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ABSTRACT: The first enantioselective total synthesis of (+)-lucidumone is described through a 13-steps synthetic pathway 
(longest linear sequence). The key steps involve the formation of a bridged bicyclic lactone by an enantioselective inverse 
electron demand Diels-Alder cycloaddition, C–O bond formation to assemble two fragments and a one-pot retro-[4+2] / 
[4+2] cycloaddition cascade. The synthesis is scalable, and more than one gram of natural product was synthesized in one 
batch. 

Meroterpenoids are an important class of natural prod-
ucts, displaying a partially terpenic skeleton, along with a 
part from different biogenetic origin, often polyketide. Due 
to their interesting structure and often powerful biological 
activities, meroterpenoids have attracted the interest of 
synthetic chemists for decades.1,2 Lucidumone (1) is a mer-
oterpenoid isolated in 2019 from the fruiting bodies of 
Ganoderma lucidum, a mushroom commonly used in tra-
ditional medicine in China and Japan.3,4 This natural prod-
uct presents an unprecedented 6/5/6/6/5 caged pentacy-
clic structure, with a hydroquinone, one secondary alcohol 
and two ketone motifs (Scheme 1A). Its structural complex-
ity can be highlighted by the 6 contiguous stereogenic cen-
ters on the bicyclo[2.2.2]octane subunit. Moreover, prelim-
inary studies indicate that lucidumone selectively inhibits 
COX-2 by directly binding with Tyr385 and Ser530 resi-
dues, providing it with an interesting therapeutic potential 
for the treatment of inflammation.5 Interestingly, although 
lucidumone is produced as an enantiomeric mixture by 
Ganoderma lucidum, only one enantiomer displayed the 
selective COX-2 inhibitory activity. Nevertheless, this nat-
ural product was isolated in sub-mg scale (extraction yield 
of 1.5 ∙ 10-8, 0.4 mg of (+)-1 isolated), hampering in-depth 
biological activity study. 

The biosynthesis of lucidumone is believed to originate 
from a precursor bearing two isoprenic units and a hydro-
quinone motif (Scheme 1A), through a series of oxidations 
and cyclizations.3 Recently, the team of She reported a syn-
thetic study allowing the construction of a tetracyclic 
structure similar to lucidumone, without the secondary al-
cohol and where the hydroquinone was methylated 
(Scheme 1B).6 This approach allowed a racemic synthesis of 
the skeleton in 18 steps, involving a Cu-mediated C–H oxi-
dation, an intramolecular conjugate addition and an acid-
mediated cyclization. However, the total synthesis of lu-
cidumone was never achieved to date. Attracted by the 
structural complexity as well as the therapeutic potential 
of this natural product, we decided to engage in its total 

synthesis. In this manuscript, we describe an enantioselec-
tive gram-scale synthesis of (+)-lucidumone. 

Scheme 1. Biosynthesis and retrosynthetic analysis of 
lucidumone 

 



 

Our retrosynthetic analysis allowed us to identify C2’–C3’ 
and C6’–C7’ as key disconnections, which could be achieved 
through an intramolecular Diels-Alder (IMDA) cycloaddi-
tion, providing that C8’–C9’ is a double bond which can be 
reduced in a late stage (Scheme 1C).7,8,9 This key disconnec-
tion could greatly simplify the structure into synthon 2, 
bearing an indenone and a cyclohexadiene moieties for the 
key cycloaddition. Given the high instability of the cyclo-
hexadiene, we would mask this function as a bicyclic lac-
tone 3, which could regenerate the desired cyclohexadiene 
by CO2 extrusion. Fragment 3 would be obtained by C–O 
bond formation from two fragments of similar size 4 and 5. 
To allow an enantioselective synthesis, fragment 5 should 
be obtained enantioselectively, for which we envisaged an 
inverse electron demand Diels-Alder (IEDDA) reaction in-
volving a 2-pyrone 6 and an enol ether 7.10,11 The introduc-
tion of the methyl ketone moiety can be envisaged either 
in the early steps of the synthesis or in the endgame. This 
approach presents 3 key steps / challenges. (i) It is unclear 
whether the electron-demand in the late-stage IMDA reac-
tion will be favorable or not, given the presence of an elec-
tron donating group at C7’ (supposed to meet the electron-
deficient site of the diene C6’) and an electron-withdrawing 
group at C2’ (supposed to meet the electron-enriched site 
C3’). (ii) The C–O bond coupling between fragments 4 and 
5 will also be an important challenge, as the formation of 

-keto enol ethers typically requires the use of excess hy-
droxy partner, making it unsuitable for fragment cou-
pling.12 (iii) The challenge of enantioselective IEDDA reac-
tion involving 2-pyrones and acyclic enol ethers for the 
synthesis of bridged bicyclic lactones was recently tackled 

by our group through the development of a new synthetic 
methodology.13,14 

We then set out to achieve the synthesis of lucidumone. 
The synthesis of indandione fragment 4 was achieved start-
ing from 3,6-dihydroxyphthalonitrile 8. Hydrolysis of the 
dinitrile followed by dehydration and acetylation led to an-
hydride 9, which was converted to indandione 10 in the 
presence of ethyl 3-oxobutanoate under basic conditions 
(Scheme 2). The phenolic moieties were protected as TBS 
ethers, affording 4 in 4 steps and 56% yield. Remarkably, 
this synthesis was easily scalable, as almost 20.5 g of frag-
ment 4 was obtained starting from 14.4 g of starting mate-
rial 8. 

Regarding the cyclohexadiene fragment, our first idea 
was to achieve the cycloaddition with a 2-pyrone derivative 
already bearing the methylketone functionality in C3. How-
ever, all our attempts to prepare the 2-pyrone derivative 6a 
proved unsuccessful (see Scheme S1-1, S1-2 and S1-3 in the 
supporting information). Therefore, we applied the IEDDA 
reaction developed by our group13 with pyrone 6b15 and 
benzyl enol ether 7. The synthesis of (–)-12 could be effi-
ciently performed in multigram scale. It should be noted 
that on such a scale, the minor diastereomer could be ob-
served (dr = 48 : 1), although easily separated by column 
chromatography after the next step. Deprotection of the 
primary alcohol afforded (–)-5b in excellent yield, with 12 
g easily obtained in one batch. 

 

Scheme 2. Total synthesis of Lucidumonea 



 

 
a DIAD = diisopropyl azodicarboxylate, DMP = Dess-Martin periodinane, TBAF = tetra-n-butylammonium fluoride 

 

The C–O bond formation to couple 4 and (–)-5b proved 
to be particularly difficult. A selection of attempts using 
model substrates are represented in Table 1. All our at-
tempts to use a primary alcohol as a nucleophile in the 
presence of bromo indenone 17 failed to give 22a (entries 1-
4). Converting the primary alcohol into a halide 19 to 
achieve O-alkylation of indandione 4 only led to small 
amounts of C-alkylation product and no 22b was observed. 
(entry 5). Using tosylate 20 instead of halide 19 in order to 
favour O versus C alkylation resulted in decomposition of 
the indandione (entry 6).  A combination of indandione 4 
with primary alcohol 18 in the presence of Brønsted or 
Lewis acid was equally unfruitful (entries 7-8). Finally, 
Mitsunobu conditions smoothly led to O-alkylation, af-
fording (±)-23 in moderate yield (entry 9). After optimiza-
tion using substrate 5b (table S2), the fragments were effi-
ciently coupled, affording (–)-3 in acceptable yield on 
decagram scale. 

 

Table 1. Study of the C–O bond formation 

 

Entry Conditions Result 

1 17, 18, CuI, 1,10-Phen, Cs2CO3, 
toluene, 100 °C 

No reaction 

2 17, 18, CuCl, EtOAc, 

NaH, toluene, 120 °C  

Decomposition 

3 17, 18, nBuLi, THF, 0 to 65 °C Decomposition 

4 17, 18, K2CO3, DMF, 80 °C Decomposition 

5 4, 19, K2CO3, DMF, 70 °C C-alkylation 

6 4, 20, K2CO3, DMF, 0 °C Decomposition 

7 4, 18, TsOH, toluene, reflux No reaction 

8 4, 18, TiCl4, toluene, rt to 60 °C Decomposition 

9 4, (±)-21, PPh3, DEAD, THF,        
–20 °C to rt 

(±)-23 (51%) 

 



 

From intermediate (–)-3, the key CO2 extrusion via a 
retro-[4+2]-cycloaddition and subsequent [4+2] cycloaddi-
tion could be achieved in one-pot, by refluxing in chloro-
benzene. In the endgame of the synthesis, we only needed 
to introduce the methyl ketone moiety, reduce the olefin 
and cleave the protecting groups. Despite all of our at-
tempts, the formation of the methyl ketone could not be 
achieved without affecting the benzylic ketone. Thioester-
ification in prevision of a Fukuyama coupling16 or amide 
formation (with the idea of performing chemoselective 
Tf2O-mediated amide activation)17 were unsuccessful. Nev-
ertheless, we could introduce the methyl ketone by a se-
quence involving reduction of both the ester and the ben-
zylic ketone using LiAlH4, Dess-Martin oxidation, Gri-
gnard addition and reoxidation. This sequence, although 
requiring 4 steps, is high yielding (65% over 4 steps) and 
can be performed in only two days as the reaction time for 
each step is short (30 min to 2h). Moreover, the synthesis 
can be performed on multigram scale, and 4.5 g of inter-
mediate (–)-15 can be easily obtained. From (–)-15 having 
all the carbon skeleton of lucidumone, reduction of the C8’–
C9’ olefin and cleavage of the benzyl protecting group could 
be achieved in one-pot under hydrogenation conditions. It 
should be noted that although reduction of the alkene was 
completed in 2h, longer reaction times were required for 
the benzyl deprotection. Finally, deprotection of the phe-
nol moieties allowed to complete the total synthesis of (+)-
lucidumone 1, with high optical purity. Remarkably, the 
synthesis was highly scalable, as 1.61 g of natural product 
was obtained in one batch.  

To conclude, the first enantioselective total synthesis of 
lucidumone was achieved in 13 steps as the longest linear 
sequence and 25.8% overall yield from commercially avail-
able 11 (15.8% in 12 steps from 8). The synthesis was enabled 
by an enantioselective IEDDA reaction developed by our 
group, a key C–O bond formation for fragment assembly 
and a one-pot retro-[4+2] / [4+2] cycloaddition cascade. 
The sequence could be performed on gram-scale, and over 
1.6 g of natural product was synthesized in one batch, 
providing enough material for in-depth biological evalua-
tion. 
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