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A UNIQUENESS RESULT FOR A TRANSLATION INVARIANT PROBLEM IN THE CALCULUS OF VARIATIONS

We present a uniqueness result of uniformly continuous solutions for a general minimization problem in the Calculus of Variations. We minimize the functional I λ (u) := Ω φ(∇u)+λu with φ a convex but not necessarily strictly convex function, Ω an open set of R N with N ∈ N * and λ ∈ R. The proof is based on the two following main points : the functional I λ is invariant under translations and we assume that the function φ is not affine on any non-empty open set. This provides a shorter proof and/or an extension for some already known uniqueness results for functionals of the type I λ that are presented in the article.
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1. Introduction 1.1. Presentation of the problem. We study a uniqueness result for a non-strictly convex problem in the calculus of variations in dimension N ≥ 1. We consider functionals of the following form: Here, ψ : R N → R is a continuous function in W 1,1 loc (R N ) and E(Ω, ψ) is a subset of W 1,1 ψ (Ω), namely the set of functions in W 1,1 (Ω) such that the extension outside Ω by ψ : R N → R is in W 1,1 loc (R N ). We work with the set E(Ω, ψ) to cover many situations: in the following E(Ω, ψ) can stand for W 1,1 ψ (Ω), W 1,p ψ (Ω), W 1,p ψ (Ω) ∩ C 0 (Ω), C 0,1 ψ (Ω) or {v ∈ W 1,1 ψ (Ω), ∇v(x) ∈ K for a.e. x ∈ Ω} with K a convex set.

We assume that I λ is well defined on E(Ω, ψ) with values in R ∪ {+∞} and that there exists v ∈ E(Ω, ψ) such that I λ (v) < +∞.

We point out that φ is not necessarily strictly convex. Hence, no general result guarantees uniqueness. Another remarkable feature of the main result Theorem 1.2 is that φ(z) can be equal to +∞ for some z ∈ R N . Hence, this framework covers also the case when we put a pointwise constraint on the gradient. In the situations studied in [START_REF] Bouchitté | On a degenerate problem in the calculus of variations[END_REF] and [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF], P λ is the convexification of a non-convex problem that arises in shape optimization. In these cases (see also [START_REF] Marcellini | A relation between existence of minima for nonconvex integrals and uniqueness for non strictly convex integrals of the calculus of variations[END_REF]) uniqueness for P λ can be useful to prove existence or non-existence of a minimizer for related non-convex problems.

1.2. Main result. In order to present the main result of this paper we introduce the following sets: Definition 1.1. We say that a convex set F ∈ R N is an affine part of φ if ∀z, ξ ∈ F we have:

φ(z) < +∞, φ(ξ) < +∞ and φ z + ξ 2 = φ(z) + φ(ξ) 2 .
The dimension of F is the dimension of the affine space generated by F .

We make the two following assumptions on the set E(Ω, ψ):

(A1) The set E(Ω, ψ) is invariant under translation: if v ∈ E(Ω, ψ) then v(•) = v(• + τ ) + α ∈ E Ω τ , ψ(• + τ ) + α with Ω τ = Ω -τ . (A2) If u ∈ E(Ω, ψ) and v ∈ E(V, u) with V a non empty open set in Ω, then the extension of v by u is in E(Ω, ψ).
We make one assumption on φ: (A3) The dimensions of the affine parts of φ are at most N -1.

We now present the main theorem of this article: Theorem 1.2. Under those three assumptions, the problem P λ admits at most one uniformly continuous minimizer.

The proof of Theorem 1.2 which is relatively short and simple, unifies results that are described in Section 2. For some of them it is even an extension to higher dimensions or to a more general set Ω.

The first two assumptions (A1) and (A2) are relatively standard. For instance, they are satisfied when

E(Ω, ψ) is W 1,1 ψ (Ω), W 1,p ψ (Ω), W 1,p ψ (Ω) ∩ C 0 (Ω), C 0,1 (Ω) or {v ∈ W 1,1 ψ (Ω), ∇v(x) ∈ K for a.e. x ∈ K} with K a convex set.
However, the last assumption (A3) on the dimensions of the affine parts of φ is necessary for the statement to be true. It is easy to find counterexamples when this condition is not satisfied. For instance if we consider the problem when N = 1, Ω = (0, 1), ψ(0) = 0, ψ(1) = 1, λ = 0 and φ(•) = | • |, every increasing function that satisfies the boundary condition is a solution. Another example of non uniqueness when the last assumption is not satisfied can be found in [START_REF] Cellina | Comparison results and estimates on the gradient without strict convexity[END_REF]Example 6] 

with φ(•) = (| • | -1) 2 + .
In this article, we prove a uniqueness result but we do not provide any result about the existence or about the regularity of minimizers. In the cases where the existence is provided by the direct methods and the uniform continuity is standard, we obtain the following corollary of Theorem 1.2: Corollary 1.3. We assume that the problem P λ admits a minimizer and every minimizer is uniformly continuous. Under the three assumptions (A1), (A2) and (A3), the problem P λ has a unique minimizer.

That is the case for instance when Ω is smooth, ψ smooth and φ satisfies a p-growth condition, some examples are given in Section 2. In some problems like in [START_REF] Bousquet | Boundary continuity of solutions to a basic problem in the calculus of variations[END_REF], if a uniformly continuous minimizer exists then all the minimizers are uniformly continuous. In this case we have: Corollary 1.4. We assume that if the problem P λ has a uniformly continuous minimizer then every minimizer is uniformly continuous. Under the three assumptions (A1), (A2) and (A3) if a minimizer of P λ is uniformly continuous then it is the only minimizer.

The main idea of the proof comes from [START_REF] De Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Section 4]. In this paper, De Silva and Savin consider the minimization in dimension two of

I(u) = Ω φ(∇u)dx on E(Ω, ψ) = C 0,1
ψ (Ω) with φ a convex function with domain K := {z ∈ R 2 , φ(z) < +∞} a closed polygon. In [START_REF] De Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Proposition 4.5], the authors use the fact the problem is invariant under translation to compare the gradient of a minimizer at a point with the gradient of another minimizer at another point.

1.3. Plan of the paper. In the next section, we present some cases where we can apply Theorem 1.2. In Section 3, we present some classical results for functionals of the type (1.1). The last section is devoted to the proof of Theorem 1.2.

Applications

In this section we apply Theorem 1.2 to obtain uniqueness results for some functionals arising in the literature and we conclude by a subsection on a comparison principle.

2.1. Radial functions. In this subsection, we assume that φ(z) = g(||z||) with g : R → R a convex function such that g(0) < g(t) for all t ̸ = 0 and || • || a strictly convex norm.

Proposition 2.1. For such a φ, the assumption (A3) is satisfied.

Proof. Since g is strictly increasing and || • || is strictly convex, the lower level sets of φ are strictly convex. We assume by contradiction that there exists z ∈ R N and ϵ > 0 such that B ϵ (z) ⊂ F where B ϵ (z) := {y ∈ R N such that ||y -z|| < ϵ} and F is an affine part of φ. Without loss of generality, we can assume that z ̸ = 0. Hence, there exists

z ′ ∈ B ϵ (z)\{z} such that ||z ′ || = ||z||. Since z, z ′ ∈ F , φ is affine on [z, z ′ ]. Since φ(z) = φ(z ′ ), the segment [z, z ′ ]
is contained in the boundary of a lower level set of φ. That is a contradiction. Thus, the interior of F is empty. Hence, the dimension of F is at most N -1. □

In the rest of the subsection, we detail some examples where the norm considered is the Euclidean norm | • |. If the set E(Ω, ψ) is a subset of uniformly continuous functions that are in W 1,1 (Ω) then every minimizer is uniformly continuous. In this case, Theorem 1.2 becomes: P λ admits at most one minimizer. For instance that is the case in [10, Theorem 3] where the set considered is C 0,1 ψ (Ω). A minimization among Lipschitz continuous functions also appears in [9, Theorem 1.1] but only for the dimension two. Hence, Theorem 1.2 allows to generalize this result to higher dimensions.

This theorem can also be used to prove the uniqueness part for the least gradient problem considered in [START_REF] Sternberg | Existence, uniqueness, and regularity for functions of least gradient[END_REF]:

To minimize Ω |∇u|dx on {u ∈ BV (Ω) ∩ C 0 (Ω), u = ψ on ∂Ω}.
In fact, we can not directly apply Theorem 1.2 because E(Ω, ψ) ⊈ W 1,1 (Ω) but [12, Theorem 5.9] provides that if Ω and ψ are smooth, then the minimizers are globally Lipschitz continuous on Ω.

In the articles [START_REF] Lussardi | A uniqueness result for a class of non-strictly convex variational problems[END_REF], [START_REF] Marcellini | A relation between existence of minima for nonconvex integrals and uniqueness for non strictly convex integrals of the calculus of variations[END_REF] and [START_REF] Sternberg | Existence, uniqueness, and regularity for functions of least gradient[END_REF] the question of existence is much harder. Now, we look at problems where the direct methods guarantee the existence of a minimizer.

If φ satisfies a p-growth condition: there exist C 1 , α > 0 and p > 1 such that (2.1)

C 1 |z| p -α ≤ φ(z)
for every z ∈ R N then by [4, Theorem 3.30], P λ admits at least one minimizer on W 1,p ψ (Ω). In [START_REF] Bouchitté | On a degenerate problem in the calculus of variations[END_REF], we have:

(2.2) φ(z) = |z| if |z| ≤ 1, 1 2 (|z| 2 + 1) if |z| > 1,
and in [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF], up to some rescaling we have :

φ(y) =      1 2 |z| 2 if |z| ≤ 1, |z| -1 2 if 1 < |z| < 2, 1 4 (|z| 2 + 2) if 2 ≤ |z|.
In both cases, φ is a radial convex function with 0 as strict minimum that satisfies the assumption (A3) and a p-growth condition. Hence, these two problems, or any problem of this type, admit at least a minimizer. It remains to show that every minimizer is continuous.

By 2. An interesting fact here is that we do not assume that the boundary of Ω is connected in contrast with [START_REF] Bouchitté | On a degenerate problem in the calculus of variations[END_REF] and [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF]. In this way, Theorem 1.2 extends the main results of [START_REF] Bouchitté | On a degenerate problem in the calculus of variations[END_REF] and [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF] with a shorter proof.

2.2.

When Ω is convex and φ is superlinear. In this subsection we use some results from [START_REF] Bousquet | Boundary continuity of solutions to a basic problem in the calculus of variations[END_REF]. We assume that Ω is convex, λ = 0, ψ is continuous and φ is superlinear:

lim |z|→+∞ φ(z) |z| = +∞.
Under those assumptions, [2, Theorem 1.4] ensures that P λ has at least one continuous solution on Ω when E(Ω, ψ) = W 1,1 ψ (Ω). Hence if φ satisfies the assumption (A3) then Theorem 1.2 provides that P λ has a unique continuous minimizer.

Moreover, if we assume that the affine parts of φ have a uniformly bounded diameter and that there exists a uniformly continuous minimizer of P λ then by [2, Proposition 1.6], see also Lemma 3.7, every minimizer is uniformly continuous on Ω. In this case if φ satisfies the assumption (A3) then by Corollary 1.4, P λ has a unique minimizer and this minimizer is uniformly continuous on Ω.

2.3.

Functions defined on a bounded convex set. In this subsection we assume that K is a bounded convex set of R N , φ(z) = φ(z) + χ K (z) with φ : R N → R a convex function that satisfies the assumption (A3) on K and

χ K (z) = 0 if z ∈ K, +∞ if z / ∈ K.
In this case, for every minimizer u and for a.e. x ∈ Ω, ∇u(x) ∈ K. Hence, every minimizer is globally Lipschitz continuous on Ω. Thus, Theorem 1.2 becomes: P λ admits at most one minimizer on E(Ω, ψ).

The main source of inspiration for this paper comes from [START_REF] De Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Section 4]. In this article, as mentioned in the introduction, φ is defined on a closed convex polygon in R 2 and φ ≡ +∞ outside. The function is strictly convex inside the polygon. Hence, φ satisfies the assumption (A3). Thus, if the minimizer exists, it is the only one. We can generalize it to higher dimensions with a polytope instead of a polygon. This type of formulation φ(z) = φ(z) + χ K (z) can appear when we introduce a constraint on the gradients of the minimizers. For instance in [START_REF] Sternberg | The Constrained Least Gradient Problem in Rn[END_REF], the authors consider the least gradient problem with φ(z) = |z| for all z ∈ R N but the minimization is done on {u ∈ C 0,1 (Ω), |∇u| ≤ 1 a.e.}. In this case, we can set K = B 1 (0) and apply Theorem 1.2 to obtain uniqueness if a minimizer exists.

Comparison principle.

If we assume that the minimizers of P λ are uniformly continuous then we have the following comparison principle: Proposition 2.3. Let ψ 1 and ψ 2 be two boundary conditions on ∂Ω. If assumptions (A1), (A2), (A3) are satisfied and ψ 1 ≤ ψ 2 on ∂Ω then u 1 ≤ u 2 where u 1 is the uniformly continuous solution of P λ on E(Ω, ψ 1 ) and u 2 is the uniformly continuous solution of P λ on E(Ω, ψ 2 ).

Proof. By assumptions on ψ 1 and ψ 2 , Lemma 3.3 and Lemma 3.4 below imply that min{u 1 , u 2 } is a solution of P λ on E(Ω, ψ 1 ). Hence, by Theorem 1.2 we have min{u 1 , u 2 } = u 1 and thus u 1 ≤ u 2 . □

Preliminary results

In this section, we recall some classical and simple results that we use in the proof of Theorem 1.2. The first lemma shows that the problem is invariant under translations as in [7, Section 1.1]. Lemma 3.1. If u is a minimizer of P λ on E(Ω, ψ) then for every τ ∈ R N and α ∈ R, u(• + τ ) + α is a minimizer on E(Ω τ , ψ + α) where Ω τ := Ω -τ .

Proof. We consider v ∈ E(Ω τ , ψ + α). By assumption (A1), v(x) := v(x -τ ) -α is in E(Ω, ψ) and thus Since v can be any function in E(Ω τ , ψ + α) we have the desired result. □ Remark 3.2. This lemma uses the invariance under translations of this type of functionals with λ constant. Hence, it seems difficult to generalize Theorem 1.2 to more general problems. When λ is not constant, we can use different ideas to prove uniqueness for specific functionals. For instance, in an upcoming paper, we prove uniqueness for φ as in (2.2) with λ having small oscillations by comparing the level sets of two minimizers.

(3.1) Ω φ(∇ v(x)) + λ v(x)dx ≥ Ω φ(∇u(x)) + λu(x)dx. But Ωτ φ(∇v(y)) + λv(y)dy = Ω φ(∇ v(x)) + λ( v(x) + α)dx = Ω φ(∇ v(x)) + λ v(x)dx + αλ|Ω|.

By the inverse change of variables applied to u and (3.1) we obtain

The following lemma establishes that a minimizer on Ω is still a minimizer on the subsets of Ω.

Lemma 3.3. Let u be a minimizer of P λ on E(Ω, ψ). For every non empty open set V ⊂ Ω, u| V is a minimizer on V among all the functions in E(V, u).

Proof. We assume by contradiction that this is not the case. There exists v ∈ E(V, u) such that

V φ(∇v(x)) + λv(x)dx < V φ(∇u(x)) + λu(x)dx.
If we define w(x) = u(x) if x / ∈ V and w(x) = v(x) if x ∈ V then by assumption (A2), w ∈ E(Ω, ψ) and I λ (w) < I λ (u). This contradicts the fact that u is a minimizer. □

In the next lemma, we prove that the extension of a minimizer by a compatible minimizer is still a minimizer. Lemma 3.4. Let u be a minimizer of P λ on E(Ω, ψ) and

V ⊂ Ω a non empty open set. If v is a minimizer of P λ on E(V, u) then w = v on V, u on Ω\V,
is a minimizer of P λ on E(Ω, ψ).

Proof.

By assumption (A2) on E, w ∈ E(Ω, ψ). We compare I λ (u) and I λ (w): By Lemma 3.3, V φ(∇u) + λu = V φ(∇v) + λv. Hence, I λ (u) = I λ (w). Thus, w is a minimizer of P λ on E(Ω, ψ). □

I λ (u) = Ω φ(∇u) + λu = V φ ( 
We introduce the notion of point of approximate continuity that we use in the proof of Theorem 1.2. Definition 3.5. Let f : Ω → R m be a measurable function, we say that x 1 is a point of approximate continuity if for every η > 0

(3.2) lim r→0 |{x ∈ B r (x 1 ), |f (x) -f (x 1 )| ≥ η}| |B r (x 1 )| = 0.
We recall a classical result that can be found in [6, Section 1.7, Theorem 3].

Proposition 3.6. Let f : Ω → R m be a measurable function. Hence, a.e. x ∈ Ω is a point of approximate continuity of f .

In the last result of this section, we show that given three minimizers, φ is affine on the simplex generated by their gradients at almost every point: Lemma 3.7. Let u, v and w be three minimizers of P λ on E(Ω, ψ). Then φ is affine on the simplex with vertices [∇u(x), ∇v(x), ∇w(x)] for a.e. x ∈ Ω.

Proof. Since u is a solution of P λ ,

I λ (u) ≤ I λ u + v + w 3 .
By the convexity of φ,

I λ u + v + w 3 = Ω φ ∇u + ∇v + ∇w 3 + λ u + v + w 3 dx ≤ 1 3 Ω (φ(∇u) + λu)dx + 1 3 Ω (φ(∇v) + λv)dx + 1 3 Ω (φ(∇w) + λw)dx = 1 3 I λ (u) + 1 3 I λ (v) + 1 3 I λ (w).
Since v and w are other solutions,

I λ (u) = 1 3 I λ (u) + 1 3 I λ (v) + 1 3 I λ (w).
This implies that

Ω φ ∇u + ∇v + ∇w 3 dx = Ω 1 3 (φ(∇u) + φ(∇v) + φ(∇w))dx.
Hence for a.e. x ∈ Ω,

φ ∇u(x) + ∇v(x) + ∇w(x) 3 = 1 3 φ(∇u(x)) + φ(∇v(x)) + φ(∇w(x)) .
Hence, for a.e. x ∈ Ω, φ is affine on the simplex with vertices [∇u(x), ∇v(x), ∇w(x)]. □ Remark 3.8. The fact that φ is affine on the simplex with vertices [∇u(x), ∇v(x), ∇w(x)] is equivalent to ∇u(x), ∇v(x), ∇w(x) ∈ F where F is an affine part of φ.

Remark 3.9. The number of minimizers considered in Lemma 3.7 can be changed. For instance, we can prove it with n ∈ N minimizers. In this case we obtain that φ is affine on the convex hull of the gradients of the solutions and they are still in the same affine part F of φ.

Proof of Theorem 1.2

The proof of Theorem 1.2 is divided into three steps. The first one is very similar to the proof of [START_REF] De Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Proposition 4.5].

Step 1 Let u 1 , u 2 be two uniformly continuous minimizers of P λ on E(Ω, ψ). We call ω a common modulus of continuity of u 1 and u 2 namely: lim

w→0 + ω(x) = 0, ω is increasing and ω(a+b) ≤ ω(a)+ω(b)
for every a, b ∈ R + . We assume by contradiction that there exist x 0 ∈ Ω and ϵ > 0 such that u 1 (x 0 ) -u 2 (x 0 ) = ϵ.

We consider ρ > 0 such that ω(ρ) < ϵ 6 . For every y ∈ Ω, u 1 (y) -u 2 (y) ≤ 2ω(dist(y, ∂Ω)). Hence,

ω(2ρ) ≤ ϵ 3 < ϵ 2 = u 1 (x 0 )-u 2 (x 0 ) 2
≤ ω(dist(x 0 , ∂Ω)). Thus, B 2ρ (x 0 ) ⋐ Ω. For every τ ∈ R N such that |τ | < ρ and for every x ∈ B ρ (x 0 ) we have u 1 (x) ≥ u 1 (x 0 ) -ω(ρ) and u 2 (x + τ ) ≤ u 2 (x 0 ) + 2ω(ρ). Hence, we have that (4.1)

B ρ (x 0 ) ⊂ {x ∈ Ω ∩ Ω τ , u 2 (x + τ ) + ϵ 2 < u 1 (x)}
and for the same reasons:

(4.2) B ρ (x 0 ) ⊂ {x ∈ Ω ∩ Ω τ , u 1 (x + τ ) - ϵ 2 > u 2 (x)}
with Ω τ = Ω -τ . For every x ∈ Ω ∩ Ω τ , we have

|u 1 (x)-u 2 (x+τ )| ≤ ω(ρ)+min{|u 1 (x)-u 2 (x)|, |u 1 (x+τ )-u 2 (x+τ )|} ≤ ω(ρ)+2ω dist(x, ∂(Ω∩Ω τ )) .
Since ω(ρ) < ϵ 6 we have:

(4.3) {x ∈ Ω ∩ Ω τ , u 2 (x + τ ) + ϵ 2 < u 1 (x)} ⋐ Ω ∩ Ω τ
and for the same reasons:

(4.4) {x ∈ Ω ∩ Ω τ , u 1 (x + τ ) - ϵ 2 > u 2 (x)} ⋐ Ω ∩ Ω τ .
We extend the function v τ (x) := min{u 1 (x), u 2 (x + τ ) + ϵ 2 } defined on Ω ∩ Ω τ by u 1 to Ω. By assumptions (A1), (A2) and the inclusion (4.3), this extension belongs to E(Ω, ψ). Thanks to the inclusion (4.4), if we extend w τ (x) := max{u 1 (x + τ ) -ϵ 2 , u 2 (x)} by u 2 , we also have that w τ ∈ E(Ω, ψ). By Lemma 3. 

∈ Ω ∩ Ω τ , u 2 (x + τ ) + ϵ 2 < u 1 (x)}, u 1 and u 2 (• + τ ) + ϵ
2 are solutions of the same problem. By Lemma 3.4, v τ is a minimizer of P λ on E(Ω, ψ). With the same arguments we can prove that w τ is also a minimizer of P λ on E(Ω, ψ).

Step 2 In this crucial step of the proof we show that there exists an (N -1)-dimensional set containing the essential ranges of the gradients of any minimizer. We consider x 1 ∈ B ρ 2 (x 0 ) and x ′ 1 ∈ B ρ 2 (x 0 ) two points of approximate continuity of (∇u 1 , φ(∇u 1 )) and x 2 ∈ B ρ 2 (x 0 ) a point of approximate continuity of (∇u 2 , φ(∇u 2 )). By Proposition 3.6 and the fact that ∇u 1 , ∇u 2 and φ are measurable, that is the case for a.e. (x 1 , x ′ 1 , x 2 ) ∈ B ρ 2 (x 0 ) 3 . We fix τ := x 2 -x 1 and τ ′ := x ′ 1 -x 1 . Then by definition of v τ and w τ ′ , x 1 is a point of approximate continuity of (∇v τ , φ(∇v τ )) and (∇w τ ′ , φ(∇w τ ′ )).

We define f : x → ∇u 1 (x), ∇w τ ′ (x), ∇v τ (x), φ(∇u 1 (x)), φ(∇w τ ′ (x)), φ(∇v τ (x)) . Since x 1 is a point of approximate continuity of f , we have for every n ∈ N * :

lim r→0 |{x ∈ B r (x 1 ), |f (x) -f (x 1 )| > 1 n }| |B r (x 1 )| = 0.
Thus, for every n ∈ N * , there exists x ∈ B rn (x 1 ) such that |f (x) -f (x 1 )| ≤ 1 n . By Lemma 3.7 we can further assume that (4.5)

φ ∇u 1 (x) + ∇w τ ′ (x) + ∇v τ (x) 3 = φ(∇u 1 (x)) + φ(∇w τ ′ (x)) + φ(∇v τ (x)) 3 < +∞.
We introduce K := {z ∈ R N , φ(z) < +∞} the convex domain of φ and we distinguish two cases:

a) If the triplet (x 1 , x ′ 1 , x 2 ) is such that ∇u 1 (x 1 )+∇w τ ′ (x 1 )+∇vτ (x 1 ) 3 
∈ Int(K), then by continuity of φ on Int(K) we have

φ ∇u 1 (x 1 ) + ∇w τ ′ (x 1 ) + ∇v τ (x 1 ) 3 = φ(∇u 1 (x 1 )) + φ(∇w τ ′ (x 1 )) + φ(∇v τ (x 1 )) 3 .
By the definition of w τ ′ , v τ and (4.1)-(4.2), this is equivalent to ∇u 1 (x 1 ), ∇u 1 (x ′ 1 ) and ∇u 2 (x 2 ) being in the same affine part of φ. Now, we prove that φ is affine on the convex hull of F := {∇u 1 (x) with x ∈ X 1 and ∇u 2 (x) with x ∈ X 2 } with X i the set of points of approximate continuity of (∇u i , φ(∇u i )). If we consider y ∈ B ρ 2 (x 0 ) a point of approximate continuity of (∇u i , φ(∇u i )) and y ′ ∈ B ρ 2 (x 0 ) a point of approximate continuity of (∇u j , φ(∇u j )) with i, j ∈ {1, 2} we have that (4.6) ∇u 1 (x 1 ) + ∇u 1 (x ′ 1 ) + ∇u 2 (x 2 ) + ∇u i (y) + ∇u j (y ′ ) 5 ∈ Int(K).

By using the functions v y-x 1 if i = 2 and w y-x 1 if i = 1, and similarly for j, we obtain the analogue of (4.5) for these five minimizers, see Remark 3.9. Hence, we can argue as above and rely on (4.6) to get that the fives points ∇u 1 (x 1 ), ∇u 1 (x ′ 1 ), ∇u 2 (x 2 ), ∇u i (y) and ∇u j (y ′ ) belong to the same affine part of φ. Thus, φ is affine on the segment [∇u i (y), ∇u j (y ′ )]. Hence, φ is affine on the convex hull of F . Thus by assumption (A3), there exists F an (N -1)-dimensional affine space such that for a.e. x ∈ B ρ 2 (x 0 ), ∇u 1 (x) and ∇u 2 (x) belong to F. b) If there is no such triplet then for every couple (x 1 , x ′ 1 ) of points of approximate continuity, we have that ∇u(x 1 ), ∇u(x ′ 1 ) belong to the same face of ∂K, namely the intersection of an affine hyperplane with ∂K. Otherwise the convex combination would be in Int(K) contradicting the fact that we are not in case a). Hence, there exists an affine hyperplane F such that for a.e. x ∈ B ρ 2 (x 0 ), ∇u 1 (x) is in F. The fact that we are not in case a) gives that for a.e. x ∈ B ρ 2 (x 0 ), ∇u 2 (x) is in F too.

Step 3 Since the dimension of F is at most N -1 there exists a normal vector η to F. The scalar product ⟨∇u i (x), η⟩ = C is constant in B ρ 2 (x 0 ) and is independent of i = 1, 2. Thus, u 1 -u 2 = ϵ > 0 on (x 0 + Rη) ∩ B ρ 2 (x 0 ). Hence, the compact set E ϵ := (u 1 -u 2 ) -1 (ϵ) ⋐ Ω has no extreme points in Ω.

We consider x 0 ∈ E ϵ such that | x 0 | = max 

(1. 1 )

 1 I λ : u → Ω φ(∇u(x)) + λu(x)dx with λ ∈ R, Ω a bounded open set of R N and φ : R N → R ∪ {+∞} a measurable convex function. We consider the problem: P λ : To minimize I λ (v) on E(Ω, ψ).

  Ωτ φ(∇v(y)) + λv(y)dy ≥ Ωτ φ ∇(u(y + τ ) + α) + λ(u(y + τ ) + α)dy.

  ∇u) + λu + Ω\V φ(∇u) + λu and I λ (w) = Ω φ(∇w) + λw = V φ(∇v) + λv + Ω\V φ(∇u) + λu.

  1 and Lemma 3.3, on the open set {x

x∈Eϵ|x|.

  Since E ϵ has no extreme points, there exist y 1 and y 2 in E ϵ such that x 0 ∈ (y 1 , y 2 ). By the triangle inequality, either|y 1 | > | x 0 | or |y 2 | > | x 0 |.That is a contradiction. Hence, we have u 1 = u 2 on Ω.

A UNIQUENESS RESULT FOR A TRANSLATION INVARIANT PROBLEM IN THE CALCULUS OF VARIATIONS.