
HAL Id: hal-03845728
https://hal.science/hal-03845728

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quokka: A Fast and Accurate Binary Exporter
Alexis Challande, Robin David, Guénaël Renault

To cite this version:
Alexis Challande, Robin David, Guénaël Renault. Quokka: A Fast and Accurate Binary Exporter.
GreHack 2022 - 10th International Symposium on Research in Grey-Hat Hacking, Nov 2022, Grenoble,
France. �hal-03845728�

https://hal.science/hal-03845728
https://hal.archives-ouvertes.fr

Quokka: A Fast and Accurate Binary Exporter

Alexis Challande1,2 Robin David1 Guénaël Renault2,3

1Quarkslab {achallande,rdavid}@quarkslab.com
2Inria, École Polytechnique, Institut Polytechnique de Paris

3ANSSI guenael.renault@ssi.gouv.fr

Abstract

Disassembling is the backbone for multiple workflows in binary analysis
and offloaded to specialized tools. However, programmatically manipulat-
ing the dissembler’s results is cumbersome. Thus, we introduce Quokka,
a binary exporter helping security practitioners to reuse the disassembler
results in an offline context. Quokka is an open-source IDA plugin ex-
porting a 20 MB program in less than 4 seconds to a compact binary
format (7.4 MB). In this paper, we describe its inner workings and detail
some of its usages.

1 Introduction
Analyzing binary programs often requires disassembling them. It is the back-

bone of security workflows for multiple topics like malware analysis, vulnera-
bility research, or binary instrumentation. Thus, disassembling is crucial to
analyze or securing untrusted or proprietary binaries whose source code is not
available [4].

As correctly disassembling is an open problem [10], the security community
has offloaded this task to specialized tools. Some are commercial like IDA [7], Bi-
nary Ninja [14], or Jeb [11], and others are open-source like Ghidra [9], BAP [2],
or McSema [13]. The main problem faced by disassemblers is to recover informa-
tion (e.g. symbols, types) lost during the compilation. Indeed, it is insufficient
to convert a sequence of bytes into meaningful assembly instructions. A disas-
sembler also needs to find references between code and data, recover functions
boundaries, identify typical language structures (i.e. jumps or virtual tables),
and reconstruct the Control Flow Graph.

While studying the inner workings of disassemblers is out of this work scope,
we highlight that disassemblers are complex software that combines both al-
gorithms (i.e. linear sweep, recursive descent) with correctness guarantees and
heuristics with fewer guarantees to perform their tasks.

1

Disassembler Exporter Description

IDA
BinExport Exporter from Zynamics
Ghidra-IDA Official Ghidra plugin to export a project

from IDA to Ghidra
McSema Exporter for McSema lifter

Ghidra
BinExport BinExport port for Ghidra
Ghidra Built-in exporter from Ghidra

Table 1: List of Different Binary Exporters

Usually heavy and complex softwares, disassemblers are inadequate to either
perform custom analysis on a disassembled program, or to analyze multiple bina-
ries at the same time. Indeed, a disassembler instance running in the background
may use a few hundreds of megabytes in RAM effectively wasting resources if
their functionalities are not used anymore. Moreover, their APIs may be con-
voluted and challenging to use. If only the disassembler’s output is needed for
further analysis, it should be possible to extract this result to run offline queries
using a binary export.

Definition 1. We define a binary export as a standalone file (e.g. usable
without a disassembler) containing data from the disassembled binary.

In this paper, we present Quokka, a binary exporter for IDA. It exports
most information recovered by IDA during the disassembly process and exposes
them offline by generating a compact export file. Quokka is open-source and
available on Github GitHub1.

2 Existing Binary Exporters Review
We survey in Table 1 various existing binary exporters for the main disas-

semblers. The most common one is BinExport [3], a binary exporter created
by Zynamics2 and used in BinDiff [15]. BinExport supports three disassem-
blers backends: IDA, Ghidra and Binary Ninja and generates a binary file in
the Protobuf format [6]. Because BinExport is tailored for BinDiff, it only
exports information relevant for the diffing algorithms. Moreover, they do not
offer bindings to allow a seamless usage of their exported file.

Ghidra provides an official exporter plugin for IDA. The plugin generates an
XML file to extract some information from IDA and to import the project into
Ghidra to continue the analysis. Because the objective is to reuse the result
in another disassembler, the export does not contain any data regarding the
instruction themselves. Moreover, the export file is quite large as XML is a
textual format.

1https://github.com/quokka-project/quokka
2Zynamics was acquired by Google in 2011.

2

https://github.com/quokka-project/quokka

Another solution to export the results of the disassembly is to use McSema.
McSema is an executable lifter: it translates native machine code to LLVM
IR. Its first step uses IDA to disassemble the target binary and generates a
Protobuf with the information extracted from the disassembler. However, as
the tool main objective is to generate LLVM bitcode, it uses a second tool to
translate instructions. Thus, the first export does not contain information on
the instructions themselves other than their addresses.

Instead of using complete solutions, academic works usually reimplement their
extractor on top the disassembler API. For example, DeepBinDiff [5] uses a
script to generate features vectors for each instruction and write them in a text
file. This approach is not scalable as it creates huge and slow-to-parse files.

None of the existing exporters is adequate to be used as a general purpose
exporter. They either lack bindings to seamlessly use the exported file, provide
insufficiently optimized serialization files, or forget to export some crucial in-
formation. Thus, there exists a need to create for a new solution solving these
problems.

3 Quokka: A Fast and Accurate Binary Exporter
Quokka’s objective is to be a generic binary exporter, suited for various

contexts. It implements the following principles:

• Exhaustivity: To be used in various contexts, Quokka exports as much
data as possible.

• Efficiency: To ease the integration inside analysis workflows and not create
a bottleneck, Quokka is fast. The export time is negligeable compared to
the disassembly time.

• To avoid unnecessary disk usage and allow seamless export file sharing
between users, Quokka export file is compact.

Quokka is composed of two independants parts:

• An IDA Plugin developed to address the limitations observed in other
binary exporters that generates a compact export file.

• Python bindings enabling a seamless manipulation of the exported file.

In this section, we first list the exported items before briefly discussing its
architecture, and detail some optimizations implemented in the plugin to reduce
the exported file size on the wire.

3.1 Exported Items
The features exported by Quokka are listed in Table 2 are being compared

with both BinExport and Ghidra built in export. On a general point of view,
Quokka’s export is more exhaustive than the two other tools: it exports every
item exported by at least one of them.

3

BinExport Ghidra-
XML

Quokka

Metadata

Name Check Check Check

Architecture Check Check Check

ISA Check Check Check

Compiler Check Check Check

Layout Segments Check Check Check

Code Layout ≈ Check Check

Symbols
Name Check Check Check

Value Check Check Check

Type Times Check Check

Data

Address Check Check Check

Type Times Check Check

Size Times Check Check

Name Times Check Check

Graphs Call Graph Check Times Check

CFG Check Times Check

Comments
Address Check Check Check

Type Check Check Check

Content Check Check Check

Functions
Name Check Check Check

Type Check Check Check

Arguments Times Check Check

Instruction

Mnemonic Check Times Check

Operand Check Times Check

Operand Type Times Times Check

Bytes Check Times Check

Address Check Times Check

Expressions Check Times Check

Xref (code, data) Check Times Check

Basic Block

Address Check Times Check

Instructions Check Times Check

Type Times Times Check

Content Check Check Check

Strings Address Check Check Check

Content Check Check Check

Data Structures Structures Times Check Check

Enumeration Times Check Check

Table 2: Comparison of Exporter Features

4

3.2 Quokka Architecture
Quokka’s plugin is composed of about 3,500 C++ lines of code which targets

IDA’s last versions. The exporter works in three consecutive phases to generate
a binary Protobuf file representing program exported data.

While Quokka can export every binary file loaded by IDA, it has only been
tested with binaries respecting the following conditions:

• Architectures: X86, X64, ARM, Aarch64, Mips*, and PPC*

• Formats: PE, ELF, MacO, and DEX

However, it should be noted that the support for Mips and PPC is lackluster.

The first step is to consider elements outside the program address space.
During this phase, the segments, the structures and the program metadata are
exported. The second step is the main one. It performs a linear scan on the
program address space and exports each element found during the memory scan.
This phase is used to export the code and the data. Finally, the last phase is
used to sort and resolve references between various items. This step is crucial
as references are of the most important elements in the disassembler output.

3.3 Storage Optimization
Quokka aims to be compact to easily share the exports files and reduce

storage utilization. To achieve smaller exported file, Quokka implements space
optimization techniques adapted for the Protobuf format. We discuss below the
main ones.

Addresses and Offsets Most program items (i.e functions or instructions)
have an associated address within the program. As it is used in numerous
workflows, it is an important data to export. However, programs usually have
a large base address (e.g. 0x400000). In Protobuf, the size on the wire of an
integer depends on its absolute value3, and it is more efficient to store relatively
low integers.

Thus, in Quokka, function addresses are stored as offsets to the program base
address, and block addresses as offsets to the function start. This optimization
saves about 2 bytes per address. Moreover, instructions are stored without ad-
dresses, as this one is recomputed dynamically with their block starting address
and the size of the previous instructions in the block.

Data Deduplication A program may use multiple times the same item, but
at different addresses. For example, the instruction push ebp may be used in
each function prologue. To improve the storage compactness, Quokka only
stores items in a table and refer to them by their index in this table. To further
improve compactness, deduplication tables items are sorted by usage frequency
to have the most used items at the lower indexes.

3When using the varint encoding.

5

message Quokka {

message Instruction {
uint32 size = 1;
uint32 mnemonic_index = 2;
bool is_thumb = 4;

}

repeated string mnemonics = 8;
}

Listing 1: Extract of Quokka schema definition

Defaults Values In Protobuf, each field has a type. As an optimization,
Protobuf does not write on the wire a field value when it is the type default
value. Quokka leverages this optimization, notably for boolean. For example,
each instruction is stored with the is_thumb boolean (to allow the export of ARM
Thumb instructions). In most cases, the field will be False, which is the boolean
default value in Protobuf.

Example

Listing 1 shows an extract of Quokka’s schema definition. It illustrates the
optimizations previously mentionned:

• The instruction message has no address.

• The instruction’s mnemonic is stored in a deduplication table and only its
index is used.

• The field is_thumb is only written for thumbs instruction in ARM binaries
because the default value for boolean is False in Protobuf.

4 Using Quokka
Quokka is a two-fold tool. Its first part is the IDA plugin already presented

in the previous sections. The second part is Quokka’s Python bindings. They
offer an effortless way to manipulate the exported file. In this section, we will
first explain how to generate an export file, before demonstrating some of the
binding capabilities.

The examples in this section are limited and additional documentation is
available with the project.

4.1 Exporting a Binary File

Using Quokka from the command line is straightforward as exposed in List-
ing 2. When using IDA graphical interface, the plugin also registers a shortcut
(by default Alt+A) to generate an export file.

6

$ idat64 -OQuokkaAuto:true \
-OQuokkaLog:Info \
-OQuokkaFile:docs/samples/qb-crackme.qk \
-A docs/sample/qb-crackme

Listing 2: Using Quokka directly from IDA command line

import quokka

program = quokka.Program("docs/samples/qb-crackme.qk", "docs/sample/qb-crackme")
for function in program:

print(f"Function {function.name} starts at 0x{function.start:x}")

if function.name == "main":
for instruction in function.instructions:

print(instruction.mnemonic)

Listing 3: Listing all functions in a Program with Quokka

4.2 Manipulating the Exported File

Due to the various optimizations, Quokka’s Protobuf file is challenging to use
directly. Thus, we provide Python bindings to allow for an easy manipulation
of the program. While generating an export file requires to have IDA installed,
it is not needed to load and use the exported file.

The code in Listing 3 loads an exported file and uses it to list every functions
inside the program. It also prints the mnemonic of instructions in the main
function. This simple example is not useful per se but demonstrates some of
Quokka functionalities.

5 Evaluation
5.1 Dataset
To compare Quokka with BinExport4, we select typical binaries present on

our systems at the time of the writing with properties listed below:

• We consider multiple architectures as the exporter should be architecture
agnostic.

• We want to consider various binary file formats to test their support.

As the export time and result size is a factor of the initial binary size, we
select binaries from 25 kB and up to 46 MB. In Figure 1, we illustrate the
binary sizes of the samples we use in the next experiments.

7

Binary Name Arch. Format Binary size

MachO-OSX-x86-ls x86 MachO 34.86 kB
pe-Windows-x86-cmd x86 PE 294.50 kB
elf-Linux-x86-bash x86 ELF 792.14 kB
elf-Linux-lib-x86.so x86 ELF 1.08 MB
delta_generator x86 ELF 16.49 MB
wpa_supplicant x86 ELF 21.64 MB
MachO-OSX-x64-ls x86_64 MachO 38.66 kB
pe-Windows-x64-cmd x86_64 PE 337.00 kB
x64_delta_generator x86_64 ELF 15.28 kB
elf-Linux-x64-bash x86_64 ELF 904.82 kB
elf-Linux-lib-x64.so x86_64 ELF 1.09 MB
ctags x86_64 ELF 4.59 MB
ts3server x86_64 ELF 7.73 MB
mdbook x86_64 ELF 10.67 MB
llvm-opt x86_64 ELF 33.83 MB
clang-check x86_64 ELF 46.83 MB
crackmips MIPS-32 ELF 25.54 kB
busybox-mips MIPS-32 ELF 352.48 kB
elf-Linux-Mips4-bash MIPS-32 ELF 882.38 kB
HelloWorld-MachO-2 armv7 MachO 89.64 kB
HelloWorld-MachO armv7, armv8 MachO 299.06 kB
elf-Linux-ARMv7-ls armv7 ELF 88.68 kB
elf-Linux-ARM64-bash armv8 ELF 827.54 kB
busybox-powerpc PPC-32 ELF 1.10 MB
dex38.dex - DEX 11.48 kB
classes.dex - DEX 3.53 MB

Table 3: Datasets Binaries

8

10

20

30

40

0.5

1

dex38.dex

M
achO

-O
SX

-x64-ls

H
elloW

orld-M
achO

-2

H
elloW

orld-M
achO

busybox-m
ips

elf-Linux-A
R

M
64-bash

elf-Linux-x64-bash

elf-Linux-lib-x64.so

classes.dex

ts3server

x64_delta_generator

w
pa_supplicant

clang-check

0

0.02

0.04

0.06

0.08

B
in

ar
y

si
ze

 (i
n

M
b)

Figure 1: Samples Sizes

10%
4%

82%

5%

81%

38%

27%

39%

-11%

50%

61%

32%

60%
56%

66%

55%
60%

65% 65%

53%

70%

-6%

63% 63%

M
achO

-O
SX

-x64-ls
dex38.dex
M
achO

-O
SX

-x86-ls
H
elloW

orld-M
achO

H
elloW

orld-M
achO

-2
elf-Linux-A

R
M
v7-ls

pe-W
indow

s-x86-cm
d

busybox-m
ips

pe-W
indow

s-x64-cm
d

elf-Linux-x86-bash
elf-Linux-A

R
M
64-bash

elf-Linux-lib-x64.so
elf-Linux-M

ips4-bash
elf-Linux-x64-bash
busybox-pow

erpc
elf-Linux-lib-x86.so
ctags
x64_delta_generator
delta_generator
w
pa_supplicant

ts3server
m
dbook

classes.dex
llvm

-opt
clang-check

-505%

Figure 2: Duration: Quokka vs BinExport

9

7% 6%
11% 12%

10%

21%
25%

10%

19%

29%

23%

33%

19%

37%

31%

22%

33%

39%
37%

32%

44%

-46%

36% 38%

M
achO

-O
SX

-x64-ls
dex38.dex
M
achO

-O
SX

-x86-ls
H
elloW

orld-M
achO

H
elloW

orld-M
achO

-2
elf-Linux-A

R
M
v7-ls

pe-W
indow

s-x86-cm
d

busybox-m
ips

pe-W
indow

s-x64-cm
d

elf-Linux-x86-bash
elf-Linux-A

R
M
64-bash

elf-Linux-lib-x64.so
elf-Linux-M

ips4-bash
elf-Linux-x64-bash
busybox-pow

erpc
elf-Linux-lib-x86.so
ctags
x64_delta_generator
delta_generator
w
pa_supplicant

ts3server
m
dbook

classes.dex
llvm

-opt
clang-check

-274%

Figure 3: Size: Quokka vs BinExport

5.2 Efficiency
We first assess Quokka’s efficiency by looking at the difference regarding the

export duration between BinExport and QBinExport for our samples. First, it
should be noted that the two tools are fast: BinExport needs 11s to exports a
20 MB program (wpa_supplicant) while Quokka requires 3s. In comparison,
IDA takes 44s to generate the database for the same program.

However, while exporting more features, Quokka’s optimizations are success-
ful as the exporter is faster with a 63% improvement for the largest binary and
a median 54% improvement for the dataset. Figure 2 displays the improvement
percentage between Quokka and BinExport.

The extensive comparison of the exported files for elf-Linux-ARMv7-ls did
not yield to any conclusive explanation in regards to the duration difference.

5.3 Compactness
IDA analysis results are stored in its database, a proprietary format based on

B-Trees. It is possible to share this file across users but it is not very compact:
IDA’s database for a 22 MB binary weights 51 M and the median size increase
factor in our dataset is 12.

We also assess Quokka’s export compactness. As previously stated, Quokka
exports strictly more data than BinExport. However, thanks to the optimiza-
tion on size presented in the last section, Quokka manages to be more compact
for most binaries. Indeed, the median improvement is 22%.

4Version 12

10

def extract_features(function: quokka.Function):
vector = [

In / Out degrees of the function
(function.in_degree, function.out_degree),
Function bytes
function.bytes,
Functions used
set(imp.name for imp in function.calls if imp.type ==

FunctionType.IMPORTED),↪→

Function size
function.end - function.start,
Number of basic blocks
len(function.graph),
Bag of mnemonics
set(inst.mnemonic for inst in function.instructions),

]
return vector

Listing 4: Extracting some features from a function

def candidate_functions(program: quokka.Program):
for function in program:

Filter functions with less than 10 basic blocks
if len(function.graph) <= 10:

continue

if "malloc" in function.calls and "free" not in function.calls:
print(f"Function {function.name} calls malloc without free")

Listing 5: Searching for interesting functions

Quokka exported files are smaller for each sample except the two DEX files.
There are two explanations for this. Firstly, Quokka exports the layout (i.e. if a
region is used for code or data) which changes often for DEX, requiring multiple
objects. Secondly, Quokka also exports data structure which takes up to 4.8
MB in classes.dex, thus explaining the 5 MB difference between the two
formats.

6 Potential Usages
Exporting as many data as possible from a binary is interesting as a backbone

for other applications. In this section, we list some potential usages for Quokka.

Feature Extraction Most machine learning approaches for binary analysis
require to generate features from the disassembly code. For example, αDiff’s
authors [8] developed a custom plugin to extract data from the function in the
binary (function bytes, in and out-degrees, and the imported function sets). All
these informations are directly available in Quokka and the Listing 4 shows
how to extract them (and some others). Using a battle-tested plugin allow
researchers to focus on the novelty of their research instead of wasting valuable
time with IDA API.

11

def hash_func(function: quokka.Function):
local_hash = hashlib.sha256()
for instruction in function.instructions:

local_hash.update(instruction.bytes)

return local_hash

prog1 = quokka.Program("prog1.qk", "prog1")
prog2 = quokka.Program("prog2.qk", "prog2")

for func_name in set(prog1.fun_names).intersection(prog2.fun_names):
func1 = prog1.fun_names[func_name]
func2 = prog2.fun_names[func_name]

if hash_func(func1) != hash_func(func2):
print(f"Function {func_name} has changed between prog1 and prog2")

Listing 6: Finding changed functions between two program

Binary Analysis Quokka allows one to easily filter functions by user-defined
criterias. For example, the Listing 5 shows how to search for large functions
calling malloc without calling free. If the listing could be extended to list ev-
ery function using unsafe functions, performing a real dataflow analysis would
require to use another tool (i.e. Triton [12], or BinCAT [1]).

Side by Side Analysis Quokka is not limited at loading a single binary in
memory. Thus, it can be used to compare side-by-side two binaries at the same
time. This could prove useful when analyzing two versions of the same program
and finding which functions have changed. Listing 6 demonstrates this usage.

This section only scratched the surface of what is possible to do with Quokka.
However, it is only a library enabling other tasks and workflow, and not a tool
used at the end of an analysis pipeline.

7 Future Work
While thorough, Quokka still lacks the export of some features listed below.

• Type information: IDA allows users to define types and to apply type
information onto the disassembly. This information helps the reverser
understanding the data flow inside the binary and can be used for other
tools to perform analyses (pointer analysis, liveness analysis). Thus, it
could be valuable to expose them outside the disassembler.

• Decompilation output: IDA’s SDK offers an API to manipulate the decom-
pilation output, i.e. a C code generated from the disassembly. Exporting
the decompiled code would broaden the usage possibilities of Quokka.

As IDA already offers API functions to manipulate and query such data, ex-
porting these elements would only require further engineering work. However,
working with the disassembler API is time-consuming.

12

Currently, Quokka is an IDA plugin. Another improvement for the tool
would be to also accept other backends (such as Ghidra or Binary Ninja).
Thus, it could act as an IR where an analyst query workflow could be written
once, and the backend modified depending on the disassembly selected.

8 Conclusion
Quokka is a fast and complete binary exporter for IDA Pro. It timely gener-

ates compact binary file containing most IDA intelligence and allows reusing the
result in an offline setting. Quokka has notably already been used for various
tasks in Quarkslab for 2 years.

The export generated by Quokka can be used in various workflows such
as features extraction for machine learning, vulnerability research, or binary
diffing. It can also be used to work directly on the disassembly without needing
a disassembler instance.

The tool is open-source and available online on Github GitHub5 and can be used
for various security workflows.

References
[1] Biondi, Philippe et al. “BinCAT: Purrfecting Binary Static Analysis”.

In: Symposium Sur La Sécurité Des Technologies de l’Information et
Des Communications. 2017. Rennes, France, June 2017. url: https :
//www.sstic.org/2017/presentation/bincat_purrfecting_binary_
static_analysis/.

[2] David Brumley et al. “BAP: A Binary Analysis Platform”. In: Computer
Aided Verification. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, July 2011,
pp. 463–469. isbn: 978-3-642-22110-1. doi: 10.1007/978-3-642-22110-
1_37.

[3] Christian Blichmann. BinExport. Google. Nov. 2021. url: https : / /
github.com/google/binexport (visited on 06/03/2022).

[4] Dennis Andriesse and Xi Chen. “An In-Depth Analysis of Disassembly on
Full-Scale X86/X64 Binaries”. In: (Aug. 2016), p. 19. issn: 978-1-931971-
32-4.

[5] Yue Duan et al. “DeepBinDiff: Learning Program-Wide Code Represen-
tations for Binary Diffing”. In: Proceedings 2020 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, Feb. 2020.
isbn: 978-1-891562-61-7. doi: 10.14722/ndss.2020.24311.

[6] Google. Protocol Buffers - Google’s Data Interchange Format. Protocol
Buffers. May 2022. url: https : / / github . com / protocolbuffers /
protobuf (visited on 06/03/2022).

5https://github.com/quokka-project/quokka

13

https://www.sstic.org/2017/presentation/bincat_purrfecting_binary_static_analysis/
https://www.sstic.org/2017/presentation/bincat_purrfecting_binary_static_analysis/
https://www.sstic.org/2017/presentation/bincat_purrfecting_binary_static_analysis/
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://github.com/google/binexport
https://github.com/google/binexport
https://doi.org/10.14722/ndss.2020.24311
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://github.com/quokka-project/quokka

[7] Hex-Rays. IDA Pro - Interactive Disassembler. Hex-Rays. May 2022. url:
www.hex-rays.com/idapro/ (visited on 08/01/2021).

[8] Bingchang Liu et al. “αDiff: Cross-Version Binary Code Similarity De-
tection with DNN”. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering - ASE 2018. Montpellier,
France: ACM Press, Sept. 2018, pp. 667–678. isbn: 978-1-4503-5937-5.
doi: 10.1145/3238147.3238199.

[9] NSA. Ghidra Software Reverse Engineering Framework. National Security
Agency. May 2022. url: https://github.com/NationalSecurityAgency/
ghidra (visited on 06/03/2022).

[10] Chengbin Pang et al. “SoK: All You EverWanted to Know About X86/X64
Binary Disassembly But Were Afraid to Ask”. In: 2021 IEEE Symposium
on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May 2021,
pp. 833–851. isbn: 978-1-72818-934-5. doi: 10 . 1109 / SP40001 . 2021 .
00012.

[11] PNF Software. JEB Decompiler by PNF Software. PNF Software. May
2022. url: https://www.pnfsoftware.com/ (visited on 06/03/2022).

[12] Jonathan Salwan. “Triton : Framework d’exécution concolique et d’anal-
yses en runtime”. In: Symposium sur la Sécurité des Technologies de l’In-
formation et des Communications. June 2015, p. 25.

[13] Trail of Bits. McSema. Trail of Bits. Apr. 2021. url: https://github.
com/lifting-bits/mcsema (visited on 06/03/2022).

[14] Vector 35. Binary Ninja. Vector 35. May 2022. url: https://binary.
ninja.

[15] Zynamics. BinDiff. Zynamics/Google. June 2021. url: https://www.
zynamics.com/bindiff.html.

14

www.hex-rays.com/idapro/
https://doi.org/10.1145/3238147.3238199
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://doi.org/10.1109/SP40001.2021.00012
https://doi.org/10.1109/SP40001.2021.00012
https://www.pnfsoftware.com/
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://binary.ninja
https://binary.ninja
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html

	Introduction
	Existing Binary Exporters Review
	Quokka: A Fast and Accurate Binary Exporter
	Exported Items
	Quokka Architecture
	Storage Optimization

	Using Quokka
	Exporting a Binary File
	Manipulating the Exported File

	Evaluation
	Dataset
	Efficiency
	Compactness

	Potential Usages
	Future Work
	Conclusion

