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A UNIQUENESS RESULT FOR A TWO DIMENSIONAL VARIATIONAL
PROBLEM

LLEDOS Benjamin1

Abstract. We investigate the uniqueness of the solutions for a non-strictly convex problem in the
Calculus of Variations of the form

∫
φ(∇v) − λv. Here, φ : R2 → R is a convex function and λ is

Lipschitz continuous. We prove the uniqueness when ∇λ is small and give some counterexamples
when that is not the case. The proof is based on the global Lipschitz regularity of the minmizers
and on the study of their level sets.

Mathematics Subject Classification: 35A02, 49J45, 49N99.

1. Introduction

1.1. A model case. The motivation of this article is to study non strictly convex problems in the
Calculus of Variations in dimension two as in the following model case:

(1.1) Ĩλ : u→
∫
Ω
F (∇u(x))− λ(x)u(x)dx

where Ω is an open bounded set in R2, λ ∈ L∞(Ω) and F (y) = f(|y|) with

(1.2) f(t) =


1
2 |t|

2 if |t| ≤ 1,

|t| − 1
2 if 1 < |t| < 2,

1
4 |t|

2 + 1
2 if 2 ≤ |t|.

For this functional, the admissible functions u belong to the Sobolev space W 1,2(Ω) with a
prescribed trace ψ : R2 7→ R on the boundary ∂Ω of Ω. Our goal is to prove the uniqueness of
solutions to the following minimization problem:

P̃λ : min
u∈W 1,2

ψ (Ω)
Ĩλ(u).

When λ ≡ λ0 ∈ R+, this problem studied by Kawohl, Stara and Wittum in [15] arises as the
convexification a non convex problem of shape optimization in the theory of elasticity. In this
example, f is the convexification of the minimum of two parabolas: t 7→ 1

2 |t|
2 and t 7→ 1

4 |t|
2 + 1

2 .
Observe in particular that f is affine on the interval (1, 2). Since f is convex but not strictly convex,
there is no obvious reason for P̃λ to have a unique solution.

In fact, the authors of [15] rely on the assumption that the level sets of one minimizer u are
star-shaped. Furthermore, they suppose that the boundary of the set in Ω where f ′(|∇u|) = 1 is
piecewise C1. In this paper, we do not require such additional assumptions.
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There is no general answer to the question of uniqueness for non strictly convex problems in the
Calculus of Variations, especially when λ is not constant. Hence we restrict our attention to the
framework (1.1), where f can be replaced by more general convex functions provided that they are
strictly convex around the origin and at infinity.

1.2. Main results. More precisely, let φ : R 7→ R be an even C1 convex function with φ(t) >

φ(0) = 0 for all t ̸= 0. Moreover, we assume that φ ∈ C1,1
loc (R\{0})

We suppose that φ has p-growth for p > 1, namely, there exist C1 > 0 and C2 > 0 such that:

(1.3) C1|t|p ≤ φ(t) ≤ C2(1 + |t|p) for all t ∈ R.
We introduce the following set of strict convexity of φ:

SC = {x ∈ R, ∀y ∈ R\{x}, ∀t ∈]0, 1[, φ(tx+ (1− t)y) < tφ(x) + (1− t)φ(y)}.
For instance, SC = (−∞,−2) ∪ (−1, 1) ∪ (2,+∞) when φ is equal to the function f in (1.2).
We make some structural assumptions on SC:
• The set SC has finitely many connected components, in particular SC is open and

SC ∩ R+ =
N⋃
n=0

SCn

with SC0 := [0, b0), SCn := (an, bn) for every n ∈ N∗, n < N and SCN := (aN ,+∞). For every
n ∈ N, n < N we introduce dn := φ′(bn) = φ′(an+1).

• We assume that φ is C2 and φ′′ > 0 on SC\{0} and that φ is strongly convex at +∞ in the
following sense:

lim inf
t→+∞

tφ′′(t)

φ′(t)
> 0.

We define Φ(·) := φ(| · |) and for λ ∈ L∞(Ω) we introduce the following functional:

Iλ : u 7→
∫
Ω
Φ(∇u(x))− λ(x)u(x)dx

on W 1,p
ψ (Ω), where Ω is an open simply connected bounded set of R2 with a Lipschitz continuous

boundary ∂Ω and ψ is a Lipschitz-continuous function on ∂Ω. Here, W 1,p
ψ (Ω) is the subset of those

functions in W 1,p(Ω) that are equal to ψ on ∂Ω.

We introduce the minimization problem:
Pλ : min

u∈W 1,p
ψ (Ω)

Iλ(u).

The main result of the paper is the following:

Theorem 1.1. Let Ω be a simply connected bounded open set of R2. We assume that Ω has a C1,1

boundary, ψ ∈ C1,1(R2), λ is Lipschitz continuous on Ω, min
x∈Ω

λ(x) > 0. There exists a positive

constant
C := C(N, |Ω|,max

Ω
λ,min

Ω
λ, ||ψ||C1,1(Ω), κ)

where κ is the maximum curvature of Ω such that if ∥∇λ∥L∞(Ω) ≤ C then Pλ admits a unique
solution on W 1,p

ψ (Ω).
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Remark 1.2. When λ is constant, a more general result, true in any dimension, can be found in
[16].

Moreover, the boundedness condition on ∇λ is optimal since:

Proposition 1.3. There exists λ ∈ C∞(B1(0)) with min
B1(0)

λ > 0 such that Pλ has more than one

solution on W 1,p
0 (B1(0)).

1.3. Ideas of the proof. We want to prove the uniqueness of the solution u for the variational
problem Pλ. We know by classical theory (see [9] and [13]) that the problem Pλ admits at least
one minimizer u, this function u is bounded, globally Hölder continuous by [13, Theorem 7.8] and
locally Lipschitz continuous by [7, Theorem 1.1].
When λ = 0, the proof is substantially simplified. In this case, the strategy has been developed by
Marcellini in [19] under additional assumptions and the proof itself in a general framework is due
to Lussardi and Mascolo in [18]. In those two papers the proof is divided into two parts:

• Part 1 If u and v are two solutions of the same problem, then v is constant on the level
sets of u.

• Part 2 The level sets of u intersect the boundary ∂Ω of Ω. Since u and v are equal on ∂Ω
they are equal on Ω.

As observed in Remark 1.2, when λ ≡ λ0 ∈ R+, a shorter proof can be found in [16] but when
λ ∈W 1,∞(Ω) the proof requires new ideas and turns out to be fairly intricate. Part 1 remains true
but Part 2 fails to be true. In fact, the term u 7→

∫
Ω λu changes the geometry of the level lines:

they do not necessarily intersect the boundary ∂Ω of Ω. It is even possible that only one level set
intersects the boundary, see Proposition 2.10.

A very important subset of Ω is the following:

Proposition 1.4. There exists an open set U such that for every minimizer u, one has u ∈ C1(U)
and for every x ∈ U , |∇u(x)| ∈ SC\{0} while for a.e. x /∈ U , |∇u(x)| /∈ SC\{0}.

When λ ̸= 0, the set U ∪ ∂Ω plays the same role as the one played by ∂Ω in Part 2 when there
is no lower order term. However, the fact that u = v on U is far from being obvious. Nevertheless,
if u and v are two minimizers of the same problem, we can easily see that ∇u and ∇v are equal on
U and we can even prove that this is also the case on the level sets that intersect U . The aim of
the proof is to show that u = v or ∇u = ∇v on the level sets of u and v. Hence, for a.e. x ∈ Ω, the
Lipschitz map w(x) := u(x)− v(x) is equal to 0 or ∇w(x) = 0, thus u− v = w = 0.

This idea of using U ∪ ∂Ω comes from a paper by Bouchitté and Bousquet [5] but in their case
the fact that SC is of the form (1,+∞) implies that the boundary of every connected component of
U intersects ∂Ω. Since ∇u = ∇v on U and u = v on ∂Ω we readily obtain that u = v on U and this
part of the proof is easier. We warn the reader that this paper is not a generalization of [5] because
φ has no singularity at the origin unlike in [5]. This singularity of φ in [5] and in its generalization
[17] creates some regularity issues that will not appear here.

For instance in our situation, we exploit the fact that thanks to [10], max(α,φ′(|∇u|)) ∈W 1,2
loc (Ω)

for any α > 0. Then we prove that max(d0, φ
′(|∇u|)) has a representative that is absolutely

continuous on almost every level sets.
The other major difference between this paper and [5, 17] is that in these references, max(1, φ′(|∇u|)

is continuous on Ω which allows to prove their results for any dimension larger or equal to two. Here,
we heavily rely on two results which are only valid in dimension two: a general regularity result for
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Lipschitz continuous functions, see Theorem 2.8 below and the Jordan curve theorem. The latter
is the reason why we assume that Ω simply connected: this prevents the existence of holes inside
the connected components of the upper level set Es := [u > s] for s ∈ R.

When λ is small we can prove that almost every level set intersects a connected component of U
where |∇u| < b0. This allows us to prove the following theorem:

Theorem 1.5. When 0 ≤ λ(x) ≤ d0hΩ for a.e. x ∈ Ω, the problem Pλ admits a unique minimizer.

Here, d0 = φ′(b0) and hΩ is the Cheeger constant of Ω:

Definition 1.6. The Cheeger constant of Ω is defined as:

hΩ = inf
D⊂Ω

Per(D,R2)

|D|
where

Per(D,R2) = sup

{∫
D

div g
∣∣∣∣ g ∈ C1

c (R2;R2), |g(x)| ≤ 1 , ∀x ∈ R2

}
is called the Perimeter of the set D. A set D ⊂ Ω of finite perimeter is said to be a Cheeger set if
Per(D,R2) = hΩ|D|.

The proof of the main theorem will be based on an induction argument related to the family {dn,
n ∈ N, 0 ≤ n < N} with the previous theorem as the initialization step.

We study the connected components ls(u) of Ls(u) := u−1(s) ⊂ R2 such that ls(u) is a closed
simple curve. The case ls(u) ∩ ∂Ω ̸= ∅ is easy because u− v is constant on ls(u) and u− v = 0 on
∂Ω so that u− v on ls(u). Hence, we can assume that ls(u) ⋐ Ω and by the Jordan curve theorem,
we can define Fs as the bounded connected component of R2\ls(u). If ls(u) ∩ U = ∅ then we use
the following proposition:

Proposition 1.7. There exists a representative f0 of max(d0, φ
′(|∇u|)) such that for a.e. s ∈ R,

if ls(u) ∩ U = ∅ then f0 is equal to a constant C(ls(u)) ∈ {di, 0 ≤ i < N} on ls(u).

Another important result is a maximum principle proved in section 5 for smooth approximations of
our problem Pλ. We first regularize the problem to obtain a sequence (un)n∈N of smooth minimizers
of smooth problems Pλn , with (φn)n∈N and (λn)n∈N smooth approximations of φ and λ. In section
4, we use the fact that the sequence (∇un)n∈N generates Young measures (νx)x∈Ω to prove that
φ′
n(∇un) → φ′(∇u) a.e. in Ω when n→ +∞. For such approximations we have:

Proposition 1.8. For a.e. s ∈ R, if ls(u) is a connected component of Ls(u) which is a closed
simple curve and such that ls(u) ⋐ Ω then

sup
ls(u)

max(d0, φ
′
n(|∇un|)) = sup

Fs

φ′
n(|∇un|).

1.4. Plan of the paper. In the next section, we recall some classical results and we introduce
the notations and notions that are useful throughout the article. In Section 3, we study the reg-
ularity properties of the level sets of the minimizers. In the subsequent Section 4, we prove that
max(α,φ′(|∇u|) ∈ W 1,2

loc (Ω). The maximum principle for max(d0, |σn|) is proved in Section 5. Sec-
tion 6 is dedicated to the proof of Theorem 1.1 and Theorem 1.5. In the last section, we state a
possible extension to the main theorem.
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2. Preliminary results

In this section we introduce some known results related to this problem.

2.1. Direct methods. We know by the direct method in the calculus of variations (see [9] and [13])
that the problem Pλ admits at least one minimizer. We recall that every minimizer u is bounded,
globally Hölder continuous by [13, Theorem 7.8] and locally Lipschitz continuous by [7, Theorem
1.1].

We begin this subsection by observing that the minimum of a minimizer is attained on the
boundary of Ω.

Proposition 2.1. Let u be a minimizer of Pλ on W 1,p
ψ (Ω) with λ ∈ L∞(Ω) and λ(x) ≥ 0 for a.e.

x ∈ Ω. Then min
Ω
u = min

∂Ω
ψ.

Proof. Since min
Ω
u ≤ c := min

∂Ω
ψ, we have to prove that min

Ω
u ≥ min

∂Ω
ψ. We introduce w :=

max(u, c). If there exists a point x ∈ Ω such that u(x) < c, then by continuity of u the set [u < c]
has a positive measure. We have w = u and ∇w = ∇u on [u > c]. Moreover, since [u < c] has
positive measure we have:

0 =

∫
[u≤c]

φ(|∇w|) <
∫
[u≤c]

φ(|∇u|) and −
∫
[u≤c]

λw = −
∫
[u≤c]

λc ≤ −
∫
[u≤c]

λu.

Hence, Iλ(w) < Iλ(u) on Ω, which contradicts the fact that u is a minimizer. Thus, u ≥ c on Ω. □

We now prove that the gradients of two minimizers of the same problem are collinear. This
property is used in many subsequent proofs.

Lemma 2.2. Let u and v be two minimizers of Pλ with λ ∈ L∞(Ω). Then ∇u(x) and ∇v(x) are
collinear and φ is affine on the interval [|∇u(x)|, |∇v(x)|] for a.e. x ∈ Ω.

Proof. Since u is a solution of Pλ,

Iλ(u) ≤ Iλ
(
u+ v

2

)
.

By the fact that φ is non decreasing and the convexity of φ and of the Euclidean norm,

Iλ
(
u+ v

2

)
=

∫
Ω
φ

(∣∣∣∣∇u+∇v
2

∣∣∣∣)− λ
u+ v

2

≤ 1

2

∫
Ω
(φ(|∇u|)− λu) +

1

2

∫
Ω
(φ(|∇v|)− λv)

=
1

2
Iλ(u) +

1

2
Iλ(v).

Since v is another solution,

Iλ(u) =
1

2
Iλ(u) +

1

2
Iλ(v).

This implies that ∫
Ω
φ

(∣∣∣∣∇u+∇v
2

∣∣∣∣) =

∫
Ω

1

2
(φ(|∇u|) + φ(|∇v|)).

Hence for a.e. x ∈ Ω,

(2.1) φ

(∣∣∣∣∇u(x) +∇v(x)
2

∣∣∣∣) =
1

2
(φ(|∇u(x)|) + φ(|∇v(x)|)).
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Hence for a.e. x ∈ Ω, φ ◦ | · | is affine on the segment [∇u(x),∇v(x)]. In view of the definition of φ
and the strict convexity of the lower level sets of | · |, this means that ∇u(x) and ∇v(x) are collinear
for a.e. x ∈ Ω but also that φ is affine on [|∇u(x)|, |∇v(x)|] for a.e. x ∈ Ω.

□

We use a result of [3] to introduce the following set where ∇u is continuous and |∇u| takes its
values in SC\{0}, which is defined in Section 1.2.

Proposition 2.3. When λ ∈ C0(Ω), there exists an open set U such that u ∈ C1(U) and for every
x ∈ U , |∇u(x)| ∈ SC\{0} while for a.e. x /∈ U , |∇u(x)| /∈ SC\{0}.

Proof. By [3, Theorem 6.1], for a.e. x ∈ Ω such that |∇u(x)| ∈ SC\{0} there exists a neighborhood
V of x such that u ∈ C1,α(V). Since SC\{0} is open there exists ϵ > 0 such that for every
x′ ∈ Bϵ(x), |∇u(x′)| ∈ SC\{0}. Let U be the set of such x, then U is open and for a.e. x /∈ U ,
|∇u(x)| /∈ SC\{0}. □

One of the interests of this set is the following:

Proposition 2.4. The set U does not depend on the choice of a minimizer. Moreover, let u and v
be two minimizers of Pλ, then ∇u = ∇v on U .

Proof. Let us consider two minimizers u and v of the same problem. We define respectively, Uu and
Uv as the open sets of the previous proposition for u and v. By Lemma 2.2 and strict convexity
of φ on SC, we have that ∇u = ∇v a.e. on Uu. Hence, v ∈ C1(Uu) and for every x ∈ Uu,
|∇v(x)| ∈ SC\{0}. Thus, by definition of Uv, we have that Uu ⊂ Uv. To prove the other inclusion
we just have to exchange u and v. Hence, Uu = Uv = U and ∇u = ∇v on U . □

A direct consequence of this result is that:

Remark 2.5. For every connected component Ui of U , u− v is constant on Ui.

To conclude this section, we introduce the weak Euler-Lagrange equation associated to Pλ:

(2.2) div
(
∇Φ(∇u)

)
= −λ on Ω.

Remark 2.6. By Lemma 2.2 the function ∇Φ(∇u) = φ′(|∇u|) ∇u
|∇u| is independent of the choice of

the minimizer of Pλ and will be denoted by σ.

2.2. Lipschitz regularity of a minimizer u and its level lines. In this subsection, we recall
some Lipschitz regularity results for u and its level lines.

We use the following result from [17, Theorem 1.6] to show that our minimizers are globally
Lipschitz-continuous on Ω:

Proposition 2.7. We assume that Ω has a C1,1 boundary and ψ ∈ C1,1(R2). Then any minimizer
u of Pλ is globally Lipschitz-continuous on Ω. Moreover, there exists L > 0 such that

||∇u||L∞(Ω) ≤ L(p, C1, |Ω|, ||λ||L∞(Ω), ||ψ||C1,1(R2), κ)

where κ is the maximum of the curvatures of Ω and C1 is introduced in (1.3).

For a function f : R2 → R and for every s ∈ R, we introduce the following notation : L∗
s(f) is the

union of all connected components ls(f) of Ls(f) = f−1(s) ⊂ R2 such that H1(ls(f)) > 0. Here,
H1 is the one-dimensional Hausdorff measure.
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We will apply the following theorem from [1, Theorem 2.5] to prove Proposition 2.9.

Theorem 2.8. Let f : R2 → R be a Lipschitz continuous function with compact support. For a.e.
s ∈ R, we have:
• H1(Ls(f)\L∗

s(f)) = 0.
• Every connected component ls(f) of Ls(f) that is not a point is a closed simple curve with a
Lipschitz parametrization γs.
• L∗

s(f) has a countable number of connected components.

It follows that the level lines of a minimizer u have a Lipschitz-continuous parametrization:

Remark 2.9. Let u be a globally Lipschitz-continuous minimizer of Pλ with λ ∈ L∞(Ω). We
extend it outside Ω by ψ that can be assumed compactly supported. For a.e. s ∈ R every connected
component of L∗

s(u) ⊂ R2 has a Lipschitz-continuous parametrization.

2.3. Explicit solution on the ball and counter-example. The application of [6, Theorem 1]
to our problem Pλ gives an explicit form for the unique solution on W 1,p

0 (Br(x0)) in dimension two
when λ ≡ λ0 ∈ R+:

Proposition 2.10. When Ω = Br(x0) and λ is constant, the problem Pλ admits a unique minimizer
on W 1,p

0 (Br(x0)). We can compute it explicitly:

u(x) := C − 2

λ
φ∗

(
λ

2
|x− x0|

)
with φ∗(x) := sup

y∈R
⟨x, y⟩ − φ(y), and C the constant such that u ∈W 1,p

0 (Br(x0)).

The following proposition uses the Euler-Lagrange equation (2.2) to prove that a function is a
minimizer.

Proposition 2.11. Let u be in W 1,p(Ω) and Φ a convex function. If there exist σ ∈ ∂Φ(∇u) ∈
Lp

′
(Ω;R2) and λ ∈ L∞(Ω) such that div σ = −λ then u is a minimizer of Pλ on W 1,p

u (Ω).

Here ∂Φ is the convex subdifferential of Φ.

Proof. Since σ ∈ ∂Φ(∇u), for every w ∈W 1,p
u (Ω) we have:∫

Ω
Φ(∇w) ≥

∫
Ω
Φ(∇u) + ⟨σ,∇w −∇u⟩.

Since div σ = −λ we get: ∫
Ω
⟨σ,∇w −∇u⟩ =

∫
Ω
λ(w − u).

Hence, Iλ(w) ≥ Iλ(u) for every w ∈W 1,p
u (Ω). Thus, u is a minimizer of Pλ on W 1,p

u (Ω).
□

We apply this result to show that when λ is not constant, we can have more than one solution.

Proposition 2.12. Let φ : R+ → R be a non-strictly convex function such that φ(0) < φ(t) for
every t > 0. We assume that φ ∈ C1(R+). Then, there exists λ∞ ∈ C∞(B1(0)), λ∞ > 0 such that
Pλ∞ has an infinite number of solutions on W 1,p

0 (B1) with Φ(·) = φ(| · |) and
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Iλ∞(u) :=

∫
B1

Φ(∇u(x))− λ∞(x)u(x)dx.

Proof. We construct two different radial solutions u and v of the same problem. For every x ∈ B1(0),
we set u(x) := ũ(|x|) and v(x) := ṽ(|x|). Our goal is to define ũ′ and ṽ′ on (0, 1).

Since φ is not strictly convex on R+, there exist a, b ∈ R+ such that φ′ is constant on (a, b) and
φ′(t) ̸= φ′(a) for every t /∈ [a, b].

a) We assume that the smallest possible a is strictly positive. Let us introduce a smooth increasing
function f : R+ → R+ such that f(t) = t for every t ≥ 0 small and f(t) = φ′(a) for every t ≥ 1

2 .
We use the fact that for every x > 0 if x ∈ ∂φ∗(y) then φ′(x) = y. Hence for every t > 0,

φ′(∂φ∗(f(t))) = {f(t)}. For every t ∈ (0, 1), we set ũ′(t) = −xt with xt ∈ ∂φ∗(f(t)) such that ũ′ is
measurable. Such a choice is possible by [8, Theorem 5.3, page 151]. In order to define ṽ′, we set
ṽ′(t) = ũ′(t) on (0, 12) and ṽ′(t) = −b for every t > 1

2 .
Hence, φ′(|ṽ′|) = φ′(|ũ′|) = f is a smooth function.

b) We assume that a = 0. We set ũ′ = 0 on (0, 1), ṽ′(t) = 0 on (0, 12) and ṽ′(t) = −b on (12 , 1).

Now, we can set u(x) :=
∫ 1
|x|−ũ

′(t)dt and v(x) :=
∫ 1
|x|−ṽ

′(t)dt that are Lipschitz-continuous on
B1(0) and vanish at the boundary. It remains to find σ and λ∞.

In the case a), we set for every x ∈ B1(0), σ(x) = −f(|x|) x|x| that is smooth by assumptions on
f .

In the case b), we set σ(x) = −φ′(0) x|x| for every x ∈ B1(0) such that |x| > 1
2 . On B 1

2
(0), we set

σ(x) = −f̃(x) x|x| with f̃ smooth satisfying the same assumptions as f .
Finally, we set

λ∞(x) = −div σ ∈ C∞(B1(0)).

Hence, by Proposition 2.11, u and v are solutions of the same problem Pλ∞ . Moreover, a direct
computation shows that λ∞(x) > 0 on B1(0). □

Now, we give an explicit counter-example where Pλ has more than one solution with λ > 0 and
U ̸= ∅ with φ is as in (1.2), namely:

φ(t) =


1
2 |t|

2 if |t| ≤ 1,

|t| − 1
2 if 1 < |t| < 2,

1
4 |t|

2 + 1
2 if 2 ≤ |t|.

Proposition 2.13. There exists λ ∈ C∞(B1(0)), min
B1(0)

λ > 0 such that Pλ has more than one

solution on W 1,2
0 (B1(0)) and U ̸= ∅.

Proof. We take the same notations as in the previous proof. In this case, we have

φ∗(t) =

{
1
2 |t|

2 if |t| ≤ 1,

|t|2 − 1
2 if 1 < |t|.
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For t ∈ R, we define:

g(t) =


t if t ≤ 1

4 ,

3t− 1
2 if 1

4 < t < 1
2 ,

1 if 1
2 ≤ t.

Hence, we can take f as the convolution of g with a smooth standard mollifier. For instance,

f(t) := C

∫ t+ 1
8

t− 1
8

g(s) exp

(
− 1

1
64 − |t− s|2

)
ds

with

C−1 =

∫ 1
8

− 1
8

exp

(
− 1

1
64 − |s|2

)
ds.

Then ũ′ = −f on [0, 1], ṽ′ = −f on [0, 58) and ṽ′ = −2 on (58 , 1]. Thus, u(x) :=
∫ 1
|x|−ũ

′(t)dt and

v(x) :=
∫ 1
|x|−ṽ

′(t)dt are two solutions on W 1,2
0 (B1(0)) with λ(x) := N−1

|x| f(|x|) + f ′(|x|).
Moreover, U ̸= ∅ since |∇u| < 1 on B 1

2
(0). □

2.4. BV functions. We start by giving the definitions of functions of bounded variations and sets
of finite perimeter:

Definition 2.14. A function f ∈ L1(Ω) has bounded variations in Ω if∫
Ω
|Df | := sup

{∫
Ω
f div g dx

∣∣∣∣ g ∈ C1
c (Ω;R2), |g(x)| ≤ 1 , ∀x ∈ Ω

}
<∞.

We denote by BV (Ω) the set of functions in L1(Ω) having bounded variations in Ω.

If f ∈ BV (Ω), the distributional gradient of f is a vector valued Radon measure that we denote
by Df and |Df | is the total variation of Df .

Definition 2.15. Let E be a Borel set. We say that E has finite perimeter in Ω if the characteristic
function χE of E belongs to BV (Ω). The perimeter Per(E,Ω) is defined as:

Per(E,Ω) =
∫
Ω
|DχE | = sup

{∫
E

div g
∣∣∣∣ g ∈ C1

c (Ω;R2), |g(x)| ≤ 1 , ∀x ∈ Ω

}
.

Definition 2.16. For a set E of finite perimeter in R2, we define the reduced boundary ∂∗E of E
as the subset of supp |DχE | such that for every x ∈ ∂∗E,

νE(x) := lim
r→0

∫
Br(x)

DχE∫
Br(x)

|DχE |

exists and |νE(x)| = 1.

Remark 2.17. The reduced boundary ∂∗E is a subset of ∂E.

We recall the coarea formula for Lipschitz continuous functions from [11, Theorem 3.4.2.1, page
112] that will be useful throughout the article.
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Proposition 2.18. (Coarea formula) Let u be a Lipschitz continuous function with compact support
and f be a nonnegative measurable function. Then∫

R2

f |∇u|dx =

∫
R

∫
Ls(u)

f(x)dH1(x)ds

where Ls(u) := u−1(s) ⊂ R2.

Remark 2.19. By replacing f by the indicator function

1A(x) =

{
1 if x ∈ A,

0 if x /∈ A,

we observe that if |A| = 0 then for a.e. s ∈ R, H1(Ls(u) ∩A) = 0.

Proposition 2.20. Let v be a Lipschitz continuous function with compact support in R2. For a.e.
s ∈ R we have

∇v(x)
|∇v(x)| =

D1[v>s](x)

|D1[v>s]|(x)
for H1 a.e. x ∈ Ls(v).

Proof. By the vector valued coarea formula [2, Theorem 3.40] we have that∫
A
∇v =

∫
R

∫
A
D1[v>s]ds

for every Borel set A.
By linearity, for every linear combination of indicator functions χ, we have∫

supp v
⟨χ,∇v⟩ =

∫
R

∫
supp v

⟨χ,D1[v>s]⟩ds.

By density, for every g ∈ L∞(supp v;RN ), we get∫
R2

⟨g,∇v⟩ =
∫
R

∫
R2

⟨g,D1[v>s]⟩ds.

We fix g := ∇v
|∇v| when ∇v ̸= 0, g := 0 when ∇v = 0 and obtain

(2.3)
∫
R2

|∇v| =
∫
R

∫
R2

⟨ ∇v
|∇v|

, D1[v>s]⟩ds.

But, by [12, Theorem 4.4] we have for a.e. s ∈ R that |D1[v>s]| = H1 ¬
∂∗[v > s]. Hence,

(2.4)
∫
R2

⟨g,D1[v>s]⟩ =
∫
R2

⟨g,
D1[v>s]

|D1[v>s]|
⟩d|D1[v>s]| =

∫
∂∗[v>s]

⟨g,
D1[v>s]

|D1[v>s]|
⟩dH1.

Since ⟨g, D1[v>s]

|D1[v>s]|
⟩ ≤ 1 for a.e. s ∈ R, with (2.3) and (2.4) we get∫

R2

|∇v| ≤
∫
R
H1(∂∗[v > s])ds.

By remark 2.17, we have∫
R2

|∇v| ≤
∫
R
H1(∂∗[v > s])ds ≤

∫
R
H1(Ls(v))ds.
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By the coarea formula given in Proposition 2.18, the following equalities hold true:∫
R2

|∇v| =
∫
R
H1(∂∗[v > s])ds =

∫
R
H1(Ls(v))ds.

Hence, we get ⟨g, D1[v>s]

|D1[v>s]|
⟩ = 1 for H1 a.e. x ∈ ∂∗[v > s] and H1(Ls(v)\∂∗[v > s]) = 0 for a.e.

s ∈ R. Thus, g =
D1[v>s]

|D1[v>s]|
H1 a.e. on Ls(v) for a.e s ∈ R, as desired.

□

3. Relation between the level lines and U.

In this section we use the Lipschitz regularity of the level lines of a minimizer u to prove that
they are, in a generic sense, level sets for the other minimizers. We then study the case when a level
line intersects the set U , which implies that the gradient of another solution is equal to ∇u on that
particular level line.

3.1. Equality on level lines. We first prove that the difference between two minimizers is constant
on every connected component of almost every level sets.

Proposition 3.1. Let u and v be two minimizers of the same problem Pλ. There exists a negligible
subset N0 of R such that for every s ∈ S0 := R\N0, for every connected component ls(u) of Ls(u),
the map u− v is constant on ls(u).

Proof. We consider that u and v are extended by ψ outside of Ω. By Proposition 2.9 there is a
negligible set N∞ such that for every s ∈ R\N∞, every connected component ls(u) of Ls(u) ⊂ R2

that is not a point has a parametrization that is Lipschitz continuous.
Since ∇u and ∇v are defined and collinear a.e. on R2, by the coarea formula we obtain that there

exists a negligible set N ′
∞ such that for every s ∈ R\N ′

∞, ∇u and ∇v are defined and collinear H1

a.e. on Ls(u). We set N0 := N∞ ∪N ′
∞.

Hence, for every s ∈ R\N0 we have that ∇v is orthogonal to each Lipschitz connected curve
ls(u). We introduce γs : [0, length(ls(u))) 7→ ls(u) a Lipschitz-continuous parametrization of ls(u).
Then, by the chain rule we have (v ◦ γs)′ = ⟨∇v(γs), γ′s⟩ a.e. on [0, length(ls(u))). By orthogonality
of ∇v to ls(u), we have that v is constant on ls(u).

□

The following proposition is the first step to prove the uniqueness result.

Proposition 3.2. For s ∈ S0, if ls(u) ∩ (R2\Ω) ̸= ∅ then u = v on ls(u).

Proof. Thanks to the previous proposition we know that u− v is constant on ls(u). Since u and v
are extended by ψ outside Ω, we have u ≡ v on R2\Ω. By assumption, we have ls(u) ∩ R2\Ω ̸= ∅
then u = v on ls(u). □

3.2. Relation between U and the level lines. In this section we consider two minimizers u and
v of Iλ with the same boundary condition. We know by Proposition 2.4 that ∇u = ∇v on U . We
will extend this result to the level lines that intersect U .

Notation. We denote by S ⊂ R the set of these s that satisfy the following conditions:
• s ∈ S0 with S0 defined in Proposition 3.1,
• ∇u ̸= 0 H1 a.e. on Ls(u).
We introduce the following set:
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Γ := {lis(u), s ∈ S and i ∈ Is}
where the index set Is corresponds to the non-constant curves lis(u) among the connected compo-
nents of Ls(u) inside Ω which do not intersect ∂Ω.

Proposition 3.3. Given s ∈ S and i ∈ Is, let F is be the bounded connected component of R2\lis(u)
given by the Jordan curve theorem. Then for every i ∈ Is, u > s on F is.

Proof. We fix s ∈ S and we call Es the set [u > s] ⊂ R2. By continuity of u, Es is an open set. Let
lis(u) a connected component of Ls(u) such that lis(u) ⋐ Ω. Since Ω is simply connected, F is ⊂ Ω
and by Proposition 2.1, we have that u ≥ s on F is . If l′s(u) is a connected component of L∗

s(u)
that is inside F is then for H1 a.e. y ∈ l′s(u), ∇u(y) is defined and ∇u(y) ̸= 0. Since u ≥ s on
F is , every point y in l′s(u) is a local minimum on F is and hence either ∇u(y) = 0 or ∇u(y) is not
defined. Thus there is no such l′s(u) in F is . By assumptions on s, we have H1(Ls\L∗

s) = 0. Hence,
H1([u = s] ∩ F is) = 0.

Let us assume that there exists x ∈ F is such that u(x) = s. Then by Proposition 2.1 for every
ϵ < dist(x, lis(u)) there exists yϵ ∈ ∂Bϵ(x) such that u(yϵ) = s and we define the following set
Y := {yϵ, 0 < ϵ < dist(x, lis(u))}. We have

H1(Y ) := lim
δ→0

H1
δ(Y )

with

H1
δ(Y ) := inf{

∑
n∈N

diam(Vn)}

where the infimum is taken over the families of sets (Vn)n∈N such that Y ⊂
⋃
n
Vn and diam(Vn) < δ

for every n ∈ N.
For every admissible (Vn)n∈N, we define En as the set of those ϵ such that yϵ ∈ Vn ∩ Y . We

define em := inf{ϵ ∈ En}, eM := sup{ϵ ∈ En} and Ṽn := [em, e
M ]. We have diam(Ṽn) = eM − em ≤

diam(Vn) < δ and ]0, dist(x, lis(u))[⊂
⋃
Ṽn.

Hence, (Ṽn)n∈N is admissible for H1
δ((0, dist(x, lis(u)))) and

H1
δ(Y ) ≥ H1

δ

(
(0, dist(x, lis(u)))

)
.

By taking the limit when δ goes to 0, we obtain:

H1(Y ) ≥ H1((0, dist(x, lis(u))) = dist(x, lis(u)).

Thus H1([u = s] ∩ F is) ≥ dist(x, lis(u)) > 0. That is a contradiction. Hence there is no such x,
thus u > s on F is . □

A direct consequence of that result is the following:

Proposition 3.4. For every s ∈ S, Is is countable. Moreover, for every i ∈ Is, lis(u) is the boundary
of a connected component F is of Es = [u > s].

Proof. By Theorem 2.8, Is is countable. Let us consider i ∈ Is. By the previous proposition, lis(u)
is the boundary of a connected component of Es = [u > s].

□

We also have that:
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Proposition 3.5. For every s ∈ S, every connected component Fs of Es, if Fs ⋐ Ω then Fs is
simply connected and its boundary is a closed simple curve ls(u) with Lipschitz parametrization.

Proof. Since Fs is bounded, R2\Fs has only one unbounded connected component. We call F̃s the
complement of this unbounded set. We claim that F̃s = Fs. We have that ∂F̃s ⊂ ∂Fs. Hence,
u ≡ s on ∂F̃s. Since F̃s is simply connected, ∂F̃s is a connected set in Ls(u) with H1(∂F̃s) > 0. By
Theorem 2.8, ∂F̃s is a closed subset of a closed simple curve with Lipschitz parametrization ls(u).
Hence, F̃s is a bounded set such that ∂F̃s ⊂ ls(u). We have that F̃s is an open set in R2\ls(u).
Since, ∂F̃s ⊂ ls(u), F̃s is also closed in R2\ls(u). The fact that F̃s is bounded and connected gives
that F̃s is the bounded connected component of R2\ls(u) and by the Jordan curve theorem we have
∂F̃s = ls(u). By Proposition 3.3, F̃s ⊂ Es. Since F̃s contains Fs, we get that F̃s = Fs. Moreover,
we proved that Fs is simply connected with ls(u) as boundary. □

The main result of this subsection is the following:

Proposition 3.6. For a.e. s ∈ S, for every i ∈ Is, if lis(u)∩ U ̸= ∅ then ∇(u− v) = 0 H1 a.e. on
lis(u).

In order to prove this result, we state two technical lemmata:

Lemma 3.7. For a.e. s ∈ S, for every i ∈ Is there exists a decreasing sequence (sn)n∈N converging
to s such that:

• There exists a simple connected curve lsn(u) in Lsn with Lipschitz parametrization that is inside
F is.

• (Fsn)n∈N is an increasing sequence with
⋃
n∈N

Fsn = F is.

Here, Ft is the bounded connected component of R2\lt(u) given by the Jordan curve theorem and
F is is the bounded connected component of R2\lis(u).

Proof of Lemma 3.7. By Proposition 3.3 we have that u > s on F is . By the coarea formula
2.18 there exists s0 > s, s0 ∈ S such that H1(Ls0(u) ∩ F is) > 0. Moreover, by Theorem 2.8,
H1(Ls0(u)\L∗

s0(u)) = 0. Hence, there exists ls0(u) in Ls0 satisfying the assumptions of Lemma
3.7. We next select s < s1 < s0 with s1 ∈ S such that H1(Ls1(u) ∩ F is) > 0. We have that that
Fs0 ⊂ Es1 . Hence, Fs0 is in one connected component of Es1 , we call ls1(u) the boundary of that
connected component. By Proposition 3.5 we have that ls1(u) is a simple connected curve with
Lipschitz parametrization. We repeat this argument to find a sequence (sn)n∈N that satisfies the
first part of the lemma. By construction (Fsn)n∈N is an increasing sequence, it remains to prove
that

⋃
n∈N

Fsn = F is .

We introduce F∞ :=
⋃
n∈N

Fsn a subset of F is . If y ∈ ∂F∞ there exists a sequence (yn)n∈N such

that yn ∈ ∂Fsn and yn → y. By continuity of u and the fact that yn converges to y we obtain that
u(y) = s.

By Proposition 3.3 we have that ∂F∞ ⊂ ∂F is . We claim that F∞ = F is . Indeed, if those two
sets are not equal there exists x ∈ F is\F∞. Since F is is a connected open set, for every y ∈ F∞
there exists a continuous path from x to y included in F is . By continuity this path must intersect
∂F∞ ⊂ ∂F is , contradicting the fact that the path is in F is . Hence, F∞ = F is .

□
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Lemma 3.8. Let u be a minimizer. For a.e. s ∈ S and every i ∈ Is, we consider a sequence
(lsn)n∈N as in the previous lemma. Then, we have that lim

n→+∞
D(lsn , l

i
s(u)) = 0 where D(E,F ) :=

sup
e∈E

inf
f∈F

|e−f |. Moreover, let v be another minimizer, if there exists a constant C such that u−v ≡ C

on every lsn then ∇(u− v) = 0 H1 a.e on lis(u).

Proof of Lemma 3.8. For every ϵ > 0, we claim that there exists N ∈ N such that for every n ≥ N ,
D(lsn , l

i
s(u)) < ϵ. Indeed, assume by contradiction that there exists ϵ > 0 such that ∀N , there exist

n ≥ N and yn ∈ lsn(u) such that ∀x ∈ lis(u), d(yn, x) ≥ ϵ. Since all these yn are in Ω, there exists a
sequence (yg(n))n∈N converging towards some y ∈ F is . We have that d(y, x) ≥ ϵ for every x ∈ lis(u).
By continuity of u, we have that u(y) = s. Thus, by Proposition 3.3, y ∈ ∂F is = lis(u). That is a
contradiction.

For H1 a.e. x ∈ lis(u) we have that ∇u(x) ̸= 0 and ∇v(x) exist. Moreover, for H1 a.e. x ∈ lis(u)
we have that ∇u(x) and ∇v(x) are orthogonal to lis(u) at x in the sense that ⟨∇u(x), γ′s(γ−1

s (x))⟩ = 0
where γs is a Lipschitz parametrization of lis(u). We consider dx := x + R∇u(x). Let us call H−
and H+ the two half-planes of R2\dx. For every r > 0, H± ∩ lis(u) ∩ Br(x) ̸= ∅, otherwise it
would contradict the fact that ∇u(x) is orthogonal to lis(u). A direct consequence is the fact that
H− ∩ F is ̸= ∅ and H+ ∩ F is ̸= ∅.

We assume that for every N ∈ N, there exists ñ ≥ N such that lsñ(u) ∩ dx = ∅. Thus, we can
assume that lsñ(u)∩H− = ∅. Hence, there exist y ∈ lis(u) and ϵ0 > 0 such that d(y, Fsñ) > ϵ0. Since
lsñ(u) → lis(u) in the sense of D that is absurd. Then, there exists N ∈ N such that for every n ≥ N ,
lsn(u) ∩ dx ̸= ∅. For every such n we take xn as a point that minimizes d(x, y) on lsn(u) ∩ dx.
Since this sequence (xn)n∈N is bounded, it converges, up to a subsequence, to a point x′ ∈ F is
such that u(x′) = s. By Proposition 3.3, x′ ∈ lis(u). If x′ ̸= x then there exists r > 0 such that
dx ∩Br(x) ∩ lsn(u) = ∅ for every n ∈ N large enough. Hence, dx ∩Br(x) ∩ Fsn = ∅ for every n ∈ N
large enough which contradicts the fact that

⋃
n∈N

Fsn = F is . Thus, x = x′ and we can find a sequence

(xn)n∈N such that xn ∈ lsn(u) ∩ dx and xn → x. By assumption, u − v ≡ C on lsn(u) for n large
enough. By continuity of u− v we obtain that u− v(x) = C. Then, (u−v)(x)−(u−v)(xn)

|x−xn| = C−C
|x−xn| = 0.

Moreover, ∇(u − v)(x) is collinear to ∇u(x), hence, we obtain ∇(u − v)(x) = 0. Since that is the
case for H1 a.e. x ∈ lis(u), we have the desired conclusion. □

Proof of Proposition 3.6. For every s ∈ S, lis(u) is a Lipschitz continuous closed curve such that ∇u
and ∇v are defined and collinear H1 a.e. on lis(u) and ∇u ̸= 0 H1 a.e. on lis(u). If lis(u) ∩ U ̸= ∅
then there exists Ui a connected component of U such that lis(u) ∩ Ui ̸= ∅. By Proposition 2.5 and
Proposition 3.1 we have u − v ≡ Ci on lis(u). We consider the sequences (sn)n∈N, (lsn(u))n∈N and
(Fsn)n∈N from Lemma 3.7.

Hence, by the first part of Lemma 3.8, there exists N ∈ N such that for every n ≥ N , lsn(u)∩Ui ̸=
∅. Thus, by Proposition 2.5 and Proposition 3.1, u − v ≡ Ci on lsn(u) for every n ≥ N . By the
second part of Lemma 3.8, we have that ∇(u− v) = 0 H1 a.e on lis(u).

□

4. W 1,2 regularity of |σ|.

In this section, we prove the following proposition:

Proposition 4.1. For every α > 0, the function f := max(α, |σ|) is in W 1,2(Ω′) for any Ω′ ⋐ Ω.
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We prove this result in four parts. In Step 1 , we regularize our problem in order to work
with smooth solutions (un)n∈N. Then in Step 2 , we prove that ||max(α, |∇Φn(∇un)|)||W 1,2(Ω′) is
uniformly bounded in n ∈ N. In the subsequent Step 3 , we show that max(α, |∇Φn(∇un)|) → f
a.e. on Ω. We conclude that f is in W 1,2(Ω′) in Step 4 .

Step 1 For every n ∈ N, we introduce (ρn)n∈N a standard mollifying sequence with supp ρn ⊂
B 1
n
(0). If we set φn := φ ∗ ρn and λn := λ ∗ ρn then (φn)n∈N and (λn)n∈N are sequences of smooth

approximations of φ and λ. We consider Φn := φn(|·|)+ 1
ng(|·|). The function g is smooth quadratic

around the origin such that 0 < g′′(x) for every x ∈ R and

C−|x|p ≤ g(z) ≤ C+(|x|p + 1)

for all |x| ≥ 1 with 0 < C− < C+.
Let un be the minimizer of:

In : v →
∫
Ω
Φn(∇v(x))− λnv(x)dx

on W 1,p
ψ (Ω).

Proposition 4.2. The sequence (un)n∈N is uniformly bounded in W 1,p(Ω). There exists a sub-
sequence still denoted by (un)n∈N that weakly converges in W 1,p(Ω) towards ũ. Moreover, ũ is a
minimizer of Pλ on W 1,p

ψ (Ω).

Proof. By Proposition 2.7 we have that the sequence (un)n∈N is uniformly bounded in W 1,∞(Ω).
Hence, we can extract a subsequence, still denoted by (un)n∈N, that converges strongly in Lp(Ω)

and weakly in W 1,p
ψ (Ω) towards ũ. It remains to prove that ũ is a minimizer of Pλ on W 1,p

ψ (Ω).
By Jensen’s inequality, we have Φn ≥ Φ. Hence

(4.1) lim inf
n→+∞

∫
Ω
Φn(∇un) ≥ lim inf

n→+∞

∫
Ω
Φ(∇un).

By weak lower semi-continuity of Iλ, (4.1) and the fact that un is the minimizer for In we have

(4.2)
∫
Ω

Φ(∇ũ)− λũ ≤ lim inf
n→+∞

∫
Ω

Φ(∇un)− λun ≤ lim inf
n→+∞

∫
Ω

Φn(∇un)− λnun ≤ lim
n→+∞

∫
Ω

Φn(∇u)− λnu.

By the dominated convergence theorem applied to the last quantity we obtain∫
Ω
Φ(∇ũ)− λũ ≤

∫
Ω
Φ(∇u)− λu.

Hence, ũ is a minimizer on W 1,p
ψ (Ω). □

Step 2 For every n ∈ N, we introduce σn := ∇Φn(∇un). In this part, we prove the following
result on fn := max(α, |σn|):

Proposition 4.3. For every α > 0 and every Ω′ ⋐ Ω, the functions fn := max(α, |σn|) are
uniformly bounded in W 1,2(Ω′).

Proof. By [10, Proposition 2.4], we have for every b > 0 and k ∈ {1, 2} that:∫
Ω′∩{∂kun≥b}

|∇σn|2 ≤ C1

(
b, ||∇un||L∞(Ω), sup

b≤t≤||∇un||L∞(Ω)

φ′′
n(t) +

g′′(t)

n

)
.
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Thus, ∫
Ω′∩{|∇un|≥b}

|∇σn|2 ≤ C2

(
b, ||∇un||L∞(Ω), sup

b≤t≤||∇un||L∞(Ω)

φ′′
n(t) +

g′′(t)

n

)
.

Finally, ∫
Ω′∩{|σn|≥φ′

n(b)}
|∇σn|2 ≤ C2

(
b, ||∇un||L∞(Ω), sup

b≤t≤||∇un||L∞(Ω)

φ′′
n(t) +

g′′(t)

n

)
.

By Proposition 2.7 we have that ||∇un||L∞(Ω) can be bounded by L uniformly in n ∈ N. Moreover,
φ ∈ C1,1

loc (R\{0}) and φn is a convolution of φ. Hence, sup
b≤t≤||∇un||L∞(Ω)

φ′′
n(t) +

g′′(t)
n can be bounded

by sup
b
2
≤t≤L

φ′′(t) + 1 for every n ∈ N such that φ′′
n is close enough to φ′′ on ( b2 ,+∞) and larger than

sup
b≤t≤L

g′′(t). Namely, every n ∈ N larger than max{ 1
2b , sup

b≤t≤L
g′′(t)}. Thus, we get∫

Ω′∩{|σn|≥φ′
n(b)}

|∇σn|2 ≤ C2(b, L, sup
b
2
≤t≤L

φ′′(t) + 1)

for every n ∈ N larger than max{ 1
2b , sup

b≤t≤L
g′′(t)}.

By growing assumptions on φ, for every α > 0 we can find b > 0 such that φ′
n(b) ≤ α for n ∈ N

large enough. Hence, for every α > 0 and every n ∈ N large enough we have:∫
Ω′∩[|σn|>α]

|∇σn|2 ≤ C(α,φ′′, L).

Thus, the sequence (fn)n∈N is uniformly bounded in W 1,2(Ω′). □

Since the functions fn := max(α, |σn|) are uniformly bounded in W 1,2(Ω′), we can extract a
subsequence which converges weakly.

Step 3 We prove that σn → σ a.e. Ω up to a subsequence. To do so we use the Young measures
associated to (∇un)n∈N.

Proposition 4.4. We have the following equality

(4.3) lim inf
n→+∞

∫
Ω
Φ(∇un) =

∫
Ω
Φ(∇ũ).

Proof. If we replace u by ũ in the last term of (4.2) we obtain that

(4.4)
∫
Ω

Φ(∇ũ)− λũ ≤ lim inf
n→+∞

∫
Ω

Φ(∇un)− λun ≤ lim inf
n→+∞

∫
Ω

Φn(∇un)− λnun ≤ lim inf
n→+∞

∫
Ω

Φn(∇ũ)− λnũ.

By Fatou’s lemma with the lim sup the last term is equal to the first term. Hence all those inequal-
ities are equalities, in particular:

lim inf
n→+∞

∫
Ω
Φ(∇un)− λun =

∫
Ω
Φ(∇ũ)− λũ.

Since un → ũ in Lp(Ω) we have that

lim
n→+∞

∫
Ω
λun =

∫
Ω
λũ.
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Hence,

lim inf
n→+∞

∫
Ω
Φ(∇un) =

∫
Ω
Φ(∇ũ).

□

We consider (uψ(n))n∈N a subsequence such that

(4.5) lim inf
n→+∞

∫
Ω
Φ(∇un) = lim

n→+∞

∫
Ω
Φ(∇uψ(n)).

In order to simplify the notations, we still denote (uψ(n))n∈N by (un)n∈N.

Proposition 4.5. For a.e. x ∈ Ω we have

Φ(∇ũ(x)) = Φ(x) :=

∫
R2

Φ(y)dνx(y)

where νx is a probability measure that depends on x and on the weak convergence of (∇un)n∈N
towards ∇ũ. Moreover, supp νx ⊂ {y ∈ R2, ∇Φ(y) = ∇Φ(∇ũ(x))} for a.e. x ∈ Ω.

Proof. Let (νx)x∈Ω be the Young measures associated to a subsequence of (∇un)n∈N given by [4,
Theorem 2]. We have for every Carathéodory function F such that

{
F
(
·,∇un(·)

)}
n∈N is uniformly

integrable:

(4.6) lim
n→+∞

∫
Ω
F (x,∇un(x))dx =

∫
Ω
F (x)dx

with F (x) =
∫
R2 F (x, y)dνx(y). Moreover, for a.e. x ∈ Ω,

(4.7) ∇ũ(x) =
∫
R2

ydνx(y).

Since un is uniformly bounded in W 1,∞(Ω),

(4.8) lim
n→+∞

∫
Ω
Φ(∇un(x))dx =

∫
Ω
Φ(x)dx where Φ(x) =

∫
R2

Φ(y)dνx(y).

If we combine this last equation with (4.5) we get∫
Ω
Φ(∇ũ) = lim

n→+∞

∫
Ω
Φ(∇un(x))dx =

∫
Ω
Φ(x)dx.

If we apply the triangle inequality and Jensen’s inequality to (4.7) we obtain for a.e. x ∈ Ω,

(4.9) Φ(∇ũ(x)) ≤
∫
R2

Φ(y)dνx(y)dx = Φ(x).

If we combine the two last equations we obtain for a.e. x ∈ Ω

(4.10) Φ(∇ũ(x)) = Φ(x).

By Jensen’s inequality, Φ is affine on supp νx and thus, for a.e. x ∈ Ω we have that supp νx ⊂ {y ∈
R2, ∇Φ(y) = ∇Φ(∇ũ(x))}.

□

Now, we can prove the following convergence result:

Proposition 4.6. We have that σn → σ in L1(Ω) when n→ +∞. Here, σn = ∇Φn(∇un).
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Proof. If we set F (x, y) = |∇Φ(y)− σ(x)| in (4.6), we obtain that

lim
n→+∞

∫
Ω
|∇Φ(∇un(x))− σ(x)|dx =

∫
Ω

∫
R2

|∇Φ(y)− σ(x)|dνx(y)dx = 0.

Since ∇un is uniformly bounded in L∞(Ω), we have that

lim
n→+∞

∫
Ω
|∇Φn(∇un)−∇Φ(∇un)| = 0.

Hence, by the triangle inequality,

lim
n→+∞

∫
Ω
|σn(x)− σ(x)|dx = 0.

Hence, σn → σ in L1(Ω) when n→ +∞. □

Thanks to the previous Proposition, we can extract a subsequence, we do not relabel, such that
σn → σ a.e. on Ω when n→ +∞.

Step 4 Since σn → σ a.e. on Ω when n → +∞, we have that fn → max(α, |σ|) a.e. on Ω. By
Proposition 4.3, we have that max(α, |σ|) ∈W 1,2(Ω′).

5. Continuity of |σ| on the level lines and a maximum principle

In this section, we prove that generically, max(d0, |σ|) is continuous on the level lines of u and
satisfies a maximum principle.

For Ω′ ⋐ Ω, we introduce
Γ′ := {lis(u), s ∈ S and i ∈ I ′s}

where S ⊂ R is the set of those s that satisfy the conclusion of Theorem 2.8 and such that ∇u, ∇v
are defined, ∇u ̸= 0, ∇u and ∇v are collinear H1 a.e. on Ls(u). The index set I ′s corresponds to
the non-constant curves lis(u) among the connected components of Ls(u) such that lis(u) ⋐ Ω′.

Proposition 5.1. There exists a representative f0 of max(d0, |σ|) that is absolutely continuous on
lis(u) for a.e. s ∈ S and every i ∈ Is.

Proof. We consider the sequence (σn)n∈N introduced in the previous section. We have that σn → σ
a.e. on Ω when n→ +∞. By Proposition 4.1, we have ||∇max(d0, |σn|)||L2(Ω1) ≤ C1 with Ω1 ⋐ Ω
and C1 independent of n ∈ N. Thus, there exists a constant C2 independent of n such that

C2 ≥
∫
Ω1

|∇max(d0, |σn|)|2|∇u| =
∫
R

∫
Ls(u)∩Ω1

|∇max(d0, |σn|)|2dH1ds

where the equality is given by Proposition 2.18. With Fatou’s lemma we obtain that for a.e. s ∈ S,

(5.1) lim inf
n→+∞

∫
Ls(u)∩Ω1

|∇max(d0, |σn|)|2dH1 ≤ C3(s).

Here, the index I1s corresponds to the non-constant curves lis(u) among the connected components
of Ls(u) such that lis(u) ⋐ Ω1. We define S1 as the subset of S such that (5.1) holds. We have
|S\S1| = 0.

Now, we fix s ∈ S1 and i ∈ I1s . We can extract a subsequence such that for every n ∈ N:∫
lis(u)

|∇max(d0, |σn|)|2dH1 ≤ 2C3(s).
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Let us call γis :
[
0, length(lis(u))

)
7→ lis(u) a Lipschitz continuous parametrization of lis(u). We

have that max(d0, |σn|) ◦ γis is bounded in W 1,2
(
[0 , length(lis(u)))

)
. By the Arzelà-Ascoli theorem

there exists a subsequence of max(d0, |σn|) ◦ γis converging uniformly to v ∈ C0
(
[0, length(lis(u)))

)
.

Since max(d0, |σn|) → max(d0, |σ|) H1 a.e. on ljt (u) for a.e. t ∈ R and every j ∈ It, we choose f0
as a representative of max(d0, |σ|) such that f0 = v ◦ (γis)−1 on lis(u).

Now, we introduce an increasing sequence of open sets (Ωk)k∈N such that χΩk → χΩ in L1(R2).
For a.e. s ∈ S1 and for every i ∈ I2s \I1s , we can define f0 as we did on Ω1. Hence, there exists
S2 ⊂ S1 such that |S\S2| = 0 and for every s ∈ S2 and every i ∈ I2s , we have f0 absolutely
continuous on lis(u).

Thus, we can select by induction a representative of max(d0, |σ|) that is absolutely continuous
on lis(u) for a.e. s ∈ S and every i ∈ Is.

□

For a.e. s ∈ S, if lis(u) ∩ U = ∅ we have some additional information that will be useful in the
final proof.

Proposition 5.2. For a.e. s ∈ S, for every i ∈ Is, if lis(u) ∩ U = ∅ then f0 = Cis is constant on
lis(u) with Cis ∈ {dn, n ∈ N, 0 ≤ n < N}.

Proof. For a.e. x ∈ Ω\U we have |σ(x)| ∈ {0} ∪ φ′(R\SC). By the coarea formula for a.e. s ∈ R,
for H1 a.e. x ∈ (Ω ∩ Ls(u))\U we have |σ(x)| ∈ φ′(R\SC). Hence, for a.e. s ∈ R if lis(u) ∩ U = ∅
then f0(lis(u)) ⊂ φ′(R\SC) ∪ f0(X) for some X ⊂ lis(u) with H1(X) = 0.

Moreover for a.e. s ∈ R and every i ∈ Is, lis(u) is a Lipschitz continuous curve such that f0 is
absolutely continuous on lis(u). Since φ′(R\SC) is finite and f0(X) is the image of a negligible set
by an absolutely continuous function we have |φ′(R\SC) ∪ f0(X)| = 0. The continuity of f0 on
lis(u) implies that f0 is constant on lis(u). Since lis(u) ∩ U = ∅ we obtain f0 = Cis ∈ {dn, n ∈ N,
0 ≤ n < N}.

□

We use the notations of Section 4, where (σn)n∈N is a smooth approximation that converges a.e.
on Ω to σ. We prove the following maximum principle on max(d0, |σn|):

Proposition 5.3. We assume that Ω has a C1,1 boundary, ψ ∈ C1,1(R2), λ is globally Lipschitz
continuous on Ω and λ > 0. There exists

Υ := Υ
(
|Ω|,max

Ω
λ,min

Ω
λ, ||ψ||C1,1(R2), κ

)
> 0

with κ the maximum of the principal curvatures of ∂Ω such that if ||∇λ||L∞(Ω) ≤ Υ then for n ∈ N
large enough, for a.e. every s ∈ S, for every i ∈ Is, if lis(u) ∩ U = ∅ we have

sup
F is

|σn| ≤ sup
lis(u)

max(d0, |σn|)

where F is is the bounded connected component of R2\lis(u).

Remark 5.4. When λ is constant this result is true even if Ω and ψ are only Lipschitz continuous.

Proof. By the coarea formula in Proposition 2.18, σn → σ H1 a.e. on lis(u) for a.e. s ∈ S and every
i ∈ Is. We apply the maximum principle from [14, Theorem 15.1] to |∇un| on F is . To do so we
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assume that

||∇λ||L∞(Ω) ≤
min
Ω
λ2

2× L× sup
x∈[ b0

2
,L]

φ′′(x) + φ′(x)
x

.

Here L is the Lipschitz constant introduced in Proposition 2.7. For every n ∈ N, there exists bn
such that φ′

n(bn) = d0.
Hence, for n ∈ N large enough, bn ≥ b0

2 and

||∇λn||L∞(Ω) ≤
min
Ω
λ2n

||∇un||L∞(Ω) × sup
x∈[ bn

2
,L]

φ′′
n(x) +

φ′
n(x)
x

.

Thus, thanks to [14, Theorem 15.1, Equation (15.15)] for a.e. s ∈ R we have

sup
Fs

|∇un| ≤ sup
lis(u)

max(
b0
2
, |∇un|) ≤ sup

lis(u)

max(bn, |∇un|)

for n ∈ N large enough. Since φ′
n is increasing we obtain sup

Fs

|σn| ≤ sup
lis(u)

max(d0, |σn|).

□

Proposition 5.5. Let us consider s ∈ S and i ∈ Is such that lis(u) ∩ U = ∅ and f0 = Cis on
lis(u). Then for a.e. t > s, for every j ∈ It such that ljt (u) ⋐ F is and ljt (u) ∩ U = ∅, we have
max(d0, |σ|) = Cjt H1 a.e. on ljt (u) with Cjt ∈ {dn, n ∈ N, 0 ≤ n < N} not larger than Cis.

Proof. By construction of f0 in the proof of Proposition 5.1 and Proposition 5.2, we can construct
a subsequence max(d0, |σψ(n)|) converging uniformly to Cis on lis(u) that also converges uniformly
to Cjt on ljt (u). Hence, with the previous proposition we get:

Cjt ≤ lim sup
n→+∞

sup
ljt (u)

max(d0, |σψ(n)|) ≤ lim sup
n→+∞

sup
F i

s(u)

max(d0, |σψ(n)|) ≤ lim
n→+∞

sup
lis(u)

max(d0, |σψ(n)|) = Cis.

Thus, we have that Cjt ≤ Cis. □

6. Proof of the main theorem

6.1. Pseudo Cheeger problem. In this part we combine the maximum principle for |σ| and the
Euler-Lagrange equation to prove that the level sets are almost Cheeger sets.

We recall the definition of the Cheeger constant of a set:

Definition 6.1. The Cheeger constant of Ω is defined as:

hΩ = inf
D⊂Ω

Per(D,R2)

|D|

A set D ⊂ Ω of finite perimeter is said to be a Cheeger set if Per(D,R2) = hΩ|D|.

Remark 6.2. There is no Cheeger set D of Ω such that D ⋐ Ω because the function t 7→ Per(tD,R2)
|tD|

is 1
t -homogeneous.

The following equality is a consequence of Proposition 5.2:
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Proposition 6.3. For a.e. s ∈ S, for every i ∈ Is if lis(u) ∩ U = ∅ we have∫
F is

λ = CisPer(F is)

where F is is the bounded connected component of R2\lis(u) and Cis is the constant introduced
Proposition in 5.2.

Proof. By [11, Section 5.11, Theorem 1], for a.e. s ∈ S and for every i ∈ Is, we have that D1F is ∈
BV (Ω).

We consider the sequence (σn)n∈N that converges a.e. on Ω towards σ introduced in Section 4.
By [11, Section 5.8, Theorem 1] we obtain:∫

F is

div(σn)dx =

∫
Ω
1F is (x)div(σn)dx = −

∫
Ω
⟨σn,

D1F is
|D1F is |

⟩d|D1F is | = −
∫
∂∗F is

⟨σn,
D1F is
|D1F is |

⟩dH1.

The set ∂∗F is is introduced in Definition 2.16. We can use Proposition 2.20 that gives:

−
∫
F is

div(σn)dx =

∫
∂∗F is

⟨σn,
∇u
|∇u|

⟩dH1.

But by the coarea formula σn → σ H1 a.e. on ∂∗F is ⊂ lis(u) for a.e. s ∈ R and every i ∈ Is. By
Proposition 5.2 and since σ is collinear to ∇u

|∇u| H
1 a.e. on lis(u), we get for such an s:

(6.1) lim
n→+∞

−
∫
F is

div(σn)dx =

∫
∂∗F is

|σ|dH1 = Cis Per(F is).

Moreover,

(6.2) −
∫
F is

div(σn) =
∫
F is

λn →
∫
F is

λ

when n→ +∞, where λn := λ ∗ ρn. Hence, with (6.1) and (6.2), we have the desired result:∫
F is

λ = CisPer(F is)

for a.e. s ∈ S, for every i ∈ Is if lis(u) ∩ U = ∅.
□

We also have:

Proposition 6.4. For every set F ⊂ F is of finite perimeter we have∫
F
λ ≤ CisPer(F ).

Proof. We follow the same ideas developed in the previous proof. We have:

−
∫
F

div(σn) =
∫
∂∗F

⟨σn, νF ⟩dH1.

The term in the left hand side tends to
∫
F λ when n → +∞. For the term in the right hand side

we get: ∫
∂∗F

⟨σn, νF ⟩dH1 ≤
∫
∂∗F

|σn|dH1.
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By Proposition 5.3, sup
F is

|σn| ≤ sup
lis

max(d0, |σn|). By Proposition 5.1 and Proposition 5.2 we have

max(d0, |σn|) → Cis H1 a.e. on lis(u) when n→ +∞. Hence,∫
F
λ ≤ CisPer(F ).

□

6.2. Main proof. We first prove Theorem 1.5:

Proof of Theorem 1.5. For a.e. s ∈ R, for every i ∈ Is if lis(u) ∩ (U ∪ ∂Ω) = ∅ then by Proposition
6.3, ∫

F is

λ = CisPer(F
i
s).

We assume that such a lis(u) exists. Since F is ⋐ Ω by Remark 6.2 and the previous equality, we
have

hΩ <
Per(F is)

|F is |
=

1

Cis|F is |

∫
F is

λ.

We have that ||λ||L∞(Ω) ≤ d0hΩ. Thus,

hΩ <
d0hΩ
Cis

.

Hence, Cis < d0 which is a contradiction. Thus, for a.e. s ∈ R we have lis(u) ∩ (U ∪ ∂Ω) ̸= ∅.
Let v be another minimizer. By Proposition 3.2 and Proposition 3.6, for a.e. s ∈ R, on every

connected component lis(u) of Ls(u) that is not a point we have u = v on lis(u) or ∇(u− v) = 0 H1

a.e. on lis(u).
By the coarea formula:∫

R2∩[u̸=v]
|∇(u− v)||∇u| =

∫
R

∫
Ls(u)∩[u̸=v]

|∇(u− v)|dH1ds.

By Theorem 2.8, for a.e. s ∈ R, H1(Ls\L∗
s) = 0 and L∗

s is composed by a countable number of
curves lis(u). For every i ∈ Is, we have:∫

lis(u)∩[u̸=v]
|∇(u− v)|dH1 = 0.

By Proposition 3.2, we get ∫
Ls(u)∩[u̸=v]

|∇(u− v)|dH1 = 0.

Hence, ∫
R2∩[u̸=v]

|∇(u− v)||∇u|dx = 0.

For the same reasons, ∫
R2∩[u̸=v]

|∇(u− v)||∇v|dx = 0.

Hence we have ∇(u− v) = 0 a.e. on [u ̸= v]. This implies that the map u− v is constant on R2.
Since u = v on ∂Ω, we have that u = v on Ω. □
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Now, we are ready to prove the main theorem:

Proof of Theorem 1.1. Let u and v be two minimizers of Pλ. We assume that ||∇λ||L∞(Ω) ≤ Υ <
min
Ω
λ

diamΩ
up to decreasing the constant Υ from Proposition 5.3. For a.e. s ∈ R, every i ∈ Is, if

lis(u) ∩ (U ∪ ∂Ω) = ∅ by Proposition 5.2, |σ| = Cis H1 a.e. on lis(u) with Cis ∈ {dn, 0 ≤ n < N}.
We prove by induction on 0 ≤ n < N that if |σ| = dn on lis(u) then ∇(u− v) = 0 H1 a.e. on lis.
Step 1 As an initialisation step, we assume that Cis = d0. By Proposition 3.3, u > s on F is .

By the coarea formula, for a.e. t > s, t belongs to S. We assume that there exists t > s and
j ∈ It such that ljt (u) ∩ U = ∅ and Ft ⋐ F is . By Proposition 5.3, |σ| = d0 a.e. on ljt (u). Thus, by
Proposition 6.3 we have that

∫
Ft
λ = d0Per(Ft). For r > 1 close to 1 and x0 ∈ Ω, we introduce

F rt = r(Ft − x0) + x0 ⋐ Fs.
Hence, by Proposition 5.3 we have |σ| ≤ d0 on ∂F rt . Then, by Proposition 6.4,

r2
∫
Ft

λ(r(x− x0) + x0)dx =

∫
F rt

λ(y)dy ≤ d0Per(F
r
t ) = rd0Per(Ft) = r

∫
Ft

λ(x)dx.

Thus, ∫
Ft

rλ(r(x− x0) + x0)− λ(x) ≤ 0.

Since ||∇λ||L∞(Ω) <

min
Ω
λ

diam(Ω)
, we have that rλ(r(x−x0)+x0)−λ(x) > 0 for every x ∈ F is . That is

a contradiction. Hence, for a.e. t > s and every j ∈ It such that ljt (u) ⋐ F is we have ljt (u) ∩ U ̸= ∅.
By Proposition 3.6, ∇(u − v) = 0 H1 a.e. on ljt (u). By the coarea formula, ∇(u − v) = 0 a.e. in
F is . By Lemma 3.8, we have that ∇(u− v) = 0 H1 a.e. on lis(u).

Step 2 Now, we prove the induction part. We consider 1 ≤ n < N . Let us assume that for every
k < n, for a.e. t ∈ R and every j ∈ It if ljt (u) ∩ (U ∪ ∂Ω) = ∅ and Cjt = dk then ∇(u − v) = 0 H1

a.e. on ljt (u).
If lis(u) is such that lis(u)∩ (U ∪ ∂Ω) = ∅ and Cis = dn, we consider t > s such that ljt (u)∩U = ∅

and Ft ⋐ F is . Hence, by Proposition 5.5, either Cjt = dn or Cjt < dn. If Cjt = dn, then as in Step
1 we construct F rt ⋐ F is and we prove the ∇(u − v) = 0 H1 a.e. on ljt (u). By induction we have
∇(u − v) = 0 H1 a.e. on ljt (u) in the second case. Hence, ∇(u − v) = 0 H1 a.e. on ljt (u). We can
conclude as in Step 1 that ∇(u− v) = 0 H1 a.e. on lis(u).

Step 3 For a.e. s ∈ S, we consider ls(u) a connected component of L∗(u). If ls(u)∩ (R2\Ω) ̸= 0
then by Proposition 3.2, u = v on ls(u). If ls(u) ⊂ Ω and ls(u) ∩ U ̸= ∅ then by Proposition 3.6,
∇(u − v) = 0 H1 a.e. on ls(u). Finally, thanks to Step 2 if ls(u) ⋐ Ω and ls(u) ∩ U = ∅ then we
have ∇(u− v) = 0 H1 a.e. on ls(u). Hence, we can prove with the coarea formula, as in the proof
of Theorem 1.5, that u = v.

□

7. Extensions

In this section we present an extension of the main theorem where SC has a countable number
of connected components. We assume that φ is C2 and φ′′ > 0 on int(SC)\{0} and:

SC ∩ R+ = SC∞ ∪
( ⋃
n∈N

SCn
)
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with SC0 := [0, b0), SCn := (an, bn) for every n ∈ N∗ and SC∞ is defined below. We assume that
(an)n∈N∗ and (bn)n∈N are strictly increasing sequences. Moreover, the sequence (an)n∈N∗ is bounded
and lim

n→+∞
an = α. For every n ∈ N, dn := φ′(bn) = φ′(an+1) is an increasing sequence.

The connected component SC∞ is exceptional because SC∞ := (a∞,+∞) if α < a∞ and SC∞ :=
[α,+∞) if α = a∞.

Proposition 7.1. In that case Theorem 1.1 is still valid.

Proof. With this new structural assumptions, the minimizers are still globally Lipschitz-continuous
on Ω. We can define U as previously with int(SC) instead of SC. The function max(d0, φ′(∇u)) is
still in H1

loc(Ω). Since |φ′(R\SC)| = 0, Proposition 5.2 remains valid. Hence, the last crucial point
is the end of the induction argument in Step 2 of the proof of Theorem 1.1. We assume that there
exists lis(u) ⋐ Ω such that lis(u) ∩ U = ∅ and Cis = φ′(a∞). Then for every lt ⋐ F is , we either have
that Ct = φ′(a∞) or ∇(u − v) = 0 H1 a.e. on lt. Hence, we have that ∇(u − v) = 0 H1 a.e. on
lis(u). Thus, u = v on Ω. □

Remark 7.2. The sets

[0,
1

2
) ∪

( ⋃
n∈N∗

(
22n − 1

22n
,
22n+1 − 1

22n+1
)

)
∪ [1,+∞)

and

[0,
1

2
) ∪

( ⋃
n∈N∗

(
22n − 1

22n
,
22n+1 − 1

22n+1
)

)
∪ (2,+∞)

satisfy the new structural assumptions made on SC.
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