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Abstract

We propose to explore switching methods in order to recover some properties of Kalman-
like observers for output feedback stabilization of state-affine systems that may present observ-
ability singularities. The self-tuning gain matrix in Kalman-like observers tend to be singular
in the case of non-uniformly observable systems. We show in the case of state-affine systems
with observable target that it can be prevented by dynamically monitoring observability of
the system, and switching the control when it becomes critical.

Keywords: Non-uniformly observable systems, Output feedback stabilization, Observability,
Observers, Switched systems.

1 Introduction

Coupling a stabilizing state feedback and an observer is a tried and tested method for stabilization
of systems whose state may be only partially known [AP09]. A major issue in designing that
coupling in the context of nonlinear autonomous systems is that observability of the system (hence,
the ability of the observer to estimate the state), may vary depending on the control. It was shown
in the 90’ (see [TP94,JG96]) that under assumption of observability for any control, a separation
principle could be obtained. Numerous works have been dedicated to lifting this assumption.
Early on, it was shown in [Cor94] that allowing a time-periodic feedback law is sufficient to obtain
local output feedback stabilization of non-uniformly observable systems. Later on, it was shown
in [ST03] that the existence of just one observable control was sufficient to achieve semi-global
practical stabilization, that is, stabilization in any arbitrary small neighborhood of the target point.
Both of these papers rely on a natural idea of dealing with estimation and stabilisation in two
distinct alternating modes of a switching observer. Essentially, [ST03] relies on a periodic switching
strategy of the control between observation modes (where the input makes the system observable
and the observer converges) and stabilization modes (where the input steers the state to the target
if the observer is sufficiently close to the state). Over the years, this switching/hybrid strategy
has been developed in various contexts of non-uniformly observable systems [NS98,BS21b,BH02],
and applied for example to anti-lock braking systems (ABS) [ARHPL+21,MPLLAR22].

In this paper, we focus on state-affine systems that are observable at the target. Our goal is
to rely on a Kalman-like observer with dynamic gain following a Lyapunov differential equation
to estimate the state, ensure semi-global asymptotic stability, and guarantee that if the system
is uniformly observable then our strategy coincides with the usual nonlinear separation principle
[GK92]. A major difficulty however, is that the pivotal properties of the dynamic gain matrix do
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not mesh well with non-uniform observability [BGSS21]. Essentially, the dynamic gain can become
singular when the system is unobservable, which may happen for the system in closed loop. Our
goal is to propose a solution to avoid singularization of the gain matrix, but without requiring
prior knowledge of singular inputs. We tackle this issue by an event-triggered law guaranteeing
lower boundedness of the Gram observability matrix via its online monitoring.

We apply the following procedure. (i) For a fixed time, we apply to the system a null input.
The system is observable, and we estimate the state with an observer whose dynamic gain follows
a Lyapunov differential equation. Since the target remains an equilibrium under the null input,
these observation modes do not prevent stability. (ii) After this mode, the system is in stabilization
mode, where the control is chosen as the stabilizing feedback evaluated on the observer. The
system remains in stabilization mode for another fixed time, in order to guarantee the decrease
of a Lyapunov function over an observation–stabilization cycle. However we do not stop the
stabilization mode (and go back to (i)) until the system’s observability becomes too critical, a fact
we measure thanks to online computation of the observability Gramian. In particular, the system
will stop switching once it is sufficiently close to the target, allowing exact convergence.

2 Problem statement

Let n ∈ N be a positive integer, let A : R→ Rn×n, and B : R→ Rn×1, be locally Lipschitz maps
valued in the set of n × n, respectively n × 1, real valued matrices. Let C ∈ R1×n be a linear
form. For any u ∈ L∞([0,+∞),R), we consider the following single-input single-output (SISO)
state-affine system {

ẋ(t) = A(u(t))x(t) +B(u(t))

y(t) = Cx(t).
(1)

A particular instance of this dynamical model is the classical SISO bilinear case where A(u) =
A0 + uA1, B(u) = uB1, with A0, A1 ∈ Rn×n and B1 ∈ Rn×1.

System (1) is said to be observable for the control u over [t0, t1] if, for all pairs of solutions
((xa, ya), (xb, yb)) of (1), ya|[t0,t1] ≡ yb|[t0,t1] implies xa|[t0,t1] ≡ xb|[t0,t1]. If the system is observ-
able for any control over any time interval, then it is said to be uniformly observable in small time.
In this paper we only require observability at the target, i.e., observability of the system for the
constant input u = 0.

Assumption 1. The pair (C,A(0)) is observable.

In the particular case of of bilinear systems, where A(u) = A0 + uA1, the observability of the
pair (C,A0) is satisfied over an open and dense subset of all possible pairs (C,A0). This contrasts
with the existence of controls for which the system is unobservable, a property satisfied by a
residual subset of the set of possible triples (C,A0, A1) (see, for instance, [BGS22]).

We wish to study semi-global output feedback stabilization of (1) at 0 ∈ Rn. To do so, we first
assume that state feedback stabilization is achievable by means of a state feedback.

Assumption 2. There exists a locally Lipschitz bounded feedback law λ : Rn → R such that 0 ∈ Rn
is a locally asymptotically stable equilibrium point of the vector field Rn 3 x 7→ A(λ(x))x+B(λ(x)).

Under Assumption 2 we denote by D the basin of attraction of the origin and set ū :=
supRn |λ| < +∞. According to the converse Lyapunov theorem [PBP22, Theorem 2.296] (see
also [TP00], based on the previous works of [Kur56,Kur63,Mas56]), there exists a proper function
V ∈ C∞(D,R+) such that V (0) = 0 and

∂V

∂x
(x)(A(λ(x))x+B(λ(x))) 6 −V (x), ∀x ∈ D. (2)

Remark 3. In the context of semi-global stabilization, the boundedness requirement in Assump-
tion 2 is easy to fulfill. Indeed, if there exists an unbounded smooth feedback law λ̃ such that 0
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is an equilibrium of x 7→ A(λ(x))x + B(λ(x)) that is locally asymptotically stable with basin of
attraction D̃, then for any compact set K ⊂ D̃, and any bounded smooth feedback law λ defined
by λ(x) = λ̃(x) for all x ∈ K and λ(x) = 0 for all x ∈ Rn \ D̃, we have that λ satisfies As-
sumption 2 with a basin of attraction containing K. In other words, one can always construct a
bounded smooth stabilizing state feedback from an unbounded one, up to a reduction of the basin
of attraction. In particular, note that if D̃ = Rn (i.e. there exists a smooth globally asymptotically
stabilizing state feedback), then for any compact set K ⊂ Rn this procedure allows to construct a
bounded smooth locally asymptotically stabilizing state feedback with basin of attraction containing
K (i.e. to achieve semi-global asymptotic state feedback stabilization).

On the considered class of systems, we focus on Kalman-like observers. Denoting by ε = x̂−x
the estimation error, for a given u ∈ L∞([0,+∞),R) and a given positive parameter θ, we consider
an observer given by

˙̂x(t) = A(u(t))x̂(t) +B(u(t))− S(t)−1C ′(Cx̂(t)− y(t)), (3)

ε̇(t) = A(u(t))ε(t)− S(t)−1C ′Cε(t), (4)

Ṡ(t) = −A(u(t))′S(t)− S(t)A(u(t))− θ(t)S(t) + C ′C. (5)

evolving on Rn × Rn × Sn++, where Sn++ denotes the set of positive definite matrices in Rn×n.
Here, S is a dynamic gain matrix following a Lyapunov differential equation [AKFIJ03,GQ95].

We wish to follow a classical state-observer coupling in order to achieve stabilization in the
output feedback case. In the case of uniformly observable systems, it is well-known that semi-
global dynamic output feedback stabilization can be achieved by choosing u = λ(x̂) and θ large
enough, see e.g., [GK92]. Here we focus on the case of systems which are not uniformly observable,
i.e., for which there exists a bounded input u making (1) unobservable. To achieve output feedback
stabilization in that case, we propose a novel strategy based on switches in the control law and in
the dynamics of the observer.

3 Switching strategy and main result

Let tobs, tstab, α, β and gmin be positive constants. Let T ∈ (0, tstab). For all (x̂0, ε0, S0) ∈
Rn × Rn × Sn++, let us construct according to the procedure below a sequence of switching times
(tk)06k<kmax in R+ ∪ {+∞} for some k ∈ N such that kmax > 3, and a continuous trajectory
(x̂, ε, S) : R+ → Rn × Rn × Sn++ starting at (x̂0, ε0, S0) satisfying some dynamics that switch at
each tk. The sequence (tk) is defined such that t0 = 0, tk+1 − tk > max(tobs, tstab) and either
kmax = +∞, or kmax is finite and tkmax−1 = +∞. In that way, ([tk, tk+1))06k<kmax

is a partition
of R+.

Set t0 = 0. Assume that t2k > 0 is defined for some k ∈ N and is finite. Set t2k+1 = t2k + tobs.
Over [t2k, t2k+1), define the Cauchy problem

˙̂x = A(0)x̂− S−1C ′(Cx̂− y)

ε̇ = A(0)ε− S−1C ′Cε

Ṡ = −A(0)′S − SA(0)− αS + C ′C

(6)

initialized at t2k by (x̂, ε, S)(t2k) =

{
(x̂0, ε0, S0) if k = 0

(x̂, ε, S)(t−2k) otherwise
. This system admits a unique global

solution according to Cauchy–Lipschitz theorem since λ is bounded and S(t) is lower bounded (see
(13)). Then, on [t2k+1,+∞), we define the Cauchy problem

˙̂x = A(λ(x̂))x̂+B(λ(x̂))− S−1C ′(Cx̂− y)

ε̇ = A(λ(x̂))ε− S−1C ′Cε

Ṡ = −A(λ(x̂))′S − SA(λ(x̂))− βS + C ′C

(7)
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initialized at t2k+1 by
(x̂, ε, S)(t2k+1) = (x̂, ε, S)(t−2k+1)

Using Grönwall’s inequality, one can easily show that this system admits a unique global solution
according to Cauchy–Lipschitz theorem since λ is bounded and S(t) is lower bounded by an
exponentially decreasing function (see (14)). Then we define the next switching time t2k+2 by

t2k+2 = inf{t > t2k+1 + tstab | Gλ◦x̂(t− T, t) 6> gmin Id},

i.e. t2k+2 is the smallest time larger than t2k+1 + tstab such that the lowest eigenvalue of Gλ◦x̂(t−
T, t) is smaller than gmin. If t2k+2 = +∞, then there are no more switches and kmax = 2k + 3.
This concludes the inductive construction of (tk) and (S, x̂, ε). To summarize, [t2k, t2k+1) are
observation modes, while [t2k+1, t2k+2) are stabilization modes. While observation modes have
constant length tobs, stabilization modes last at least tstab and as long as the observability of the
system is considered to be sufficient (when compared to gmin). This approach can be compared
with the multi-observer approach where the observer dynamics switch between different modes
depending on a criterion (see, e.g., [PPA+22]). However, contrary to [PPA+22], our objective in
doing so is not to increase speed of convergence but rather to robustify the observer with respect
to observability singularities.

The resulting system can be written as:
ẋ = A(u(t))x̂+B(u(t))

˙̂x = A(u(t))x̂+B(u(t))− S−1C ′(Cx̂− Cx)

Ṡ = −A(u(t))′S − SA(u(t))− θ(t)S + C ′C,

(8)

where (x, x̂, S) lies in Rn × Rn × Sn++ and

(u(t), θ(t)) =

{
(0, α) if t2k 6 t < t2k+1 for some k

(λ(x̂(t)), β) if t2k+1 6 t < t2k+2 for some k
.

Now we state our main result on the semi-global output feedback stabilization of (1).

Theorem 4. Suppose Assumptions 1 and 2 hold. For all compact set K×K̂×S ⊂ D×Rn×Sn++,
there exist positive constants tstab, tobs, T , gmin, β and α such that the closed-loop system (8) is
such that:

• There is at most a finite number of switches, i.e., kmax < +∞.

• For all (x0, x̂0, S0) ∈ K×K̂×S, the corresponding trajectory (x, x̂, S) of the closed-loop system
(8) is such that (x(t), x̂(t)) tend towards (0, 0) as t goes to infinity. Moreover, S(t) tends
toward the unique solution S∞ ∈ Sn++ of the Lyapunov equation A(0)′S+SA(0)+βS = C ′C
and S remains upper and lower bounded over R+.

• For all R > 0, there exists r > 0 such that for all τ ∈ R+, if |x(τ)| < r and |x̂(τ)| < r, then
|x(t)| < R and |x̂(t)| < R for all t > τ .

Moreover, the positive constants can be taken according to the following procedure: for all
tstab > 0, there exists t̄obs > 0, such that for all tobs ∈ (0, t̄obs), there exists T̄ > 0, such that for
all T ∈ (0, T̄ ), there exists ḡmin > 0, such that for all gmin ∈ (0, ḡmin) there exists

¯
β > 0, such that

for all β >
¯
β there exists

¯
α > 0, such that for all α >

¯
α, the result holds.

Remark 5. • Theorem 4 is a semi-global output feedback stabilization strategy for state-affine
systems that are observable at the target. It can be interpreted as a nonlinear separation
principle for this class of non-uniformly observable systems. Note however that, as usual for
nonlinear systems [AP09], the observer and the feedback law cannot be designed separately.
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• Regarding stability of the closed-loop, note that the system is ony stable with respect to
variables x and x̂, but not with respect to S, despite the attractivity of S∞. In other words,
the system is only stable on the set {0} × {0} × Sn++. This is due to the switching strategy,
that prevent S∞ to be an equilibrium point during observation modes (since the gain of the
observer is switched from β to α). Similarly, stability with respect to variables used in the
switching condition (namely, Gu(t − T, t), that can be integrated as a state variable thanks
to (9)-(16)) is not investigated, and should be tackled in future works.

• Observability for a given control on a time interval is an open condition. As a result, ob-
servability for the null control implies observability of small enough controls (on a given time
frame). As is shown in the proof of Theorem 4, this can be leveraged to prove that the system
switches at most a finite number of times along a given trajectory. It should be noted that in
the case where the system is uniformly observable, we then recover the usual non-switching
strategy for a separation principle (i.e. u = λ(x̂) and β large enough), at least after the
preliminary observation phase.

The proof of this theorem is the result of a sequence of lemmas exposed in Section 5. We
first show boundedness of the trajectories, which then helps prove convergence of the state and
observer to the target, and finally discuss stability at the target. Below, we recall some important
properties of Lyapunov differential equations and observability Gramian.

4 Lyapunov differential equation and Gram observability
matrix

For any bounded u : [t0, t1] → R, let Φu : [t0, t1]2 → GLn(R) be the state transition matrix such
that

∂

∂t
Φu(t, s) = −Φu(t, s)A(u(t)), Φu(s, s) = Id.

We also have
∂

∂s
Φu(t, s) = A(u(s))Φu(t, s) and

d

dt
Φu(t, t− T ) = −Φu(t, t− T )A(u(t)) +A(u(t− T ))Φu(t, t− T ). (9)

The Gram observability matrix, or observability Gramian matrix, for the control u over the
time interval [t0, t1] is defined as∫ t1

t0

Φu(t1, s)
′C ′CΦu(t1, s)ds = Gu(t0, t1). (10)

The Gram observability matrix contains some measure of the observability of a control u by
linking it to the positive-definiteness of Gu(t0, t1). Indeed for any ω : [t0, t1] → Rn such that
ω̇(t) = A(u(t))ω, ∫ t1

t0

|Cω(s)|2ds = ω(t1)′Gu(t0, t1)ω(t1).

Inobservability of the control u over [t0, t1] implies the existence of a nontrivial kernel for Gu(t0, t1).
For constant inputs u, observability of the pair (C,A(u)) is equivalent to the positive-definiteness
of Gu(t0, t1) for any t1 > t0 > 0.

On the set of symmetric matrices, we consider the Lyapunov differential equation with gain
θ > 0

Ṡ(t) = −A(u(t))′S(t)− S(t)A(u(t))− θS(t) + C ′C,

S(t0) = S0 ∈ Sn++.
(11)
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The solution to this differential equation admits an explicit variation of constants type expression
(see, for instance, [AKFIJ03, Theorem 1.1.5]):

S(t) = e−θ(t−t0)Φu(t, t0)′S(t0)Φu(t, t0) +

∫ t

t0

e−θ(t−s)Φu(t, s)′C ′CΦu(t, s)ds. (12)

In particular, the Gramian Gu(t0, t1) is the evaluation at time t1 of the solution of (12) with gain
θ = 0 and initial condition S(t0) = 0.

Under the assumption that S(t0) > 0, S(t) > 0 for all t > t0. Each member in the right-hand
side of (12) can bring competing lower bounds of S, depending on the context. One relies on the
Gramian matrix, useful under observability assumptions

S(t) > e−θ(t−t0)

∫ t

t0

Φu(t, s)′C ′CΦu(t, s)ds = e−θ(t−t0)Gu(t0, t), (13)

while the other leads to a worst case scenario lower bound, with a∞ = sups∈(t0,t) ‖A(u(s))‖:

S(t) > e−θ(t−t0)Φu(t, t0)′S(t0)Φu(t, t0) > e−(θ+2a∞)(t−t0)Smin(t0) Id . (14)

These bounds can then be used for computations of a Lyapunov function for the error in
equations (3)-(5): ε′Sε. Indeed, with constant gain θ, d

dtε
′Sε = −θε′Sε− ε′C ′Cε 6 −θε′Sε. Then

for all t > t0, ε′Sε(t) 6 e−θ(t−t0)ε′Sε(t0), which translates to the crucial error bound

|ε(t)| 6 e−
θ
2 (t−t0)

√
Smax(t0)

Smin(t)
|ε(t0)|. (15)

Here Smin and Smax respectively denote the smallest and largest eigenvalues of the positive-definite
matrix S. Under observability assumption, it may then be worthwhile to bound Smin(t) by below
using (13), as Smin(t) > e−θT g(t), where g(t) is the smallest eigenvalue of Gu(t − T, t). On the
computational side, we can use a Lyapunov differential style equation to compute the Gramian
over a sliding interval of length T . For all t > T ,

d

dt
Gu(t−T, t) = −A(u(t))′Gu(t−T, t)−Gu(t−T, t)A(u(t)) +C ′C−Φu(t, t−T )′C ′CΦu(t, t−T ).

(16)
Regarding Smax, we show that it is bounded provided θ is large enough. The quantity tr(S)
satisfies for a given gain θ > 0

d tr(S)

dt
= −2 tr(A′S)− θ tr(S) + tr(C ′C).

Since we have tr(A′S) 6
√

tr(A′A)
√

tr(S2),
√

tr(S2) 6 tr(S) and tr(C ′C) = |C|2,

d tr(S)

dt
6 (−θ + 2aF ) tr(S) + tr(C ′C)

with aF = sup[t0,t1]

√
tr(A′(u(t))A(u(t))). By Grönwall’s inequality,

tr(S(t)) 6
(
tr(S(t0)) + |C|2(t− t0)

)
e−(θ−2aF )(t−t0).

As a consequence, as soon as θ > 2aF ,

Smax(t) 6 tr(S(t)) 6 max

(
tr(S(t0)),

|C|2

θ − 2aF

)
. (17)
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5 Proof of Theorem 4

5.1 Preliminaries and notations

For all R > 0, we denote by D(R) = {x ∈ Rn | V (x) 6 R} and by m(R) = sup
D(R)

∣∣∣∣∂V∂x
∣∣∣∣ where V is

the Lyapunov function given by (2). In particular, let R0 > 0 be such that D(R0) contains K. For
all R > 0, we have m(R) diamD(R) > R. Indeed, according to the mean value theorem, we get

m(R) diamD(R) > sup
x∈D(R)

m(R)|x| > sup
x∈D(R)

V (x) = R. (18)

In these preliminaries, we choose successively tstab, tobs, T and gmin. Let tstab > 0 be fixed.
Define

η =
etstab − 1− tstab

2 + etstab
> 0. (19)

Set a0 = ‖A(0)‖, a∞ = supx∈Rn ‖A(λ(x))‖ and define

t̄obs = sup

{
t > 0 : sup

R∈(0,R0]

m((1 + η)R)

R
(a0 diamD(R) +R) tea0t < η

}
. (20)

Equation (18) implies that t̄obs ∈ (0,+∞). We pick tobs ∈ (0, t̄obs) and T < T̄ := min(tobs, tstab)/3.
Then we pick ḡmin > 0 such that Gu(0, T ) > ḡmin Id for any u = λ ◦ x̂ such that V (x̂) 6 R∞ and
choose gmin ∈ (0, ḡmin). We denote by g0 the smallest eigenvalue of G0(0, T ). Clearly, ḡmin < g0

since the equilibrium trajectory x̂ ≡ 0 leads to λ ◦ x̂ = 0. For all t > T , we denote by g(t) the
smallest eigenvalue of Gu(t− T, t) for the control u set in (8), so that Gu(t− T, t) > gmin Id and
Gu(t− T, t) 6> gmin Id can be shortened to g(t) > gmin and g(t) 6 gmin, respectively.

In the following section, we discuss boundedness of the trajectories, which imply the possible
choices for

¯
β and

¯
α. With aF = supx∈Rn

√
tr(A(λ(x))′A(λ(x))), we assume

¯
β and

¯
α large enough

so that supS tr(S) >
|C|2

min(
¯
α,

¯
β)− 2aF

. This allows to assume, in conjunction with (17), the

existence of s̄ > 0 independent of α, β, such that all trajectories of (8) starting in K× K̂×S have

Smax(t) < s̄ for all t ∈ R+. Let (x0, x̂0, S) be in K × K̂ × S. Let us investigate the corresponding
trajectory (x, x̂, S).

5.2 Trajectories are bounded

Recall that t2k+1 = t2k+tobs, t2k+2 > t2k+1+tstab. The first, and most technical, step of the bound-
edness proof is to show that over a sequence of switches on the time interval [t2k, t2k+1 + tstab),
the system remains bounded. We show that the Lyapunov for the system can grow in observabil-
ity mode, but up to a tuning of the parameters, the stabilisation mode will compensate for that
growth and ensure that the value of the Lyapunov at t2k+1 + tstab did not worsen from its value
at t2k.

Lemma 6. We define positive constants K1,K2, depending only on the problem data, K× K̂ ×S
and tstab, as follows: with d0 = diam

(
D(R0) ∪ K̂

)
, D = dist

(
D((1 + η)R0),D((1 + 2η)R0)c

)
,

D′ = dist
(
D((1− η)R0),D(R0)c

)
, and m̄ = m((1 + 2η)R0)

K1 =
min (D,D′e−a∞tstab)

2

s̄d2
0

and K2 =
R2

0e−6a∞tstab

s̄d2
0|C|4m̄2

.

Assume α large enough so that

e−α(tobs−T ) < K1g0 and e−α(tobs−3T ) < K2g
3
0 e−2βtstab , (21)
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then for all integers k such that 2k ∈ [0, kmax), if V (x(t2k)) 6 R0, and either V (x̂(t2k)) 6 (1−η)R0

if k > 1 or x̂(0) ∈ K̂ if k = 0, we have

V (x(t2k+1)) 6 (1 + η)R0, V (x̂(t2k+1)) 6 (1 + 2η)R0,

V (x(t2k+1 + tstab)) 6 R0, and V (x̂(t2k+1 + tstab)) 6 (1− η)R0.

Proof. Step 1: observation mode. Let us bound |x(t)− x(t2k)| on [t2k, t2k + tobs). For t > t2k,

|x(t)− x(t2k)| 6
∫ t

t2k

|ẋ(s)|ds 6
∫ t

t2k

|A(0)x(s)|ds 6 a0

∫ t

t2k

|x(s)|ds

6 a0

∫ t

t2k

|x(s)− x(t2k)|ds+ a0|x(t2k)|(t− t2k)

6 a0

∫ t

t2k

|x(s)− x0|ds+ a0 diamD(R0)(t− t2k)

By Grönwall’s inequality, we conclude that

|x(t)− x(t2k)| 6 diamD(R0)a0(t− t2k)ea0(t−t2k).

Assume there exists t∗ = inf{t ∈ [t2k, t2k+tobs) : V (x(t∗)) = (1+η)R0}. By mean value inequality

|V (x(t∗))− V (x(t2k))| 6 m((1 + η)R0)|x(t∗)− x(t2k)|

and since t∗ < tobs < t̄obs (see (20)),

V (x(t∗)) 6 R0 +m((1 + η)R0) diamD(R0)a0(t∗ − t2k)ea0(t∗−t2k) < (1 + η)R0.

This proves that t∗cannot exist and V (x(t)) 6 (1 + η)R0 for all t ∈ [t2k, t2k + tobs].
Regarding the followup assertions, we first look at the upper bound on ε = x̂− x (15):

|ε(t2k + tobs)| 6 e−
α
2 tobs

√
Smax(t2k)

Smin(t2k + tobs)
|ε(t2k)|. (22)

With the assumption that x(t2k) ∈ D(R0), x̂(t2k) ∈ D((1− η)R0)∪ K̂ ⊂ D(R0)∪ K̂, we have that

|ε(t2k)| 6 diam
(
D(R0) ∪ K̂

)
= d0. Furthermore, we know that Smax(t) < s̄, and since u = 0 on

[t2k, t2k + tobs), Smin(2k+tobs) > e−αT g0. Then

|ε(t2k + tobs)| 6 e−
α
2 (tobs−T )

√
s̄

g0
d0 (23)

Then by assuming that (21) holds, we have |ε(t2k + tobs)| 6 dist
(
D((1 + η)R0),D((1 + 2η)R0)c

)
and thus V (x̂(t2k + tobs)) 6 (1 + 2η)R0.

Step 2: stabilization mode. For all t ∈ [t2k+1, t2k+1 + tstab),

ε′(t)S(t)ε(t) 6 e−β(t−t2k+1)ε′(t2k+1)S(t2k+1)ε(t2k+1)

6 e−β(t−t2k+1)e−αtobsε′(t2k)S(t2k)ε(t2k)

We know S(t2k+1) > e−βTG0(0, T ), and thus with worst possible exponential decay, we get for
t ∈ [t2k+1, t2k+1 + tstab)

S(t) > e−(β+2a∞)(t−t2k+1)e−αTG0(0, T ).

Hence

|ε(t)| 6 ea∞tstabe−
α
2 (tobs−T )

√
s̄

g0
d0 (24)
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and

|S−1(t)C ′Cε(t)| 6 e(β+3a∞)tstabe−
α
2 (tobs−3T )

√
s̄

g3
0

|C|2d0

As a consequence of (21), we have for all t ∈ [t2k+1, t2k+1 + tstab)

m((1 + 2η)R0)|S−1(t)C ′Cε(t)| 6 R0.

Assume there exists t∗ = inf{t ∈ [t2k+1, t2k+1 + tstab) | V (x̂(t)) = (1 + 2η)R0}. Then for all
t ∈ [t2k+1, t

∗),

V (x̂(t))− V (x̂(t2k+1)) 6 −
∫ t

t2k+1

V (x̂(s))ds+R0(t− t2k+1)

so that, by Grönwall inequality,

V (x̂(t)) 6 R0 (1 + 2η + (t− t2k+1)) e−(t−t2k+1).

However (1 + 2η + t− t2k+1) e−(t−t2k+1) 6 1 + 2η for all t > t2k+1, proving that V (x̂(t)) 6 (1 +
2η)R0 for all t ∈ [t2k+1, t2k+1 + tstab) and t∗ is not reached. Furthermore, with η given by (19),
we get that V (x̂(t2k+2 + tstab)) 6 (1− η)R0.

Finally, coming back to (24), if |ε(t2k+2 +tstab)| 6 dist(D((1−η)R0),D(R0)c), which is implied
by (21), then V (x(t2k+2 + tstab)) 6 R0.

As a second step in the boundedness proof, we show that on the occasions where the switching
conditions is not satisfied as soon as possible, so that t2k+2 > t2k+1+tstab, then the usual behaviour
of the Kalman like observer holds and the Lyapunov does not grow.

Lemma 7. We define positive constants K3,K4, depending only on the problem data, K× K̂ ×S
and tstab, as follows: with d′0 = diam (D((1 + 2η)R0)) and D′ = dist

(
D((1− η)R0),D(R0)c

)
,

K3 =
D′

2

s̄d′0
2 and K4 =

(1− η)2R2
0

s̄d′0
2m((1− η)R0)2

Assume β large enough so that

e−β(tstab−T ) < K3 gmin and e−β(tstab−3T ) < K4 g
3
min. (25)

Let k be an integer such that 2k ∈ [0, kmax). If at t2k+1 we have |x̂(t2k+1)−x(t2k+1)| 6 diam(D((1+
2η)R0)), and at t2k+1 +tstab we have V (x(t2k+1 +tstab)) 6 R0, and V (x̂(t2k+1 +tstab)) 6 (1−η)R0

then for all t ∈ [t2k+1 + tstab, t2k+2],

V (x(t)) 6 R0 and V (x̂(t)) 6 (1− η)R0.

Proof. The lemma is trivial in the case t2k+2 = t2k+1 + tstab, we assume it is not the case. Over
the interval [t2k+1 + tstab, t2k+2), the usual error bound (15) yield

|ε(t)| 6 e−
β
2 (t−t2k+1)

√
Smax(t2k+1)

Smin(t)
|ε(t2k+1)|, ∀t ∈ [t2k+1 + tstab, t2k+2). (26)

Since g(t) > gmin over [t2k+1 + tstab, t2k+2), we have Smin(t) > e−αT gmin. Then for all t ∈
[t2k+1 + tstab, t2k+2)

|ε(t)| 6 e−
β
2 (t−t2k+1−T )

√
s̄

gmin
|ε(t2k+1)|

and since |ε(t2k+1)| 6 d′0 by assumption,

|S−1C ′Cε(t)| 6 e−
β
2 (tstab−3T )

√
s̄

g3
min

d′0.
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Assume there exists a time t∗ ∈ [t2k+1 + tstab, t2k+2] such that V (x̂(t)) = (1− η)R0. By definition
of the Lyapunov function V , we have

d

dt
V (x̂) 6 −V (x̂)− ∂V

∂x
(x̂)S−1C ′Cε.

Assuming (25) holds, this implies that at t = t∗,

d

dt
V (x̂)|t=t∗ 6 −(1− η)R0 + sup

∂D((1−η)R0)

∣∣∣∣∂V∂x
∣∣∣∣ e− β2 (tstab−3T )

√
s̄

g3
min

d′0 < 0.

Since V (x̂(t2k+1 + tstab)) 6 (1−η)R0, this implies that t∗ = t2k+1 + tstab is the only possible value
of t∗ and V (x̂(t)) < (1 − η)R0 for all t ∈ (t2k+1 + tstab, t2k+2). This proves the first part of the
statement. In order to have V (x(t)) < R0, it is sufficient to have |ε(t)| < dist(D((1−η)R0),D(R0)c)
for all t ∈ [t2k+1 + tstab, t2k+2). Coming back to (26), this bound is true when (25) also holds.

Now we are ready to end the boundedness proof with two corollaries of the previous two
lemmas.

Corollary 8. Assume the inequalities in Lemma 6 and 7 hold. Then the dynamic gain matrix S
is bounded above and below. We denote the below bound 0 <

¯
s Id 6 S(t).

Proof. We discussed the above bound s̄ in the preliminaries. We focus on the lower bound. Let
k > 0. We know that S(t2k+1) > e−αTG0(0, T ). Then with worst possible exponential decay,

S(t) > e−(β+2a∞)tstabe−αTG0(0, T ), ∀t ∈ [t2k+1, t2k+1 + tstab].

If g(t) > gmin, we do not switch right away, and we are able to say that

S(t) > e−αT gmin Id, ∀t ∈ [t2k+1 + tstab, t2k+2].

Assuming there exists t > t2k + tstab such that g(t) = gmin, then we know that at t2k+1, whatever
the past,

Smin(t2k+1) > min
(

e−αT gmin, e
−(α+2a∞)tstabe−βT g0

)
.

Then

Smin(t) > e−βT min
(

e−αT gmin, e
−(α+2a∞)tstabe−βT g0

)
, ∀t ∈ [t2k+1, t2k+1 + T ].

Then for times larger than t2k+1 +T , we can rely on the fact that u = 0 on [t2k+1, t2k+2), implying
that

S(t) > e−βTG0(0, T ), ∀t ∈ [t2k+1 + T, t2k+2].

As a result,

Smin(t) > e−βT min
(

e−αT gmin, e
−(α+2a∞)tstabe−βT g0

)
, ∀t ∈ [t2k, t2k+2].

Hence the existence of
¯
s Id < S(t) for all t ∈ R+, independent of S(t0).

We have the following conclusion, which shows how to choose α and β in the rest of the proof.

Corollary 9. Let K1,K2,K3,K4 be the constants defined in Lemmas 6 and 7. Let
¯
β > 0 be such

that
e−¯

β(tstab−T ) < K3 gmin and e−¯
β(tstab−3T ) < K4 g

3
min

and fix β >
¯
β. Let

¯
α > 0 be such that

e−¯
α(tobs−T ) < K1 g0, and e−¯

α(tobs−3T ) < K2 g
3
0 e−2βtstab .

Then, for all α >
¯
α, all trajectories of (8) with initial conditions in K × K̂ × S ⊂ D × Rn × Sn++

remain in a compact subset of D × Rn × Sn++ over [0,+∞).

Now that all parameters of the system have been fixed, it remains to investigate the attractivity
and stability of the system at the target point.
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5.3 Attractivity

Lemma 10. The estimation error ε(t) tends to 0 as t tends to infinity.

Proof. Let k ∈ N. For any t ∈ [t2k, t2k+1],

|ε′(t)S(t)ε(t)| 6 e−α(t−t2k)|ε′(t2k)S(t2k)ε(t2k)|.

Likewise, for any t ∈ [t2k+1, t2k+2],

|ε′(t)S(t)ε(t)| 6 e−β(t−t2k+1)|ε′(t2k+1)S(t2k+1)ε(t2k+1)|.

As a consequence, with θ = min(α, β), we get

|ε′(t)S(t)ε(t)| 6 e−θt|ε′(0)S(0)ε(0)|.

Then |ε(t)| 6 e−θt
√
s̄/

¯
s|ε(0)|, which proves the result.

Now, let us prove the convergence of (x̂, x) towards 0 by investigating the behaviour of V (x̂)
and V (x) over the successive observation and stabilization modes. Recall the notations m(R) =

sup
D(R)

∣∣∣∣∂V∂x
∣∣∣∣, and m̄ = m((1 + 2η)R0).

Lemma 11. If there exist R ∈ (0, R0), k ∈ N and τ ∈ [t2k, t2k+1) such that V (x̂(τ)) 6 R and
|S−1(t)C ′Cε(t)| 6 R for all t ∈ [τ, t2k+1], then V (x̂(t)) < (1 + η)R for all t ∈ [τ, t2k+1].

Proof. The assumptions imply

|x̂(t)− x̂(τ)| 6
∫ t

τ

| ˙̂x(s)|ds 6
∫ t

τ

|A(0)x̂(s)|ds+ (t− τ)R

6 a0

∫ t

τ

|x̂(s)− x̂(τ)|ds+ (a0 diamD(R) +R) (t− τ)

Then we rely on Grönwall’s inequality arguments. We have

|x(t)− x(τ)| 6 (a0 diamD(R) +R) (t− τ)ea0(t−τ).

Assume there exists t ∈ (τ, t2k + tobs) such that V (x̂(t)) = (1 + η)R, and let t∗ = inf{t > τ |
V (x̂(t)) = (1 + η)R}. Then

V (x̂(t∗)) 6 R+m((1 + η)R) (a0 diamD(R) +R) tobse
a0tobs .

However, this is impossible for any given tobs < t̄obs by definition of t̄obs (see (20)). Hence t∗

cannot exist and V (x̂(t2k+1)) < (1 + η)R.

Lemma 12. If there exists k ∈ N such that V (x̂(τ)) = (1 + η)R for some R ∈ (0, R0), τ ∈
[t2k+1, t2k+2), and m̄|S−1(t)C ′Cε(t)| 6 R for all t > τ , then

V (x̂(t)) < R(1 + η + (t− τ))e−(t−τ), ∀t ∈ [τ, t2k+2).

In particular, s 7→ (1+η+s)e−s is a decreasing function over R+ and κ := (1+η+tstab)e−tstab < 1.

Proof. By Lemma 6, we know V (x̂(t)) < (1+2η)R0 on [t2k+1, t2k+2). Then the assumptions imply
for all t ∈ [τ, t2k+2)

V (x̂(t))− V (x̂(τ)) 6 −
∫ t

τ

V (x̂(s))ds+ (t− τ)R.

Then Grönwall’s inequality implies for all t ∈ [τ, t2k+2)

V (x̂(t)) 6 R(1 + η + (t− τ))e−(t−τ).

Furthermore, by definition of η,

κ = (1 + η + tstab)e−tstab =
e−tstab (1 + tstab + etstab(tstab + 2))

etstab + 2
< 1.

Hence the statement.

11



Lemma 13. Under Assumption 1, for all T > 0, for all gmin > 0 such that gmin Id < G0(0, T ),
there exists R∞ > 0 such that V (x̂)|[0,T ] 6 R∞ implies Gλ◦x̂(0, T ) > gmin Id.

Proof. The proof follows an argument made in [GK01, Section 2.4.2]. For any T > 0, the input-
to-state mapping, and therefore the Gram observability matrix, are continuous with respect to
the weak-∗ topology over L∞([0, T ],R). Banach–Alaoglu theorem implies that closed balls for the
L∞([0, T ],R) norm are compact. Then the image of B(r) = {u ∈ L∞([0, T ],R) : ‖u‖L∞([0,T ],R) 6
r} by u 7→ Gu(0, T ) is a compact subset positive semi-definite symmetric matrices. By assumption,
G0(0, T ) > gmin Id, hence there exists r∞ > 0 such that for all u ∈ B(r∞), Gu(0, T ) > gmin Id. We
then get our statement by picking R∞ small enough so that V (x̂) 6 R∞ implies |λ(x̂)| 6 r∞.

Define ρ =

√
¯
s3/s̄

|C|2m̄
.

Lemma 14. If there exists k ∈ N, τ ∈ [t2k+1, t2k+2) such that V (x̂(τ)) 6 R∞/(1 + η) and
|ε(τ)| 6 ρR∞/(1 + η)2, then V (x̂(t)) 6 R∞ for all t ∈ [τ,+∞). Furthermore the system never
switches after τ + T + tobs (and remains in stabilization mode, i.e., kmax <∞).

Proof. Over the interval [τ,+∞), |ε(t)| 6
√
s̄/

¯
s ε(τ). By definition of ρ, |ε(τ)| 6 ρR∞/(1 + η)2

implies that
m̄|S−1(t)C ′Cε(t)| 6 R∞/(1 + η)2, ∀t > τ.

Let t∗ = inf{t > max(τ, t2k+1 + tstab) | g(t) 6 gmin}. If τ < t∗, then Lemma 12 applies and
V (x̂(t)) 6 R∞/(1 + η) for all [τ, t∗). Assume t∗ ∈ (τ + T,+∞), then that would imply that we
have both g(t∗) 6 gmin and V (x̂) 6 R∞ over [τ, t∗]. This is in contradiction with Lemma 13.
Hence either t∗ = +∞, g(t) > gmin for all t ∈ [τ + T,+∞) and the system never switches again,
or t∗ ∈ [τ, τ + T ). In that second case, the system switches at time t∗ = t2k+2. Then Lemma 11
applies to show that V (x̂(t2k+3)) < R∞ and Lemma 12 applies to show that V (x̂(t)) < R∞ for
all t ∈ [t2k+3, t2k+4). Then, like before, if we define t∗∗ = inf{t > t2k+3 + tstab | g(t) 6 gmin}, we
know that having t∗∗ <∞ implies a contradiction with Lemma 13. Hence why t2k+4 = +∞ and
t2k+3 < τ + T + tobs is the last switching time. In both cases, Lemma 12 allows to conclude that
V (x̂) < R∞ over [τ,+∞).

Corollary 15. The state x(t) and observer x̂(t) both tend to the target 0 ∈ Rn as t tends to ∞.
Moreover, there are at most a finite number of switches, i.e., kmax <∞.

Proof. We know that ε → 0, it is sufficient to prove x̂ → 0. This is achieved by proving that
V (x̂)→ 0. Since ε→ 0, there exists t̄ such that for all t > t̄, |ε| 6 ρR∞/(1 + η)2.

Under these circumstances, we can check that there are at most a finite number of switches
until V (x̂) < R∞/(1 + η). Indeed if the sequence (tk) is infinite, we denote k̄ the first index for
which t2k+1 + tstab > t̄. For all k > k̄, we have by Lemmas 11 and 12 that

V (x̂(t2k+3 + tstab)) < κV (x̂(t2k+1 + tstab)).

Since for all k ∈ N, V (x̂(t2k+1 + tstab)) 6 R0, we have

V (x̂(t2k̄+2`+1 + tstab)) < κ`R0 −−−→
`→∞

0.

Hence there are at most a finite number of switches before V (x̂(t2k+1 + tstab)) < R∞/(1 + η) for
all k large enough. Then Lemma 14 applies with τ = t2k+1 + tstab, implying that there are no
more switches over [τ + T + tobs,+∞). Once this holds, Lemma 12 implies that V (x̂) → 0, and
thus x̂→ 0.

Finally, let us prove the convergence of S towards S∞.

Corollary 16. The Lyapunov equation A(0)′S∞+S∞A(0)+βS∞ = C ′C admits a unique solution
S∞ ∈ Sn++. Moreover, the dynamic gain matrix S tend to S∞ as t tends to ∞.
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Proof. The existence of S∞ follows from the observability of (C,A(0)). Let τ0 > 0 be such that
there are no more switches τ0, i.e, τ0 > tkmax−2. Then Ṡ = −A(u(t))′S−A(u(t))S−βS+C ′C for
all t > τ0. Recall that β > 2

√
tr(A(u(t))′A(u(t))) (see Section 5.1). Computing d

dt tr((S(t)−S∞)2)
and using Cauchy-Schwartz and Young’s inequalities, we get that there exist two positive constant
ν1 and ν2 such that

d

dt
tr((S(t)− S∞)2) 6 −ν1 tr((S(t)− S∞)2) + ν2 tr((A(u(t))−A(0))′(A(u(t))−A(0)))

Since x̂(t)→ 0 as t→ +∞ according to Corollary 15, and λ and A are continuous, tr((A(u(t))−
A(0))′(A(u(t))−A(0)))→ 0. Hence, tr((S(t)− S∞)2)→ 0 as t→ +∞, i.e., S(t)→ S∞.

5.4 Local stability of (x, x̂)

Corollary 17. For all R > 0, there exists r > 0 such that for all τ ∈ R+, if |x(τ)| < r and
|x̂(τ)| < r then |x(t)| < R and |x̂(t)| < R for all t > τ .

Proof. Recall that ε = x̂−x and V is a Lyapunov function. Hence, equivalently, we prove that for
all Rx̂ > 0 and all Rε > 0, there exist rx̂ > 0 and rε > 0 such that for all τ ∈ R+, if V (x̂(τ)) < rε
and |ε(τ)| < rx̂, then V (x̂(t)) < Rx̂ and |ε(t)| < Rε for all t > τ . According to the proof of
Lemma 10, |ε(t)| 6

√
s̄/

¯
s|ε(τ)|. Hence, we choose rε 6 Rε

√
¯
s/s̄. Remark that, according to

Lemma 13, any R̃∞ < R∞ is also such that V (x̂) 6 R̃∞ implies Gλ◦x̂(0, T ) > gmin Id. Hence,
with no loss of generality, we can suppose R∞ = Rx̂. Then, if τ ∈ [t2k+1, t2k+2) for some k, then
the result holds if rx̂ 6 Rx̂/(1 + η) and rε 6 ρRx̂/(1 + η)2 according to Lemma 14. Finally, if
τ ∈ [t2k, t2k+1) for some k, then |ε(t)| < rε

√
s̄/

¯
s for all t > τ by Lemma 10. Hence |S−1C ′Cε(t)| <

rε
√
s̄/

¯
s3|C|2. According to Lemma 11, it implies that V (x̂(t2k+1)) < (1+η) max(rx̂, rε

√
s̄/

¯
s3|C|2).

Hence the result holds if (1 + η) max(rx̂, rε
√
s̄/

¯
s3|C|2) < Rx̂/(1 + η) and rε

√
s̄/

¯
s < ρRx̂/(1 + η)2

according to Lemma 14. Hence, in any case, V (x̂(t)) < Rx̂ and |ε(t)| < Rε hold for all t > τ if
rε 6 min(Rε, Rx̂ρmin(1, m̄)/(1 + η)2)

√
¯
s/s̄ and rx̂ 6 Rx̂/(1 + η)2.

The combination of Corollary 15, 16 and 17 conclude the proof of Theorem 4.

6 Numerical simulations

We propose a numerical simulation of the stabilization strategy of Theorem 4 (numerical im-
plementation can be found in repository [BS21a]). In dimension n = 2, we choose A(u) =(

0 1 + u
−(1 + u) 0

)
, B(u) =

(
u
0

)
and C =

(
0 1

)
for all u ∈ R. Note that the pair (C,A(0)) is

observable, hence Assumption 1 is satisfied. This system is not uniformly observable, since the
pair (C,A(−1)) is not observable. One can easily check that the linear feedback law λ defined by
λ(x) =

(
−1 0

)
x for all x ∈ R2 is globally asymptotically stabilizing by considering the Lyapunov

function V : x 7→ |x|2. Hence, following the discussion below Assumption 2, one can exhibit a
bounded smooth asymptotically stabilizing state feedback coinciding with λ over an arbitrarily
large compact set, hence having arbitrary large basin of attraction.

The parameters of the switched dynamic output feedback are chosen according to Table 1.
Moreover, the dynamics of Gu(t − T, t) given in (16) is replaced by a stable version where A(u)
is replaced by A(u) + γ Id with γ = 10, in order to ensure robustness with respect to numerical
integration errors (the modification has no effects on the positivity of the Gram observability
matrix). The initial conditions are x0 = (−10, 0), x̂0 = (−15, 5) and S0 = Id. This choice leads
the system to cross the observability singularity u = −1 when using the control u = λ(x̂), i.e.,
x̂1 = 1. The Cauchy problem system is solved by means of a Runge-Kutta (2,3) method, taking
into account the delayed term appearing in (9)–(16). The resulting trajectory (x, x̂) is plotted
in Figure 1 for t ∈ [0, 50]. The switching times between observation and stabilization modes are
emphasized on all figures. In Figure 2, the evolution of |x|2 and |ε|2 is plotted. The value of the
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lowest eigenvalue of the observability Gramian is shown in Figure 3, as well as a square signal
whose value represents the mode of the system (starting with observability). As expected by
Theorem 4, both the estimation error and the state’s norm converge to zero. Note that the system
only switches a finite number of times (10 times) before entering a stabilization mode it doesn’t
leave. Observation modes start when the observability Gramian is too low, and make it increase.
This helps the system to cross the observability singularity x̂1 = 1.

tstab = 3 tobs = 2 T = 1
gmin = 5 ∗ 10−4 β = 1 α = 1

Table 1: Parameters of the numerical simulation
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Figure 1: Trajectory of the closed-loop system. After 10 switches from one mode to an other, the
system enters in a final stabilization mode.

0 10 20 30 40 50
10-15

10-10

10-5

100

Figure 2: Evolution of the norms of the state and estimation error

7 Conclusion

In this paper, we have proposed a new output feedback stabilization strategy for non-uniformly
observable state-affine systems based on switches between observation and stabilization modes.
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Figure 3: Evolution of the lowest eigenvalue of the observability Gramian. In bold, the squared
signal represent the mode: the system is in observation mode when the signal is at its maximum,
and in stabilization mode when it is at its minimum.

Our main result states that for any compact set of initial conditions, and for well-chosen constants
of time, observer gains and switching conditions, trajectories of the resulting closed-loop system
converge to the target point and present some stable behavior. Moreover, we show that the system
actually switches a finite number of times, before entering in a final stabilization mode. Numerical
simulations on a harmonic oscillator with time-dependent speed confirm this theoretical behavior.

In future works, two important questions remain be tackled. First, stability of the closed-loop
system with respect to measurement noise or perturbations of the Gram observability matrix used
in the switching condition could be explored and numerically tested. Then, it would be interesting
to investigate the switching condition (currently depending on the Gram observability matrix) and
to see what general class of conditions could be used instead.
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