8.

By Frostman Lemma for metrizable spaces (see [Sha09, Theorem 2.6]), this shows that with positive probability, h ă HdimpΛ, δ e q. The same argument as in [SWX20, Lemma 4.7] shows that HdimpΛ, δ e q is almost surely a constant. This concludes the proof. 5.2. The limit set in the ends boundary. We prove here Theorem 1.3. We briefly introduce infinitely ended groups and refer to [DY20, Section 4] and references therein for more details on those groups and on the link between random walks and the end boundary. Let pV, Eq be a locally finite graph and let F be a finite set of V . We denote by CpF q an infinite connected component of the complement of F in pV, Eq. An end ξ of pV, Eq is a collection of infinite connected components CpF q, where F is finite, such that for any two such F, F 1 , we have that the intersection of CpF q and CpF 1 q is infinite. We will also say for simplicity that ξ lies in the connected component CpF q if CpF q is part of the collection defining ξ. We denote by B E pV, Eq the set of ends. We can endow the end compactification V Y B E pV, Eq with a topology which extends the discrete topology on V such that V Y B E pV, Eq is compact and V is dense in its ends compactification. If Γ is a finitely generated group, we define its end boundary as the set of ends of a Cayley graph with respect to a finite generating system. Its topology does not depend on the choice of the finite generating system. We denote by B E Γ the end boundary of Γ. Let 0 ă λ ă 1. We define the visual distance δe of parameter λ on Γ Y B E Γ by setting δe px, yq " λ n , where n is the minimal integer such that x and y lie in two distinct connected components of the complement of Bpe, nq. It is well known that the end boundary is covered by the Floyd boundary, see for instance [GGPY21, Proposition 11.1] or [START_REF] Karlsson | Free subgroups of groups with nontrivial Floyd boundary[END_REF]. Moreover, we can be more precise and by [DY20, Lemma 4.3], the identity of Γ extends to an 1-Lipschitz continuous and equivariant map ψ from the Floyd compactification to the end compactification, so in particular δ e px, yq ě δe pψpxq, ψpyqq.

If Γ is a group with infinitely many ends, we denote by Λ E prq the limit set of a branching random walk pΓ, ν, µq with Erνs " r. We prove the following.

Proposition 5.2. Let r ď ρ ´1. Almost surely,

HdimpΛ E prq, δe q ě ´1 log λ ω Γ prq.
By a celebrated result of Stallings [START_REF] Stallings | Group theory and three-dimensional manifolds[END_REF], a group with infinitely many ends Γ splits as an HNN extension A ˚C or an amalgamated product A ˚C B, where C is a finite group. The action on the corresponding Bass-Serre tree satisfies the conditions of [Bow12, Definition 2] and so Γ is relatively hyperbolic. However, there is no clear relation between the shortcut distance on the Bowditch boundary and the visual distance on the end boundary. Indeed, the ends boundary is in general larger than the Bowditch boundary and even if they coincide, the shortcut distance is the largest distance on the Bowditch boundary satisfying (2), so it is bounded from below by the visual distance. Thus, we cannot deduce Proposition 5.2 from Proposition 5.1.

Proof of Proposition 5.2. We follow the same strategy as for the Bowditch boundary. Since Γ has infinitely many ends, it is relatively hyperbolic. It is either an HNN extension A˚C or an amalgamated product A˚C B, where C is finite. In the former case, the parabolic subgroups are the conjugates of A and one can choose P 0 " tAu, in the latter case, they are the conjugates of A and B and one can choose P 0 " tA, Bu. In both cases, every element of Γ can be written uniquely in a normal form, see [START_REF] Woess | Boundaries of random walks on graphs and groups with infinitely many ends[END_REF](9.2),(9.4)]. For simplicity, we only give details of the proof when Γ " A ˚C B. The case of an HNN extension is treated similarly. In this situation, the normal form is described as follows. We choose a set of representatives A of A{C and a set of representatives B of B{C. Then, any element x of Γ can be uniquely written as

(23) x " a 1 b 1 ...a n b n c,
where a i P A, b i P B, c P C. Moreover, any path from e to x in the Cayley graph of Γ has to pass within a bounded distance of every prefix of x in the normal form (23). This follows from the fact that A ˚C B is quasi-isometric to the space X obtained by taking copies of A and B for each coset gA and hB, g, h P Γ and connecting ' ga P gA to ga P gaB by adding 7C edges between the coset gaC in gA and the coset gaC in gaB.

' gb P gB to gb P gbA by adding 7C edges between the coset gbC in gB and the coset gbC in gbA. The construction of the space X is performed in [START_REF] Scott | Topological methods in group theory[END_REF]. It is similar to the construction of a tree of spaces modeling the free product A ˚B obtained by adding one single edge between every element ga P gA and ga P gaB and one single edge between every element gb P gB and gb P gbA. This space is also used in [START_REF] Papasoglu | Quasi-isometries between groups with infinitely many ends[END_REF] to prove that A ˚B is quasi-isometric to A ˚C B. Let h ă ´1 log λ ω Γ prq. Using Lemma 4.7, we fix L such that h ă ´1 log λ ω Γ,L prq. The sequence of random finite measures χ n on Γ defined by (19) converges, up to a sub-net, to a random finite measure χ on the end boundary that gives full measure to Λ E prq and which is not the null measure with positive probability. We slightly modify the distance δe by setting δe px, yq " δe px, yq if x ‰ y and δe px, yq " λ |x| if x " y and we define

W n " ż ż δe px, yq ´hdχ n pxqdχ n pyq " 1 Bn 1 E rM n,L s 2 ÿ x,yPP n,L
δe px, yq ´h.

For x, y P P n,L , we set d n to be the maximal length of a common prefix of x and y in their normal form.

Claim. There exists c L only depending on L such that δe px, yq ě c L λ dn .

Proof of the Claim. Let w n be a common prefix of x and y of length d n and write

x " w n x 1 ...x m c, y " w n y 1 ... Using this claim, we prove as above that ErW n s is uniformly bounded, which allows us to prove that ż ż δe px, yq ´hdχpxqdχpyq is almost surely finite. We then use the Frostman Lemma to conclude.

Remark. Without involving [START_REF] Papasoglu | Quasi-isometries between groups with infinitely many ends[END_REF], an alternative proof uses the bottleneck property introduced in [DY20]. Indeed, with r, F be given in [DY20, Lemma 5.4] replacing Lemma 2.4, any two elements g, h can be concatenated via some f P F such that any path from e to gf h intersects Bpg, rq. Such points are referred to as bottleneck points on re, gf hs. If a path contains a sequence of bottleneck points with consecutive distance at most L, then it is said to have the L-bottleneck property. A triangle with sides having the L-bottleneck property satisfies the conclusion of Lemma 4.4 and Lemma 4.5. We define similarly S n,L to be the set of points x P S n so that re, xs has the L-bottleneck property. Then Proposition 4.1 follows verbatim the same argument with transition point replaced with bottleneck points. The remaining modification goes as explained above.

A particular class of groups with infinitely many ends are free products of the form Γ " Γ 0 ˚Γ1 where at least one the free factors Γ i is not Z{2Z. For such groups, the authors of [START_REF] Candellero | Branching random walks on free products of groups[END_REF] prove that the Hausdorff dimension of the limit set in the end boundary endowed with a visual distance is exactly ´1 log λ ω Γ prq. Their proof for the upper bound applies to any group with infinitely many ends. Indeed, it consists in saying that for any end ξ P Λ E prq, for every n, the branching random walk has to visit some point x P Ť 0ďlďl0 S n`l such that ξ and x are in the same infinite connected component of the complement of Bpe, nq. The constant l 0 only depends on the support of the measure µ. Thus, Λ E prq can be covered with P n sets of diameter bounded by Cλ n .

For the lower bound, they first show that HdimpΛ E prq, δe q is bounded from below by some number z ånd then prove that z ˚" ω Γ prq, see [CGM12, Lemma 4.7]. However, in order to prove that z ˚" ω Γ prq, they use the same invalid argument as the one described in Section 3.5, namely that the quantity H r pnq is sub-multiplicative. Proposition 5.2 fills their gap and combining it with the proof for the upper bound described above, we get Theorem 1.3.

Remark. The proof of the upper bound described above also works for the parabolic cosets. Namely, for every P P P, the Hausdorff dimension of Λ E prq X B E P is bounded from above by ω P prq. Thus, assuming further that the Green function has a parabolic gap, we recover [CGM12, Corollary 3.7], i.e.

HdimpΛ E prq X B E P q ă HdimpΛ E prqq.

An upper bound for the Hausdorff dimension of the limit set

Let Γ be a relatively hyperbolic group and let Λ F prq be the limit set of the branching random walk in the the Floyd boundary of Γ, endowed with the Floyd distance δ e . Recall that by Theorem 2.3, there exists a map φ from the Floyd boundary to the Bowditch boundary such that the preimage of a conical limit point is reduced to a single point. We can thus see the set of conical limit points B con B Γ in the Bowditch boundary as a subset of the Floyd boundary. We set Λ con F prq " Λ F prq X φ ´1pB con B Γq. We prove here the following proposition. Proposition 6.1. Let r ď ρ ´1. Almost surely,

HdimpΛ con

F prq, δ e q ď ´1 log λ ω Γ prq.

Under additional assumption on the volume growth of parabolic subgroup, we have the upper bound on the full limit set in Floyd boundary. Corollary 6.2. Let r ď ρ ´1. Assume that v S pP q ď ω Γ prq for every parabolic subgroup P . Then almost surely, HdimpΛ F prq, δ e q ď ´1 log λ ω Γ prq.

Proof. The Bowditch boundary consists of conical points and countably many parabolic points and the preimage of each parabolic point is exactly the limit set of a parabolic subgroup (see [GP13, Theorem A]). So the limit set Λ F prq is contained in the union of Λ con F prq with countably many limit sets of parabolic cosets P P P. As P is quasi-convex in the Cayley graph of Γ, any geodesic from e to the limit points of P is contained in a fixed neighborhood of P , see for instance [START_REF] Drut | Tree graded spaces and asymptotic cones of groups[END_REF]Lemma 4.3]. Using a suited covering by shadows based at S n X P , we can see that HdimpΛ F P q ď v S pP q (e.g. [PY19, Lemma 4.1]). The conclusion now follows from Proposition 6.1.

To prepare the proof for Proposition 6.1, we first need a few geometric lemmas. Denote as usual by P " tgP : g P Γ, P P P 0 u the collection of all parabolic cosets, and by pγq the length of a path γ. Fix a geodesic rx, zs and 1 , 2 P r0, 1s. An r 1 , 2 s-percentage of rx, zs consists of points w P rx, zs such that 1 ď dpx, wq{dpx, zq ď 2 . Lemma 6.3. Let γ be a geodesic segment such that r , 1 ´ s-percentage of γ contains no pη, Lq-transition point. Then there exists a unique P P P such that the entry and exit points of γ in N η pP q have distance at most pγq to the corresponding endpoints of γ.

Proof. By assumption, the middle point m P γ is pη, Lq-deep in a unique P P P. Let u, v be the corresponding entry and exit point of γ in N η pP q. By Lemma 2.7, u, v are pη, Lq-transition points, so dpx, uq ď dpx, yq and dpv, yq ď dpx, yq, which concludes the proof.

Fix C ą 0 and x P S n . The C-partial cone Ωpx, Cq consists of points z P G such that re, zs contains an pη, Lq-transition point C-close to x.

Let Bprx, zsq be the ball centered at the middle point of rx, zs of radius dpx, zq{2. Define U pxq to be the union of the partial cone Ωpx, Cq and the balls Bprx, zsq for all geodesics rx, zs between x and z P Ωpx, Cq. That is, U pxq :" Ωpx, Cq Y ´ďtBprx, zsq : @rx, zs, @z P Ωpx, Cqu ¯.

Note that any ball of centered at w P rx, zs of radius mintdpw, xq, dpw, zqu is contained in Bprx, zsq.

In what follows, let C ą 0 be given by Lemma 2.9.

Lemma 6.4. Let α be a path starting from e and first entering at a point z P U pxq. Let w P rx, zs be a transition point. Set S :" mintdpw, xq, dpw, zqu. Then Bpw, S ´2Cq is contained in U pxq so α has distance at least S ´2C to the point w.

Proof. We first consider the case z P Ωpx, Cq. By definition of U pxq, any ball centered at w P rx, zs of radius S " mintdpx, wq, dpz, wqu is contained in U pxq. The statement follows immediately. Assume now that z lies in a ball Bprx, ẑsq where rx, ẑs is a geodesic between x and some ẑ in Ωpx, Cq. Let ŵ P rx, ẑs be the middle point.

Consider the triangle with vertices x, ŵ, z. As w is a transition point on rx, zs, Lemma 2.9 shows that dpw, w 1 q ď C for some w 1 P r ŵ, xs Y r ŵ, zs. Thus, Bpw, κ ´2Cq Ă Bpw 1 , κ ´Cq. As w 1 is on the radius r ŵ, xs or r ŵ, zs of the ball Bprx, ẑsq, we have the ball Bpw 1 , S ´Cq is contained in Bp ŵ, ηq Ď U pxq. Lemma 6.5. Let ξ P B B Γ be a conical point and consider a sequence of points z n Ñ ξ. Let x P re, ξs be an pη, Lq-transition point. Then for for all but finitely many z n , there exists an pη, Lq-transition point x n on re, z n s such that dpx n , xq ď C. In particular, z n P Ωpx, Cq for large enough n.

Proof. If z n Ñ ξ then δ x pz n , ξq ă λ C δ for all large enough n, where δ " δpη, Lq is given by Lemma 2.8. Applying Lemma 2.9 to the triangle with vertices e, ξ, z n , there is an pη, Lq-transition point x n on rz n , ξs or re, z n s such that dpx, x n q ď C. It suffices to prove that x n P re, z n s. Let y be any transition point on rz n , ξs. Then by Lemma 2.8, δ y pz n , ξq ą δ. It follows from (1) that λ C δ ą δ x pz n , ξq ě λ dpx,yq δ y pz n , ξq and hence dpx, yq ą C. The conclusion follows.

Fix P p0, 1{2q. Let U pxq be the set of points z P U pxq such that rx, zs contains a transition point w being at distance at least dpx, zq to one of the endpoints: maxtdpw, xq, dpw, zqu ě dpx, zq.

By Lemma 2.7, the set U pxqzU pxq consists of points z P U pxq such that the r , 1 ´ s-percentage of rx, zs is contained in the η-neighborhood of a unique peripheral coset P P P. Explicitly, there exists a subsegment of rx, zs with length at least p1 ´2 qdpx, zq contained in N η pP q. Lemma 6.6. Let α be a path starting from e and first entering U pxq at a point z P U pxq. Assume that dpx, zq ą 10C. Then there exists a transition point y on re, zs such that α lies outside the ball around y with radius dpx, zq ´3C.

Proof. By definition of z P U pxq, rx, zs contains a transition point w such that dpx, zq ď maxtdpw, xq, dpw, zqu.

Setting S " dpx, zq, Lemma 6.4 implies that Bpw, κ ´2Cq Ă U pxq, so α does not intersect Bpw, S ´2Cq. To conclude the proof, it remains to find a pη, Lq-transition point y P re, zs such that dpw, yq ď C. In particular, α does not intersect Bpy, S ´3Cq, completing the proof. Indeed, as in the proof of Lemma 6.4, z lies on the ball Bprx, ẑsq centered at the middle point ŵ of rx, ẑs for some ẑ P Ωpx, Cq. By assumption, w is an pη, Lq-transition point on rx, zs. Lemma 2.9 applied for the triangle with vertices x, ŵ, z shows that dpw, w 1 q ď C for some w 1 P r ŵ, xs Y r ŵ, zs. A schematic figure is shown below.

Similarly for the triangle with vertices e, x, z, Lemma 2.9 implies that either re, zs or re, xs contains an pη, Lq-transition point y such that dpw, yq ď C and then dpy, w 1 q ď 2C. As ẑ P Ωpx, Cq, dpx, re, ẑsq ď C holds, so the triangle inequality shows dpe, xq `dpx, ẑq ´2C ď dpe, ẑq.

In a different term, this implies that the path p :" re, xsrx, ẑs is p2Cq-taut: ppq ď dpp ´, p `q `2C. It follows from triangle inequality that any subpath of a p2Cq-taut path p is p2Cq-taut.

We first claim that either w 1 R rx, ŵs or y R re, xs. Otherwise, we have w 1 P rx, ŵs and y P re, xs. Since ry, xsrx, w 1 s is a p2Cq-taut subpath of p, we obtain that dpy, xq `dpx, w 1 q ď dpy, w 1 q `2C ď 4C, so dpx, wq ď dpx, w 1 q `dpw 1 , wq ď 5C. This is a contradiction because dpx, wq ě dpx, zq ą 5C.

Let us assume now y P re, xs to derive a contradiction. The above claim shows w 1 R rx, ŵs and then w 1 P r ŵ, zs. Using the p2Cq-taut path ry, xsrx, ŵs, we have dpy, ŵq `2C ě dpy, xq `dpx, ŵq. which combined with dpx, ŵq " dpz, ŵq ě dpw 1 , ŵq gives dpy, ŵq `2C ě dpy, xq `dpw 1 , ŵq.

Proof. Given x P S n , we consider the set U pxq of y P Γ so that |y| ď K|x| and x is within C of a transition point on re, ys. We freeze particles when they first reach a point y P U pxq, without entering Bpx, κ log |x|q. We denote by Z n the set of frozen particles for all x P S n . By Lemma 2.11, for n large enough, the expected number of particles frozen at y P U pxq is upper bounded by G r pe, y; rU pxqs c q ď G r pe, y; rBpx, κ log |x|qs c q ď e ´nδκ .

By Lemma 2.1, there exist c ą 0 such that 7S n ď ce vn and 7U pxq ď ce vKn for any n ě 1 and x P Γ. Thus, we have

Er7Z n s ď ÿ xPSn ÿ yPU pxq G r pe, y; rU pxqs c q ď ce vpK`1qn e ´nδκ .

If κ is chosen large enough, then ř 8 n"1 Er7Z n s ă 8, so the proof follows from the Borel-Cantelli Lemma. If P P P is a parabolic coset, η ě 0 and x P Γ, we denote π NηpP q pxq :" ty P N η pP q : dpx, yq " dpx, N η pP qqu the set of its shortest projections on the η-neighborhood N η pP q of P . For x, y P Γ, denote d NηpP q px, yq :" diam `πNηpP q pxq Y π NηpP q pyq ˘.

It follows from [Hru10, Corollary 8.2] that the shortest projection is coarsely Lipschitz:

d NηpP q px, yq ď kdpx, yq `k
for a fixed k ě 1 depending only on η. Thus, π NηpP q pxq has bounded diameter.

Lemma 6.9. [Sis13, Lemma 1.15] For every large enough η, there exists C " Cpηq ą 0 such that for every x P Γ, P P P and for every geodesic γ starting at x and entering N η pP q, we have

π NηpP q pxq Ă Bpy, Cq
where y is the entrance point of γ in N η pP q.

Lemma 6.10. There exists η 0 ě 0 such that for η ě η 0 , the following holds. Almost surely, for all but finitely many parabolic cosets P P P, if the branching random walk ever visits a point z satisfying both that d NηpP q pe, zq ě dpe, N η pP qq and dpz, N η pP qq ď d NηpP q pe, zq, then it first needs to enter N η pP q at a point w such that d NηpP q pe, wq ď dpe, N η pP qq.

In particular, if the branching random walk ever enters N η pP q, then the first entrance point must be within dpe, N η pP qq of the projection of e on N η pP q.

Proof. Given P P P, we freeze particles when they first visit some point z P Γ with d NηpP q pe, zq ě dpe, N η pP qq and dpz, N η pP qq ď d NηpP q pe, zq, without having entered tw P N η pP q : d NηpP q pe, wq ď dpe, N η pP qqu. Denote by P k the collection of parabolic cosets P with dpe, N η pP qq " k. We denote by Z k the set of such frozen particles for those P P P k . Then,

Er7Z k s ď ÿ P PP k ÿ xPNηpP q d Nη pP q px,eqěk ÿ y : π Nη pP q pyq"x dpx,yqďk
G R pe, y; N η pP q c q.

As x P π NηpP q pzq, there exists a trajectory for the µ-random walk from z to x that stays outside N η pP q of linear length in dpx, zq, since the support of µ is finite. In particular, G R pz, x; N η pP q c q ě e ´αdpx,zq ě e ´αk for some positive α. Note that by Lemma 2.1, for a fixed x, the set of such elements z being contained in a ball of radius k grows as an exponential function in k. Thus, µ is defined by the random finite measure pµ ω q ω .

In general, the disintegration theorem allows one to decompose a finite measure on X ˆΩ along its Ωmarginal, so without assuming P-regularity, it cannot be seen as a random finite measure in the sense of Definition A.1.

We now introduce some definitions based on [START_REF] Crauel | Random probability measures on Polish spaces[END_REF].

Definition A.5. A random closed set is a map ω P Ω Þ Ñ Cpωq P 2 X taking values in closed subsets of X and such that the map ω Þ Ñ dpx, Cpωqq is measurable for every

x P X. A random open set is a map ω Þ Ñ U pωq such that the complement map ω Þ Ñ U c pωq is a random closed set. Let C " ω Þ Ñ Cpωq be a random closed set, U " ω Þ Ñ U pωq
a random open set and µ " pµ ω q ω a random finite measure. We set µpCq " E rµ ω pCpωqqs and µpU q " E rµ ω pU pωqqs .

Definition A.6. A random bounded continuous function is a map f : X ˆΩ Ñ R such that (a) for every x P X, ω Þ Ñ f px, ωq is measurable, (b) for every ω P Ω, x Þ Ñ f px, ωq is continuous and bounded, (c) There exists C ě 0 such that for P-almost every ω, }f p¨, ωq} 8 ď C.

Remark. The third condition can be reformulated as }f p¨, ωq} 8 is in L 8 pΩ, Pq. In [START_REF] Crauel | Random probability measures on Polish spaces[END_REF], the author introduces several spaces of random functions, replacing the third condition by }f p¨, ωq} 8 P L p pΩ, Pq. For p " 1 the corresponding space of function is called the space of random continuous functions there.

We denote by C Ω,b pXq the space of random bounded continuous functions and endow C Ω,b pXq with the L 8 ˆL8 -norm } ¨}8 , defined by }f } 8 " inf C ě 0, P `ω, }f p¨, ωq} 8 ą C ˘" 0 ( , for every f P C Ω,b pXq. If f is a random bounded continuous function and µ is a random finite measure, then the integral

µpf q " E "ż f px, ωqdµ ω pxq  is well defined. Recall that a Lipschitz function on X is a function f : X Ñ R such that }f } L " sup x,yPX
|f pxq ´f pyq| dpx, yq is finite. We then set }f } BL " supt}f } 8 , }f } L u and say that f is bounded Lipschitz if }f } BL is finite. We denote by BLpXq the set of bounded Lipschitz functions on X. Definition A.7. A random bounded Lipschitz function is a random bounded continuous function f such that there exists C ě 0 such that for P-almost every ω, the map x Þ Ñ f px, ωq is bounded Lipschitz and }f p¨, ωq} BL ď C.

Remark. In [START_REF] Crauel | Random probability measures on Polish spaces[END_REF], random bounded Lipschitz functions are called random Lipschitz functions. We changed the terminology to insist on the fact that random functions we are considering here are P-essentially bounded.

We denote by BL Ω pXq the set of random bounded Lipschitz functions on X.

Lemma A.8. If two random finite measures pµ ω q ω and pν ω q ω coincide on random bounded Lipschitz functions, i.e. for every f P BL Ω pXq, µpf q " νpf q, then for P-almost every ω, µ ω " ν ω .

Proof. For every closed set C P X, the sequence of functions

f n : x Þ Ñ 1 ´p1 ^ndpx, Cqq
is non-increasing and converges to 1 C . Moreover, for every n, f n is bounded Lipschitz. Therefore, for every event A, the maps px, ωq Þ Ñ 1 A pωqf n pxq are random bounded Lipschitz functions. Thus by monotone convergence, it suffices to prove that if for all closed set C, for all event A, µpC ˆAq " νpC ˆAq, then pµ ω q ω and pν ω q ω coincide P-almost surely. Since closed sets are closed under finite intersection and the measures we are considering are finite, this follows from the monotone class theorem [Bil86, Theorem 3.4].

A.2. The weak topology on random finite measures. Recall that the weak topology on MpXq is the smallest topology such that for all bounded continuous function f : X Ñ R, the map µ Þ Ñ µpf q is continuous.

Definition A.9. The weak topology on M Ω pXq is the topology generated by the maps µ Þ Ñ µpf q, for every f P C Ω,b pXq, i.e. it is the smallest topology on M Ω pXq such that for every f P C Ω,b pXq, the map µ P M Ω pXq Þ Ñ µpf q P R is continuous.

Remark. In [START_REF] Crauel | Random probability measures on Polish spaces[END_REF], the author defines the narrow topology on the space of random probability measures as the topology generated by the maps µ Þ Ñ µpf q for every random continuous function f . Recall that a random continuous function as defined there is a function f such that for all ω, f p¨, ωq is bounded continuous and }f p¨, ωq} 8 is in L 1 pΩ, Pq.

' First, we preferred to use the terminology weak topology which is more common, although both exist in literature. ' Second, by [Cra02, Lemma 3.16], for random probability measures, the induced weak topology on the set of measures is the same when choosing either random bounded continuous functions or random continuous functions. However, in our context, the proof of this lemma does not apply and it seems that choosing different spaces of functions can yield different notions of weak topologies.

Lemma A.10. The weak topology is generated by the maps µ Þ Ñ µpf q for every f P BL Ω pXq, i.e. it is the smallest topology on M Ω pXq such that for every random bounded Lipschitz function f , µ Þ Ñ µpf q is continuous.

Proof. This follows from the fact that bounded continuous functions can be approximated by bounded Lipschitz functions, see [Cra02, Proposition 4.9] for more details.

We now prove the following generalization of the classical Portmanteau theorem in terms of convergent nets. We refer to [AB06, Definition 2.11, Definition 2.15] for more details on nets.

Proposition A.11. Let µ α " ppµ α q ω q ω be a net of random finite measures and let µ " pµ ω q ω be a random finite measure. Then, the following assertions are equivalent.

(1) The net µ α converges to µ for the weak topology.

(2) For all random closed set C " ω Þ Ñ Cpωq, lim sup α µ α pCq ď µpCq and µ α pX ˆΩq converges to µpX ˆΩq.

(3) For all random open set U " ω Þ Ñ U pωq, lim inf α µ n pU q ě µpU q and µ α pX ˆΩq converges to µpX ˆΩq.

Proof. Taking complements, the second and third assertions are equivalent. Also, if µ α converges to µ, applying the definition of the weak topology to the constant function 1, we see that µ α pX ˆΩq converges to µpX ˆΩq.

Let us assume that µ α converges to µ and let C be a closed random set. For every k P N, set f k px, ωq " 1 ´p1 ^kdpx, Cpωqqq.

Then, for every k, f k is a random bounded Lipschitz function and the sequence f k is non-increasing and converges to 1 Cpωq pxq. Thus, for every k, lim sup α µ α pCq ď lim α µ α pf k q " µpf k q, so lim sup α µ α pCq ď inf k pµpf qq " µpCq.

Consequently, the first assertion implies the second one. Assume now that for all closed random set C, lim sup µ α pCq ď µpCq and that µ α pX ˆΩq converges to µpX ˆΩq. We show that for every non-negative random bounded continuous function f , (25) lim sup µ α pf q ď µpf q.

Fix m P N and set for every 0 ď k ď m C k pωq "

" x P X, f px, ωq ě k m }f p¨, ωq} 8
Since m is arbitrary, this proves (25). Using that µ α p1q " µ α pX ˆΩq converges to µp1q " µpX ˆΩq and applying (25) to the function }f } 8 ´f , we get that µ α pf q converges to µpf q. This is true for all non-negative random bounded continuous function, so µ α converges to µ for the weak topology.

Remark. By Lemma A.8, the weak topology is Hausdorff. We do not attempt to study metrizability of the weak topology in here to avoid lengthily arguments, but in [Cra02, Theorem 4.16], the author proves that the weak topology on the space of random probability measures is metrizable, provided that the probability space pΩ, F, Pq is countably generated (mod. P). This might also holds in our situation.

A.3. A compactness criterion for random finite measures. In all this section, MpXq and M Ω pXq are endowed with the weak topology. Let us recall the following definition.

Definition A.12. A subset M of MpXq is tight if for every ą 0, there exists a compact subset of X such that for every µ P M , we have µpK c q ď .

Following [START_REF] Crauel | Random probability measures on Polish spaces[END_REF], we define tightness for random finite measures as tightness under the projection map π X . Definition A.13. A subset M Ω of M Ω pXq is tight if π X pM Ω q is tight, i.e. for every ą 0, there exists a compact subset of X such that for all pµ ω q ω P M Ω , we have Erµ ω pK c qs ď .

The classical Prokhorov theorem states that a set M of probability measures on X is relatively compact if and only if it is tight. The following generalizes this result to finite measures.

Theorem A.14. Prokhorov Theorem for finite measures [START_REF] Kallenberg | Random measures, theory and applications[END_REF]Lemma 4.4]. A subset M of MpXq is relatively compact if and only if M is tight and uniformly bounded, in the sense that sup µPM µpXq is finite.

Our goal is to generalize this to random finite measures. Unfortunately, we will not get a necessary and sufficient condition for compactness as in the Prokhorov Theorem but only a sufficient condition.

We follow the strategy of [Cra02, Theorem 4.4] and first prove the following representation result. Recall that BL Ω pXq denotes the set of random bounded Lipschitz functions and BLpXq denotes the set of bounded Lipschitz functions on X. Then, if f P BLpXq, f can be viewed as an element of BL Ω pXq by setting f px, ωq " f pxq. Similarly, if f is P -essentially bounded, i.e. f P L 8 pΩ, Pq, then f can be viewed as an element of BL Ω pXq by setting f px, ωq " f pωq. If L : BL Ω pXq Ñ R is a function, we denote by π X pLq, respectively π Ω pLq its restriction to bounded Lipschitz functions, respectively to P-essentially bounded functions.

Lemma A.15. Let L : BL Ω pXq Ñ R. be a function. Assume that the following conditions hold (a) L is linear, (b) L is non-negative, i.e. for every non-negative function f in BL Ω pXq, we have Lpf q ě 0, (c) there exists κ P MpXq such that for every f P BLpXq, we have π X pLqpf q " κpf q " ż f dκ, (d) there exists a constant C ą 0 such that for every f P L 8 pΩ, Pq, we have 1 C π Ω pLqpf q ď Erf s ď Cπ Ω pLqpf q.

Then, there exists a random finite measure µ " pµ ω q ω such that Lpf q " µpf q for every f P BL Ω pXq.

Proof. The proof relies on the general Stone-Daniell representation theorem. We claim that if f n is a nonincreasing sequence of functions of BL Ω pXq converging to 0, then Lpf n q is non-increasing and converges to 0. By [Cra02, Theorem 4.11], we deduce that there exists a measure µ on X ˆΩ such that Lpf q " µpf q for every f P BL Ω pXq. Conditions (c) and (d) ensure that µ is finite. Moreover, the Ω-marginal π Ω pµq of µ is π Ω pLq and so the fourth condition shows π Ω pµq and P are absolutely continuous with respect to each other. Therefore, we can apply Proposition A.4, so that µ is defined by a random finite measure. We just need to prove the claim to conclude the proof. Let f n be a non-increasing sequence of random bounded Lipschitz functions converging to 0. Since L is linear and non-negative, we get that Lpf n q is non-inscreasing. We need to prove that Lpf n q converges to 0. Fix ą 0. Let K be a compact such that κpK c q ď . For every n, there exists C n such that }f n p¨, ωq} BL ď C n , for P-almost every ω. Set δ n " {C n and consider the function χ n : x Þ Ñ χ n pxq " 1 ´`1 ^δ´1 n dpx, Kq ˘.

Then, χ n vanishes outside the δ n -neighborhood of K. Moreover, the function g n : px, ωq Þ Ñ f n px, ωqχ n pxq is in BL Ω pXq. Now, f n " g n `fn p1 ´χn q and so (26) Lpf n q " Lpg n q `Lpf n p1 ´χn qq.

We first deal with the second term in the right-hand side of (26). Since f n is non-increasing, we have that f n px, ωq ď }f 1 p¨, ωq} 8 Moreover, there exists M ě 0 such that the event A " t}f 1 p¨, ωq} 8 ď M u satisfies PpA c q " 0. Note that we can write f n p1 ´χn q ď M p1 ´χn q1 A `}f 1 p¨, ωq}1 A c . By Condition (d), Lp}f 1 p¨, ωq}1 A c q " 0. Thus, Lpf n p1 ´χn qq ď M Lp1 ´χn q " M ż p1 ´χn qdκ.

Note that 1 ´χn vanishes in K, so

Lpf n p1 ´χn qq ď M κpK c q ď M .

We now deal with the first term in the right-hand side of (26). For every ω such that }f n p¨, ωq} BL ď C n and for every x, y P X, we have |g n px, ωq ´gn py, ωq| ď C n dpx, yq `2f n py, ωq. We write h n pωq " sup yPK f n py, ωq. The event A n " tω, }f n p¨, ωq} BL ą C n u satisfies PpA n q " 0, hence the same manipulation as above shows that (28)

Lpg n q ď 3Lph n q ` Lp1q ď 3CEph n q `κpXq , using Conditions (c) and (d).

Combining (26), ( 27) and (28), we get

Lpf n q ď 3CEph n q `pκpXq `M q .

Using that f n is non-increasing and converges to 0, that for all ω, f n p¨, ωq is continuous and that K is compact, we get that h n is non-increasing and converges to 0. By monotone convergence, Eph n q converges to 0, so for large enough n, Eph n q ď . Thus, for large enough n,

Lpf n q ď p3C `κpXq `M q .

Since is arbitrary, this concludes the proof of the claim.

The main ingredient in proving a compactness criterion for random finite measures is the following proposition. Recall that if f P BL Ω pXq, then in particular, f P C Ω,b pXq and so for P-almost every ω, |f p¨, ωq| is bounded and Er}f p¨, ωq} 8 s is bounded. Thus, π X pµqpf q is finite. Since K is compact, this proves that M f and M f are finite. We set C " ź f PBLΩpXq rM f , M f s and we endow C with the product topology. Then C is compact by the Tychonoff Theorem [AB06, Theorem 2.61]. We can identify C with the set of all functions L : BL Ω pXq Ñ R such that Lpf q P rM f , M f s. A neighborhood basis of an element L 0 of C is given by U δ pf 1 , ...f n qpL 0 q " tL P C, |Lpf k q ´L0 pf k q| ă δ, 1 ď k ď nu, where δ ą 0 and f 1 , ..., f n P BL Ω pXq. We define the map I : µ P π ´1 X pKq Þ Ñ pµpf qq f PBLΩpXq P C. Then, I is one-to-one and continuous. Moreover, by Lemma A.10, a neighborhood basis of an element µ 0 P π ´1 X pKq for the weak topology is given by V δ pf 1 , ..., f n qpµ 0 q " tµ P π ´1 X pKq, |µpf k q ´µ0 pf k q| ă δ, 1 ď k ď nu, where δ ą 0 and f 1 , ..., f n P BL Ω pXq. Since I `Vδ pf 1 , ..., f n qpµ 0 q ˘" U δ pf 1 , ..., f n qpIpµ 0 qq, we see that I is an open map and thus a homeomorphism onto its image in C.

We make a similar construction for non-random finite measures. Recall that BLpXq is the set of (nonrandom) bounded Lipschitz functions on X and that BLpXq can be seen as a subset of BL Ω pXq by setting f px, ωq " f pxq for any f P BLpXq. We define c " ź f PBLpXq rM f , M f s and ipκq " pκpf qq f PBLpXq . Then, i is a homeomorphism onto its image in c. If L P C, denote by πpLq P c its restriction to non-random bounded Lipschitz functions.

For every f P BLpXq, seen as an element of BL Ω pxq and for every random finite measure µ, we have µpf q " E "ż f pxqdµ ω pxq  " π X pµqpf q.

Thus, π ˝I " i ˝πX . Now, fix C ą 0. By Lemma A.15, we have Corollary A.17. Consider a subset M Ω of M Ω pXq. Assume that M Ω is tight. Also assume that there exists C ě 0 such that for every µ P M Ω , 1 C π Ω pµq ď P ď Cπ Ω pµq.

I
Then, M Ω is relatively compact.

Proof. If M Ω satisfies the assumptions of the corollary, then π X pM Ω q Ă MpXq is tight. Also, the condition π Ω pµq ď CP can be reformulated by dπ ω pµq dP pωq " µ ω pXq ď C P-almost surely. In particular, π X µpXq " Erµ ω pXqs ď C, so π X pµqpXq is uniformly bounded. By Theorem A.14, π X pM Ω q is relatively compact, i.e. clpπ X pM Ω qq is compact. Moreover,

M Ω Ă π ´1 X `clpπ X pM Ω qq ˘X " µ, 1 C π Ω pµq ď P ď Cπ Ω pµq * .
Thus, clpM Ω q is compact.

This corollary does not give a necessary and sufficient condition for compactness, but only a sufficient one. On the contrary, [Cra02, Theorem 4.4] gives a necessary and sufficient condition for compactness in the context of random probability measures : a set is relatively compact if and only if it is tight. However, assuming that for P-almost every ω, µ ω is a probability measure, we get that π X pµq is a probability measures and that the Ω-marginal of µ is exactly P. This ensures that the others conditions of Corollary A.17 are automatically satisfied and so tightness is sufficient to get compactness.

Recall that the Radon-Nikodym derivative of π Ω pµq with respect to P is given by µ ω pXq. In our context, on the one hand, the assumption 1 C π Ω pµq ď P ď Cπ Ω pµq

  [GP15, Proposition 7.1.1], [Sis12, Proposition 4.6]. It can also be derived from [DS05, Theorem 1.12], [Hru10, Section 8], [Osi06, Proposition 3.15]. Usually, it is stated for points x, y, z in the Γ. The following version for points in the boundary is proved in [DG20, Lemma 2.4].

H

  r pnq :" ÿ xPSn G r pe, xq and define the growth rate of the Green function as follows ω Γ prq :" lim sup nÑ8 log H r pnq n

rr

  m p m pe, xq ď ce vn ÿ mąc2n ´r R ¯m ď c 3 for some constant c 3 ą 0. Now for 1 ď s ă r ď R ´δ, H s pnq " ÿ m p m pe, xq ě ´s r ¯c2n pH r pnq ´c3 q .

  (5)H r pn `mq ď ÿ 0ďkďn ÿ 0ďjďm c 0 H r pkq ¨Hr pjq ¨Kr pn `m ´k ´jq for any n, m ě 0. Indeed, for given x P S n`m , consider a geodesic γ " re, xs and the point y P γ such that dpe, yq " n. If y is a transition point, then by the relative Ancona inequalities, we have G r pe, xq ď CG r pe, yqG r pe, y ´1xq.

  (6) a ω pn `mq ď c 1 ˜ÿ 1ďkďn a ω pkq ¸¨˜ÿ 1ďjďm a ω pjq ¸, for any n, m ě 0. We conclude as in [Yan19, Theorem 5.3]. 3.4. Criteria for Green parabolic gap. A possible way to get this parabolic gap is the following divergence criterion based on [Yan19, Lemma 2.23]. Let A, B be two subsets of G. Denote by WpA, Bq the set of all words over the alphabet set A \ B with letters alternating in A and B.

Proposition 4. 1 .

 1 For r P r1, ρ ´1s, ω Γ prq " lim sup nÑ8 1 n log M n almost surely. Theorem 1.1 is then a consequence of Proposition 4.1, Corollary 3.4 and Corollary 3.5. 4.1. Upper bound. We first prove the following. Proposition 4.2. Almost surely, we have lim sup nÑ8 1 n log M n ď ω Γ prq.

1n

  log M n,L . To this end, mimicking the strategy of [SWX20], we need first and second moments estimates for M n,L . Set H r,L pnq " ÿ xPS n,L G r pe, xq, and ω Γ,L prq " lim sup nÑ8 1 n log H r,L pnq.

  (16) H r,L pn `mq ď c 1 ÿ yPS n,L G r pe, yq ÿ zPS m,L G r pe, zq " c 1 H r,L pnqH r,L pmq.

For

  x P S n,L and y P S m,L there is f P F such that dpx, re, xf ysq ď , dpxf, re, xf ysq ď . Also, there are positive constants c 2 and c 3 such that G r pe, xqG r pe, yq ď c 2 G r pe, xqG r px, xf qG r pxf, xf yq ď c 3 G r pe, xf yq. Note that xf y P Ť ´lďiďl S n`i,L . Thus (17) H r,L pnqH r,L pmq ď c 4 H r,L pn `mq for some c 4 ą 0. This proposition follows by the Fekete Subadditive Lemma and (16), (17).

y

  Now we consider the case z P Ω 2 . Using Lemma 4.5 again, there exists v P Γ such that v is within a bounded distance of a transition point on re, zs, a transition point on rz, ws and a transition point on re, ws.By the same argument as in the case z P Ω 1 , we have that ÿ zPΩ2 G r pe, zqG r pz, xqG r pz, yq ď c 5 G r pe, wqG r pw, xqG r pw, yq This completes the proof of the lemma. This lemma will help us estimate E "

  1 n log M n ě ω Γ,L prq. By [SWX20, Lemma 4.7], lim sup M 1{n n is almost surely a constant. Thus, for every L, almost surely we have lim sup 1 n log M n ě ω Γ,L prq. Letting L tend to infinity along a sequence, it follows from Lemma 4.7 that lim sup 1 n log M n ě ω Γ prq. Thus by Proposition 4.2, lim sup 1 n log M n " ω Γ prq.

  w n . Note that re, xs and re, ys are L-transitional. A small adaptation of the proof of [PY19, Proposition 5.13] yields that δe px, yq ě c L λ dn . There exists C such that d n ď n `C. Furthermore, if d n " k, then 2n ´k ´C ď dpx, yq ď 2n ´k `C. By Lemma 4.9, E r7 tpx, yq P P n,L : d n " kus n,L 2n´k´Cďdpx,yqď2n´k`C G r pe, zqG r pz, xqG r pz, yq. Recall that r ă ρ ´1. Applying Proposition 4.6 and Lemma 4.8, we get (22) E r7 tpx, yq P P n,L : d n " kus ď C L e ω Γ,L prqp2n´kq .

  In particular, if a geodesic re, xs is L-transitional in the sense of Definition 4.3, then |e, xs cannot travel long in parabolic subgroups and thus every word a i and b i in the normal form of x (23) satisfies |a i | ď D L and |b i | ď D L , where D L only depends on L.

  y l c 1 where x i , y i are either in A or B and c, c 1 P C. Then, any path from x to y has to pass within a bounded distance of w n x 1 . Since |x 1 | ď D L and |w n | " d n , we see that x and y lie in distinct components of Bpe, d n `DL `Cq. Thus, δe px, yq ě λ dn`D L `C .

  If x is in the δ n -neighborhood of K, choose y P K such that dpx, yq ď δ n . Then, by what precedes, g n px, ωq ď 3 sup yPK f n py, ωq `Cn δ n ď 3 sup yPK f n py, ωq ` . Since χ n vanishes outside the δ n -neighborhood of K, this yields sup xPX g n px, ωq ď 3 sup yPK f n py, ωq ` .

  Proposition A.16. Let C ą 0. If K is compact in MpXq, then π ´1 X pKq X " µ P M Ω pXq, 1 C π Ω pµq ď P ď Cπ Ω pµq * is compact in M Ω pXq.Proof. Let f P BL Ω pXq and set M f " sup

  Lemma 3.3. The map Φ is uniformly bounded to one.Proof. Indeed, assume that Φpg, hq " gf 1 h and Φpx, yq " xf 2 y for f 1 , f 2 P F . If Φpg, hq " Φpx, yq, we obtain dpg, xq, dph ´1, y ´1q ď 4 from Lemma 2.4. Thus, there are at most 3p7Bpe, 4 qq 2 pairs of elements px, yq such that Φpg, hq " Φpx, yq.Proof of Lemma 3.2. For any g P S n , h P S m , we have G r pe, gqG r pe, hq ď c 1 G r pe, gqG r pe, f qG r pe, hq ď c 2 G r pe, gf hq Note that c ´1 3 H r pn `1q ď H r pnq ď c 3 H r pn `1q by Lemma 3.1. Thus, we have H r pnqH r pmq ď c 4 H r pn `mq.

	Thus,		
	H r pnqH r pmq ď c 2	ÿ	G r pe, zq.
		zPApn`m,lq	

where F is a finite set given by Lemma 2.4. and let Apn, lq " Ť ´lďiďl S n`i be the annulus of width l and radius n and define Φ : S m ˆSn Ñ Apn `m, lq by setting Φpg, hq " gf h, where f P F is provided by Lemma 2.4.

  As in the previous example, by[START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF] Lemma 4.4], G s,Γ0 1 pe, xq " G s pe, xq, where as usual G s denotes the Green function associated with the initial random walk driven by µ α at s. So in particular, applying (9) at

						px, yq.
					1´ws,α t
	Define				
		ζ 0 psq "	p1 ´αqs 1 ´ws,α	.
	t " 1,				
	(10)	G s px, yq " G s,Γ0 1	px, yq "	1 1 ´ws,α	G µ0 ζ0psq px, yq.

  hence P-almost surely, a finite measure on X, for every Borelian set B, the map ω Þ Ñ µ ω pBq is measurable and for every non-negative measurable function φ on X ˆΩ, we have

		µpφq " }µ}νpφq
				ż ż
			" }µ}	φpx, ωqdν ω pxqdQpωq
			ż ż	
			"	φpx, ωq}µ}dν ω pxqf pωqdPpωq
			"ż	
			" E	φpx, ωqdµ ω pxq	.
				Thus,
	(24)	Er7Z k s ď	ÿ	ÿ
			P PP k	xPNηpP q

dpx,π Nη pP q peqqěk G R pe, x; N η pP q c qe βk ,

  The four sets on the right-hand side are closed. Since C is compact and I is a homeomorphism onto its image, we get that

	ˆπ´1 X pKq X	"	µ,	C 1	ď π Ω pµq ď P ď Cπ Ω pµq *"
	π ´1pipK qq X tL linearu X tL non-negativeu
	X π π ´1 " L, 1 C X pKq X " µ,	1 C	ď π

Ω pLq ď Er¨s ď Cπ Ω pLq * . Ω pµq ď P ď Cπ Ω pµq * is compact.
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Claim. For every given K, there exists K 1 such that if w is within K of a transition point on rv, ys, then dpv, wq ď K 1 .

Proof of the claim. Since v is within a bounded distance of a transition point on rw, ys by assumption, we have dpw, yq ě dpw, vq `dpv, yq ´C. Thus, if dpw, rv, ysq ď K, then dpv, yq ě dpdpw, vq `dpw, yq ´2K and so 2dpv, wq ď C `2K, which proves the claim.

Claim. For every given K, there exists K 1 such that if v is within K of a transition point on rw, xs, then dpv, wq ď K 1 .

Proof of the claim. By the previous claim, we can assume that w is far from a transition point on rv, ys. But then, since w is within a bounded distance of a transition point on rx, ys, applying Lemma 4.4 to pv, x, yq shows that w is within a bounded distance of a transition point on rv, xs. Therefore, dpv, xq ě dpv, wq `dpw, xq ´C.

Thus, if dpv, rw, xsq ď K, then dpw, xq ě dpv, wq `dpv, xq ´2K and so 2dpv, wq ď c `2K, which proves the claim.

These two claims show that either dpv, wq is bounded or w is far from a transition point on rv, ys and v is far from a transition point on rw, xs. Applying Lemma 4.4 to pv, x, yq and then to pz, w, xq, in every case we get that w is within a bounded distance of a transition point on rv, xs and v is within a bounded distance of a transition point on rw, zs.

By the relatively Ancona inequalities, we thus have Here we used the facts that for r ă ρ ´1, G r pw, vq is decaying exponentially in dpw, vq, which is a direct consequence of (3) and that

P

On the other hand, |dpy, ŵq ´dpw 1 , ŵq| ď dpy, w 1 q ď 2C. These together show that dpy, xq ď 4C and then dpw 1 , xq ď dpw 1 , yq `dpy, xq ď 6C. Thus, |dpx, ŵq ´dpw 1 , ŵq| ď 6C. Since dpx, ŵq " dpz, ŵq and w 1 is on r ŵ, zs, we have dpw 1 , zq ď 6C, so dpx, zq ď 12C. This contradicts the assumption dpx, zq ą 10C, hence we proved that y P re, zs is impossible, so y is the desired transition point on re, zs.

For any m ě 1, let U px, mq be the set of elements z P U pxq such that dpx, zq ě m.

Lemma 6.7. For any P p0, 1{2q, there exists κ ą 0 with the following property. Almost surely, there exists n 0 ą 0 such that for all n ą n 0 and all x P S n : if BRWpΓ, ν, µq first enters U pxq at a point z, then z P U pxqzU px, κ log |x|q.

Proof. Let us freeze all particles of the branching random walk when they enter U pxq at the first time. Denote by Zpx, mq the collection of frozen particles z P U ε px, mq. Then for z P Zpx, mq we have (1) dpx, zq ě m, (2) maxtdpy, xq, dpy, zqu ą dpx, zq where y is an pη, Lq-transition point on re, zs given by Lemma 6.6. Note that the genealogy path from e to z does not intersect Bpy, dpx, zqq.

Let δ " δpη, Lq be given by Lemma 2.11. Then the expected number of particles frozenat z P U pxq is upper bounded by G r pe, z; rU pxqs c q ď G r pe, z; rBpy, dpx, zqqs c q ď e ´eδ dpx,zq .

By Lemma 2.1 there exists c ą 0 such that 7S n ď ce vn for any n ě 1. Thus, there exist 1 " 1 p , δ, vq and m 0 ą 0 such that for any m ą m 0 , we have Choose κ so that κ 1 ą 1 and let m " κ log n. Consider the event A n " tZpx, mq ě 1 for some x P S n u , i.e. A n is the event such that if the branching random walk visits U x for some x P S n , then the first frozen particle is in U px, mq. Then

Therefore, ř 8 n"1 PpA n q ă 8 and so the conclusion follows from the Borel-Cantelli Lemma. Similarly, we prove the following. Lemma 6.8. For every K ě 0 and C ě 0, there exists κ ą 0 such that the following holds. Almost surely, for all but finitely many x, if the branching random walk ever visits a point y with dpe, yq ď Kdpe, xq and such that x is within C of a transition point on re, ys, then it first enters Bpx, κ log |x|q.

where β depends both on α and on the growth rate v of the word distance. By Lemma 2.12, for every M ě 0, there exists η 0 such that for all η ě η 0 , G R pe, x; N η pP q c q ď Ce ´M dpx,π η,P peqq .

Choosing M ą v `β, where v is the growth rate of the word distance, we have by Lemma 2.1 and by (24) that for η ě η 0 ,

By the choice of M , the sum ř kě0 Er7Z k sis finite. The result again follows from the Borel-Cantelli lemma.

Lemma 6.11. There exists κ such that almost surely, for any conical limit point ξ in Λ and for all but finitely many transition point x on re, ξs, P intersects Bpx, κ log |x|q.

Proof. Let ξ P Λ be a conical point. Then re, ξs contains infinitely many pη, Lq-transition points (see [Yan22, Lemma 2.20]). Consider any pη, Lq-transition point x P re, ξs so that |x| ą n 0 . According to Lemma 6.5, for Ωpx, Cq Ă U pxq, the branching random walk must enter U pxq.

Set P p0, 1{2q so that K " ´1 ě 4. Let κ be given by Lemmas 6.7 and 6.8. Up to enlarging η, we may assume that it is big enough to apply Lemma 6.10.

Let z P U pxqzU px, κ log |x|q be the first entrance point by Lemma 6.7, so one of the following statements is true:

(1) dpz, xq ď κ log |x|, (2) the r , 1 ´ s-percentage of rx, zs does not contain any pη, Lq-transition point.

If the case (1) happens, then we are done. We now assume dpx, zq ą κ log |x|. By Lemma 6.3, there exist a unique coset P P P such that if y 1 , y 2 are the entrance and exit points of rx, zs in N η pP q, then maxtdpx, y 1 q, dpy 2 , zqu ď dpx, zq, so dpy 1 , y 2 q ě p1 ´2 qdpx, zq ě p1 ´2 qκ log n 0 .

By definition, z is contained in a ball Bprx, ẑsq centered at ŵ for some ẑ P Ωpx, Cq. By definition of Ωpx, Cq, there exists a transition point x on re, ẑs such that dpx, xq ď C. By Lemma 2.9 for the triangle with vertices e, z, ẑ, we see that x is within C and so x is within 2C of a transition point on re, zs. According to Lemma 6.8, if the branching random walk does not enter Bpx, κ log |x|q, then we have |z| ą K|x| " ´1|x|. Noting as above that x is within 2C of a transition point on re, zs, Lemma 6.9 implies that π NηpP q peq is within a bounded distance of the entry point y 1 of rx, zs into N η pP q, which implies that dpy 1 , y 2 q ď d NηpP q pe, zq `C1 for some constant C 1 depending on C. Moreover, if n 0 is large enough, then dpy 1 , y 2 q ě C 1 {2, so we get dpy 1 , y 2 q ď 2d NηpP q pe, zq, hence dpz, N η pP qq ď 2 1 ´2 d NηpP q pe, zq.

Furthermore, dpe, N η pP qq ď |x| `dpx, y 1 q. Since |x| ď |z| and dpx, y 1 q ď dpx, zq, we get dpe, N η pP qq ď

Thus, if is small enough, the conditions of Lemma 6.10 holds, hence the branching random walk first enters N η pP q at a point w such that dpπ NηpP q peq, wq ď dpe, N η pP qq. Since x is within 2C of a transition point on re, ws, dpe, N η pP qq ě |x| `dpx, N η pP qq ´2C and so dpx, wq ď dpx, N η pP qq `dNηpP q pe, wq ď 2dpe, N η pP qq `2C ď 2dpe, wq `2C.

Thus, for n 0 large enough, we have dpe, wq ě dpe, xq ´2C ě C so dpx, wq ď 4dpe, wq. Applying Lemma 6.8 with K ě 4 again, we see that the branching random walk necessarily enters Bpx, κ log |x|q. This concludes the proof.

We can now end the proof of the upper-bound.

Proof of Proposition 6.1. Let r ď ρ ´1 and fix h such that h ą ω Γ prq ´log λ .

Let 0 ă ă 1{2. Let ξ P Λ con F prq and let x be a transition point on re, ξs. By Lemma 6.11, almost surely, there exists n 0 such that if |x| ě n 0 , we can find z P P such that z P Bpx, κ log |x|q. In particular, |x| ď |z| `κ log |x| and if |x| is large enough, then |z| ě p1 ´ q|x|, hence

Consequently, for every m,

By Lemma 2.5, the diameter of Π ´z, κ log |z| 1´ ¯is bounded by Cλ |z| |z| α log |z|. Thus,

Since lim sup 1 n log M n ď ω Γ prq, by the choice of h, this last quantity converges to 0 as m tends to infinity. This concludes the proof.

We deduce the following result. We denote by Λ B prq the limit set of the branching random walk inside the Bowditch boundary, endowed with the shortcut distance δ e . Corollary 6.12. Let r ď ρ ´1. Almost surely, HdimpΛ B prq, δ e q ď ´1 log λ ω Γ prq.

Proof. Combining Proposition 6.1 and (2), we get that HdimpΛ B prq X B con B Γ, δ e q ď ´1 log λ ω Γ prq.

The complement of the set of conical limit points in the Bowditch boundary is the set of parabolic limit points, which is countable. This yields the desired upper-bound.

Theorem 1.2 is a consequence of Proposition 5.1 and Corollary 6.12. Recall that if Γ is hyperbolic, then it is also relatively hyperbolic and its Bowditch, Floyd and Gromov boundaries coincide. Moreover, the shortcut distance and the visual distance are bi-Lipschitz by [PY19, Proposition 6.1]. Thus, Corollary 1.4 follows from Theorem 1.2.

Appendix A. Convergence of random finite measures

A.1. Random finite measures. Let pX, Bq be a Polish space endowed with its Borelian σ-algebra. Let pΩ, F, Pq be a probability space.

Definition A.1. A random finite measure on X is a map µ : pω, Bq P Ω ˆB Þ Ñ µ ω pBq P R such that (a) for every B P B, the map ω Þ Ñ µ ω pBq is measurable, (b) for P-almost every ω, ω Þ Ñ µ ω is a finite Borelian measure on X, (c) the expectation Erµ ω pXqs is finite, We identify µ with the family of maps µ ω : B Ñ R and we write µ " pµ ω q ω . We denote by M Ω pXq the set of random finite measure on X and by MpXq the set of finite measures on X. Given a random finite measure µ " pµ ω q ω , we define the measure π X pµq on X by π X pµqpBq " E rµ ω pBqs for every Borelian set B P B. We also define the measure π Ω pµq on Ω by π Ω pµqpAq " Er1 A µ ω pXqs.

We call π X pµq, respectively π Ω pµq, the X-marginal, respectively the Ω-marginal of µ.

If µ " pµ ω q ω is a random finite measure, then one can define a finite measure μ on X ˆΩ by setting for every measurable set A of X ˆΩ

Then, π X pµq and π Ω pµq are the push-forward measures of µ by the canonical projections π X : X ˆΩ Ñ X and π Ω : X ˆΩ Ñ Ω.

Definition A.2. A random finite measure µ is called P-regular if P and π Ω pµq are absolutely continuous with respect to each other.

Lemma A.3. Let µ " pµ ω q ω be a random finite measure. Then π Ω pµq is absolutely continuous with respect to P. Moreover, µ is P-regular if and only if for P-almost every ω, µ ω is not the null measure.

Proof. If A is such that PpAq " 0, then P-almost surely, 1 A µ ω pXq " 0, so π Ω pµqpAq " Er1 A µ ω pXqs " 0. This concludes the first part of the lemma.

For the second part, assume that the event A " tω, µ ω pXq " 0u has positive probability. Then, Er1 A µ ω pXqs " 0. So π Ω pµqpAq " 0, but PpAq ą 0. Conversely, assume that P-almost surely, µ ω pXq ą 0 and let A be such that π Ω pµqpAq " 0, hence P-almost surely, 1 A µ ω pXq " 0. Then, we necessarily have 1 A " 0 P-almost surely, i.e. PpAq " 0.

Remark. In fact, by definition of π Ω pµq, we have that the Radon-Nikodym derivative of π Ω pµq with respect to P is given by dπ Ω pµq dP pωq " µ ω pXq.

Thus, P is absolutely continuous with respect to π Ω pµq if and only if this Radon-Nikodym derivative is almost surely positive and then, dP dπ Ω pµq pωq " 1 µ ω pXq P-almost surely.

If µ " pµ ω q ω is a random probability measure, i.e. P-almost surely, µ ω is a probability measure on X, then the Ω-marginal of µ is P. Thus, P-regularity is automatic in this context. However, it is easy to construct an example where P-regularity fails, since one only needs that Ppµ ω pXq " 0q ą 0. Indeed, let µ be any random finite measure and let A be an event such that PpAq ď 1{2, then 1 A µ is also a random finite measure and Pp1 A µpXq " 0q ě 1{2. Restricting our attention to P-regular measures will be important in the following, mainly because of the following result.

Proposition A.4. Every finite measure µ on X ˆΩ such that π Ω pµq and P are absolutely continuous with respect to each other is defined by a random finite measure.

Proof. Let µ be a finite measure on X ˆΩ and denote by }µ} " µpX ˆΩq its mass. Then, ν " µ{}µ} is a probability measure on X ˆΩ with marginal Q " π Ω pµq{}µ}. By the disintegration theorem [Cra02, Proposition 3.6], there exists a map pB, ωq P B ˆΩ Þ Ñ ν ω pBq such that ω Þ Ñ ν ω is Q-almost surely a probability measure on X and for every Borelian B P B, ω Þ Ñ ν ω pBq is measurable.

By assumption, the probability measure Q is absolutely continuous with respect to P. Let f " dQ{dP be the corresponding Radon-Nikodym derivative. Define then µ ω " }µ}f pωqν ω . Then, µ ω is Q-almost surely, which is equivalent to 1 C ď µ ω pXq ď C for P-almost every ω seems strong. Assuming only P-regularity, there is no reason for this Radon-Nikodym derivative to be P-essentially bounded from above and below. Even when restricting our attention to random finite measures satisfying this property, the maps µ Þ Ñ P ´ess sup µ ω pXq and µ Þ Ñ P ´ess inf µ ω pXq have no reason to be continuous. Thus, compactness for the weak topology does not seem to imply the existence of a uniform C such that the condition 1 C π Ω pµq ď P ď Cπ Ω pµq holds. On the other hand, it is not realistic to expect a sufficient condition for compactness without assuming anything on the Ω-marginals.

In the particular case where X has an isolated point x 0 , then the following trick allows us to weaken a bit this assumption. For any subset of M Ω of M Ω pXq, define

where D is the Dirac measure on x 0 . Assume that for every µ P M Ω , we have µ ω pXq ď C for P-almost every ω, for some constant C. Then for every ν P Ă M Ω , (29) 1 ď ν ω pXq ď 1 `C

for P-almost every ω.

Corollary A.18. Assume that X has an isolated point x 0 . Consider a subset M Ω of M Ω pXq. Assume that M Ω is tight and that there exists C ě 0 such that for every µ P M Ω , π Ω pµq ď CP. Then, M Ω is relatively compact.

Proof. The set M Ω is tight, so there is a compact K 0 such that for every µ P M Ω , π X pµqpK c 0 q ď . Then, the set K " K 0 Y teu is also compact and for every ν P Ă M Ω , π X pνqpK c q ď . Thus, Ă M Ω is also tight. By (29),

Ă

M Ω satisfies the assumptions of Corollary A.17, so it is relatively compact. Let ν P clp Ă M Ω q. By [AB06, Theorem 2.14], there exists a net pν α q αPA converging to ν. Assume by contradiction that Ppν ω ptx 0 uq ă 1q ą 0. Then, there exists c ă 1 such that the event A " tν ω ptx 0 uq ď cu satisfies PpAq ą 0. Since x 0 is isolated and X is Hausdorff, tx 0 u is both closed and open, hence the function 1 x0 is bounded continuous and px, ωq Þ Ñ 1 A pωq1 x0 pxq is a random bounded continuous function. Since for every α, ν α ptx 0 uq ě 1, applying convergence to this function, we get that PpAq ď Er1 A ν α ptx 0 uqs ÝÑ αÑ8 Er1 A νptx 0 uqs ď cPpAq, which is a contradiction. Thus, µ ω " ν ω ´Dpx 0 q is a well-defined random finite measure on X. In other words, the map F : ν P clp Ă M Ω q Þ Ñ ν ´Dpx 0 q P M Ω pXq is well defined. Moreover, it is continuous, therefore F pclp Ă M Ω qq is compact and by Lemma A.8, the weak topology is Hausdorff, so F pclp Ă M Ω qq is closed. Now, M Ω Ă F pclp Ă M Ω qq and so clpM Ω q Ă F pclp Ă M Ω qq. Thus, clpM Ω q is compact, i.e. M Ω is relatively compact.