

# Upgrading agrifood co-products via solid fermentation yields environmental benefits under specific conditions only

Ugo Javourez, E. Rosero Delgado, L. Hamelin

# ► To cite this version:

Ugo Javourez, E. Rosero Delgado, L. Hamelin. Upgrading agrifood co-products via solid fermentation yields environmental benefits under specific conditions only. Nature Food, 2022, 3, pp.911-920. 10.1038/s43016-022-00621-9 . hal-03845483

# HAL Id: hal-03845483 https://hal.science/hal-03845483

Submitted on 2 Jul2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 1 2

# Upgrading agrifood co-products via solid fermentation yields environmental benefits under specific conditions only

3

U. Javourez<sup>1</sup>, E.A. Rosero Delgado<sup>2</sup> & L. Hamelin<sup>1</sup>

- 4 <sup>1</sup>: TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- 5 <sup>2</sup>: Departamento de Procesos Químicos Alimentos y Biotecnología, Facultad de Ciencias Matemáticas,
- 6 Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
- 7

# 8 Abstract

9 Transforming residual biomass into edible ingredients is increasingly promoted to alleviate 10 environmental impacts of food systems. Yet, these approaches mostly rely on emerging technologies 11 and constrained resources, and their environmental benefits remain unclear. By combining process-12 based consequential life cycle analysis, uncertainty assessment and biomass resource estimation, we 13 quantified the impacts of deploying waste-to-nutrition pathways, here applied to agrifood co-products 14 upgrading by solid-state fermentation (SSF). The benefits of reducing soybean meal's demand by 15 enhancing feed's protein concentration through SSF do not compensate for the environmental burden 16 induced by the process on climate change, water depletion and land use. Besides unlocking feed 17 markets to low-feed-quality streams, SSF outperforms energy valorization for most environmental 18 impacts, but is less competitive to mitigate climate change. Yet, SSF yields overall environmental 19 benefits when unlocking food markets rather than supplying feed and energy services. Systematic 20 methodological harmonization is required to assess the potential of novel ingredients, as outcomes 21 vary according to the displaced food and feed baskets, and related land use changes accounting.

# 22 Main text

# 23 Introduction

24 To comply with future food demand while remaining within an environmentally safe zone<sup>1</sup>, 25 solutions that capitalize on locally available resources<sup>2–4</sup> and enhance decoupling of food production 26 from arable land (through the production of novel food and feed ingredients, for example) are 27 increasingly promoted<sup>5</sup>. Indeed, multiple pathways to derive edible ingredients from underexploited 28 locally available resources already exist, or are emerging<sup>6</sup>. Such resources, here encompassed under 29 the generic term "residual biomass", include organic waste (e.g. manure), residues (e.g. primary crop 30 and forestry residues) and agrifood co-products<sup>7</sup>. By presenting a relatively high local availability and 31 nutritional quality, agrifood co-products are well positioned to provide not only novel food and feed, 32 but also bio-based alternatives to molecules, materials and energy<sup>4,8</sup>.

Agrifood co-products embrace a large variety of streams generated along the primary (e.g. pea pods) 33 34 or secondary (e.g. bakery scraps) transformation of crops into food and beverage commodities. 35 Although their generated volumes and current valorization strategies are context- and region-36 dependent, most agrifood co-products already support food systems through their integration into 37 livestock diets<sup>9,10</sup>. In France, for instance, around 60% of the agrifood co-products generated are 38 already reused in livestock diets (Fig.1), including 85% of the food-grade streams (e.g. bran, offal)<sup>11</sup>. 39 Among the emerging valorization techniques, solid-state fermentation (SSF) proposes to nutritionally 40 upgrade these agrifood co-products<sup>12,13</sup>.

41 SSF is based on the colonization of a solid substrate by a biological agent which, in the case of feed 42 applications, enhances or even unlocks the nutritional value of fibrous streams, mainly through

- 43 lignocellulose degradation, detoxification, protein concentration and digestibility enhancement<sup>14–17</sup>.
- 44 Applied to streams already complying with food regulation (e.g. fruits peels and pomaces), SSF aims to
- improve organoleptic properties and consumer attractiveness of the resulting output ingredients<sup>18,19</sup>.
   By unlocking or improving the nutritional services provided by local agrifood co-products, SSF could
- 47 reduce the production of resource-intensive commodities and therefore diminish global land pressure.
- 48 Yet, it remains unknown whether the implementation of SSF pathways to supply ingredients for the
- 49 food and feed markets can yield environmental benefits compared to other valorization pathways. In
- 50 fact, there is an acknowledged lack of environmental assessments for novel food and feed<sup>20,21</sup>, which
- 51 is particularly true when it comes to low Technology Readiness Level SSF pathways. Even if upgrading
- 52 towards food and feed is in line with common valorization hierarchy guidelines<sup>4,22</sup>, resource recovery
- 53 might also generate environmental impacts offsetting expected savings $^{23,24}$ .
- 54 To assess the conditions under which SSF can sustainably be used as an alternative valorization option 55 for agrifood co-products, we performed a process-based life cycle assessments (LCA) of four
- valorization pathways on a panel of six representative agrifood co-products streams. France was set
- 57 as the geographical scope, being the country that creates the highest agricultural throughput in the
- 58  $EU^{25}$ , and is legally committed towards a circular economy<sup>26</sup>. Due to market similarities the insights
- 59 drawn from this study are seen valid at the EU level.

# 60 Results

Fig. 1 (Panel A) presents the agrifood co-products resource potential for France. Streams are currently mainly generated by the cereals, sugar and vegetable oil sectors (ca. 3-4 Mt<sub>DM</sub>.y<sup>-1</sup> each) and mostly supply feed markets. The potential of SSF to upgrade these streams was compared against conventional valorization pathway supplying feed and energy markets in a unified LCA framework (Fig. 1; Panel B).

# 66 Fig. 1 – Conventional and alternative management practices for agrifood co-products

67 Net LCA results (Fig. 2) suggest that upgrading as food (SSFfood pathway), when possible, is the most 68 environmentally performant agrifood co-products management option for all assessed impacts except 69 for freshwater eutrophication, while energy and nutrients recovery (AD pathway) is the worst option. 70 When targeting feed markets, the nutritional enhancement of agrifood co-products (SSFfeed pathway) 71 does not yield any environmental benefits compared to direct feeding (CF pathway), except for 72 freshwater eutrophication, but to a minor extent. Yet, the key processes and parameters shaping the 73 results and the ranking of valorization scenarios differ among the case studies and impact categories. 74 These are further described.

# 75 **Fig.2 – Environmental impacts of four agrifood co-products management practices**

# 76 SSF upgrading performance

77 The main prospect of the SSFfeed pathways to increase environmental savings in comparison 78 to direct feeding (CF) was to modify the composition of avoided feed ingredients (Fig. 3). However, 79 avoided feed mix after SSF either (i) did not perform environmentally better than the originally avoided 80 feed mix or (ii) performed environmentally better but corresponding benefits were offset by the 81 additional SSF processes (mainly drying and sterilization; Fig. 2). Indeed, fungal consumption of fibers 82 and sugars systematically led to a net decrease in dry matter (DM) by ca. 18% (ranging 8-28%) of the 83 fermented substrate (Fig. 3). Although it increased the volumes of avoided protein feed by ca. 90% 84 (ranging 0-311%) compared to direct feeding (CF), SSF reduced the nutritional energy value of the 85 fermented stream by ca. 24% (ranging 0-47%; Fig.3). It means that the fermentation of agrifood co-

- products, while allowing to avoid more soybean meal than CF pathways (in average +49kg.t<sub>ww</sub><sup>-1</sup>, for the
  six case studies), generated an additional demand of maize (i.e. less quantities are avoided; in average
- <sup>88</sup> -58kg.t<sub>ww</sub><sup>-1</sup>). For most impacts assessed, avoiding more soybean than maize production is desirable;
- 89 marginal soybean meal is in fact over two-fold more impactful than maize on a weight basis (mainly
- due to LUC and soybean processing operations, see SI). However, this does not apply for the water
   depletion category, marginal soybean meal (mainly rainfed) being more efficient than maize by weight
- 92 for this impact (**SI**).

# 93 Fig. 3 – Effects of SSF on ingredients avoided by agrifood co-products incorporation into feed

- 94 As reflected in avoided and induced effects of Fig. 2, the benefits of avoiding more soybean meal did 95 not compensate the additional impacts generated by the SSF processes. For climate change, SSFfeed 96 achieved additional savings compared to CF of ca. 100-200 kgCO<sub>2-eq</sub>.t<sub>ww</sub>-1 over the six case studies by avoiding more soybean meal, but generated an additional 150-550 kgCO<sub>2-eq</sub>.tww<sup>-1</sup> due to SSF energy 97 requirements and 50-150 kgCO<sub>2-eq</sub>.tww<sup>-1</sup> by inducing an additional maize demand compared to CF 98 99 valorization. For the land use impact category, the forecasted role of wood-based electricity 100 production in the marginal power mix canceled the land use benefits of avoiding additional soybean 101 production for SSFfeed pathway, despite its lower yield compared to maize. The presence of wood-102 based electricity also lowered the net land use performance of CF compared to AD for low digestibility 103 and high moisture streams (here apple pomace). In a nutshell, SSFfeed achieved, over all case studies, 104 net lower environmental performances than CF for all assessed impacts but one, namely freshwater 105 eutrophication. This is due to the interrelation between soybean meal and palm oil, and the 106 phosphates emitted by the wastewater treatment of palm and soy oil refineries. In fact, avoiding 107 soybean meal induces palm oil production to compensate for the soybean oil co-product no longer 108 generated (see SI). When avoiding maize, these oil-refineries effects are not involved.
- 109 The relevance of the SSFfood pathway mainly depends on the quantity and composition of substituted 110 food preparations. Following current marketing strategies<sup>27</sup> and to provide a magnitude of the achievable environmental benefits, fermented food ingredients (here flour co-products and apple 111 112 pomace) were assumed to displace marginal bakery flour (here wheat) on a weight basis. Except for freshwater eutrophication, SSFfood pathways achieved environmental savings up to ten times greater 113 114 than CF. This reflects that it is preferable to avoid marginal wheat over the mix of marginal maize, 115 soybean meal and palm oil. This particularly applies for water depletion and land use, respectively 116 reflecting the intense irrigation requirements and lower yields of marginal wheat, in comparison to 117 marginal feed supplies. Benefits were reduced, but remain, for impacts where marginal wheat 118 displayed similar performances compared to marginal feed supplies (e.g. climate change). As 119 previously described, the freshwater eutrophication impacts of oilseed crops are greater than those of 120 carbohydrate ingredients, hence why SSFfood did not yield any benefits compared to CF for this 121 category.
- The contribution analysis revealed that the processes which most influenced the LCA results were related to (i) the performance of fungal fermentation (i.e. protein increase, fibers reduction, digestibility enhancement, etc.), (ii) the impacts of avoided ingredients and (iii) energy requirements (**Fig. 2**). Yet, their importance on the overall environmental performances were tightly related to key parameters of the models, whose influence on the results (intensity, direction) differed from one stream to another and among impacts. The robustness of the LCA results to these sensitive parameters was assessed, and the system's uncertainty characterized (**Fig. 2 and S19**).
- 129 Sensitivity analysis

130 Overall, climate change was the impact that displayed the broadest uncertainty ranges while 131 freshwater eutrophication and land use impacts generally presented negligible ranges (Fig. 2). For 132 climate change, this is essentially shaped by the uncertainty related to LUC impacts, here addressed as 133 the share of expansion compared to intensification in response to an additional demand of arable land. 134 This share displays rather scattered values in the literature (calculated here to 55%, but potentially 135 ranging 25-85%; see SI). Moreover, the magnitude of LUC-related impacts of a specific food or feed 136 commodity is linked to the yield achieved within marginal supplying regions, which also presents 137 important variations depending on the time frame considered (here 2009-2019). Therefore, besides 138 being responsible for most of marginal ingredients' environmental impacts (particularly for climate 139 change and marine eutrophication, representing respectively 40-95% and 20-60% of total impacts; SI), 140 LUC-related parameters were also the ones contributing the most to the system's uncertainty. Initial 141 moisture content highly influenced the performances of wet streams (>60%<sub>moisture</sub>), for all pathways 142 and impact categories. In fact, this parameter determined the quantity of matter entering the 143 valorization chain, therefore fixing the magnitude of avoided services (e.g. in Fig. 3). The extent to 144 which SSFfeed effectively enhances the organic matter (OM) digestibility of fermented substrates 145 (here taken as +15%) was highly variable in the studies reviewed and among streams (ranging from -146 11% to +30%), hence shaping SSFfeed result's uncertainty (SI).

#### 147 Comparative performance of all assessed pathways

148 Overlaps between variation ranges between SSFfeed and CF pathways mostly occurred for 149 marine and freshwater eutrophication (Fig. 2). For the other impacts, results clearly show that SSFfeed 150 pathways do not achieve benefits compared to CF, regardless of increased digestibility nor future 151 energy-efficient processes. Overlaps were also found for streams with low digestibility (e.g. apple 152 pomace) where future performances of AD (lower range in Fig. 2) might outperform CF and SSFfeed 153 pathways for climate change. Yet for the other impact categories, unlocking feed markets to non-feed 154 quality streams through SSF (here olive press-cake) unambiguously yielded net benefits. AD was also 155 confirmed as the worst valorization option for feed-quality streams, regardless of future 156 improvements of this technology (SI). Indeed, CF pathways surpassed climate change benefits of AD 157 by ca. 200-300 kgCO<sub>2-eq</sub>.t<sub>ww</sub><sup>-1</sup> for wet feed-grade streams, and up to 600-1500 kgCO<sub>2-eq</sub>.t<sub>ww</sub><sup>-1</sup> for protein-158 rich and dry streams. The limited climate change benefits of AD pathways for protein-rich streams are 159 partly explained by the trade-offs between the gains in avoided mineral fertilizer due to the N-rich 160 digestate and the resulting increased in  $N_2O$  emissions (Fig. 2). While AD future developments will 161 likely reduce methane leaks and heat requirements, the present analysis suggests that avoiding feed 162 ingredients would still remain more relevant than avoiding fossil energy. Finally, despite the 163 uncertainty ranges, SSFfood remained the most environmentally performant pathway, under the 164 condition that fermented ingredients do substitute their own weight of marginal flour in human diets. 165 This substitution rate was considered with an uncertainty between 50-100% per weight, but the lower 166 boundary was not enough for SSFfood to perform better than CF pathways in terms of GHG emissions 167 for quality feed streams (e.g. flour mill co-products; Fig. 2).

### 168 Implications on agrifood co-products management strategies

The present analysis shows that SSF could improve environmental performances of agrifood co-products management by either (i) unlocking feed markets to non-feed quality streams or (ii) unlocking food markets to food-quality streams. The current widespread valorization of agrifood coproducts as feed ingredients in France and Europe<sup>28</sup> already generates net environmental benefits by avoiding the production or importation of conventional ingredients. For example, for France, we estimated that agrifood co-products suitable for SSF are currently replacing the equivalent production of ca. 2.8 Mt<sub>ww</sub>.y<sup>-1</sup> soybean meal (almost equal to current French imports) and 4 Mt<sub>ww</sub>.y<sup>-1</sup> maize 176 (approximatively a third of France production). This represents an avoided annual budget of ca. 14.4 MtCO<sub>2-eq</sub> while total French food system adds up to around 83 MtCO<sub>2-eq</sub><sup>29</sup>. While the nutritional 177 enhancement of these streams through SSF could yield an extra 0.5 Mt<sub>ww</sub>.y<sup>-1</sup> soybean meal avoided, 178 the additional maize demand (ca. +0.9 Mt<sub>ww</sub>.y<sup>-1</sup>) combined with SSF processes impacts would lead to a 179 180 net increase in GHG emissions of the food system ranging between 3-9 MtCO<sub>2-eq</sub>. On the other hand, 181 a diversion towards energy recovery of feed-quality streams would also generate net GHG emissions. 182 For example, French sugar beet pulp alone (ca. 7 Mt<sub>ww</sub>.y<sup>-1</sup>) would yield a biogas production ranging 183 between 5-6 TWh.y<sup>-1</sup> (corresponding to 1.2% of current French gas demand<sup>30</sup>), but diverting their use from CF would induce a market demand for an additional 0.15 Mt<sub>ww</sub>.y<sup>-1</sup> soybean meal and 1.30 Mt<sub>ww</sub>.y<sup>-1</sup> 184 <sup>1</sup> maize, leading to a net overall increase of annual GHG emissions of 0.2-2.4 MtCO<sub>2-eq</sub>. The upgrading 185 186 of French non-feed quality streams towards feed market would only avoid an additional 0.6 MtCO<sub>2-eq</sub> 187 (compared to current uses) due to their limited volumes, and our results show that they probably 188 generate greater benefits in terms of climate change if diverted towards advanced AD platforms. For 189 regions with important volumes of non-feed quality streams (e.g. olive presscake in southern Europe), 190 SSF is a promising valorization option to decrease nutrients- and water-related impacts, but state-of-191 the-art energy recovery likely remains the best strategy to adopt in a climate change mitigation 192 framework. Finally, the apple pomace and flour mill co-products cases showed that benefits of upgrading current use from feed to food through SSF could likely achieve 0-800 kgCO<sub>2-eq</sub>.t<sub>ww</sub><sup>-1</sup> net 193 savings. For flour mill co-products alone, SSFfood upgrading would lead to annual GHG savings up to 1 194 MtCO<sub>2-eq</sub> for France. As most agrifood co-product streams are already food-grade or could be food-195 196 grade (mainly within cereals, sugar and fruits/vegetables sectors), SSF as a strategy to enhance the 197 attractiveness and organoleptic properties of such streams hosts potential to reduce the 198 environmental impacts of food systems.

#### 199 Discussion

200 We propose a model to forecast future environmental performances of SSF nutritional 201 enhancement, but do not aim to provide an exhaustive picture of SSF potential, where the wide span 202 of enzymes and metabolic abilities of microorganisms can be synergistically combined in co- and/or 203 sequential cultures towards different objectives. For example, as avoiding vegetable oil generates 204 more environmental benefits than avoiding protein feed on a weight basis (see SI), SSF nutritional 205 enhancement strategies relying on lipids-producing strains (e.g. yeast Yarrowia Lipolytica) could also 206 boost SSF potential. Moreover, SSF techniques are adaptable to a wider span of residual biomasses, such as crop residues<sup>15,31</sup>. Combining important availability and low-value current uses<sup>32</sup>, crop residues 207 upgrading towards ruminant feed through SSF is also a key area of research<sup>14</sup>. Our transparent and 208 replicable evaluation method systematically estimates environmental performances and key 209 210 parameters of novel food and feed pathways, here illustrated with SSF of agrifood co-products. Yet, in the light of the multi-dimensional aspect of nutrition and sustainability<sup>33</sup>, a next version of this analysis 211 could account for all the constraints of feed formulations (e.g. specific amino acids, animal species, 212 stage of life, etc.) to model the exact displaced feed basket<sup>34–36</sup>, here simplified with the ruminant-213 214 focused Scandinavian feed unit (SFU) proxy. Similarly, a validation of the forecasted SSF performances 215 with experimental evidences (particularly the *in-vivo* digestibility) could be performed. Downstream 216 effects such as eventual changes in quantity and quality of manure or human excreta were not included 217 in this work. These are not likely to change conclusions regarding SSFfeed pathways, but might 218 decrease some benefits of SSFfood<sup>37</sup>. Likewise, substituting another protein feed than soybean meal 219 would not modify the main trends observed (SI).

As illustrated here for SSF valorization of agrifood co-products, respecting the principles of valorization hierarchy<sup>22,38</sup> and circular bioeconomy<sup>4</sup> is a prerequisite to guide towards overall sustainability, but is 222 not enough to support decision for resource allocation. Cradle-to-grave LCA remains required to reveal 223 trade-offs, providing a comparison framework to arbitrate among different value chains. Yet available 224 LCA of novel food and feed still lack harmonization, beginning with their scattered use of system expansion, LUC impacts accounting<sup>39</sup>, and context-deployment choices (e.g. selected energy mix). A 225 226 standardized LCA framework tailored to novel food and feed pathways (e.g. building upon the PEFCR 227 guidance in the EU<sup>40</sup>) could further lead to its integration in the broader decision toolbox of funding 228 partners and regulatory agencies. It would represent a step towards concrete implementation of the 229 "one health" approach<sup>41</sup>, where subsidies and authorizations are granted to projects not only 230 complying with food safety standards (as for current Novel Food regulation in the EU<sup>42</sup>), but also with 231 demonstrated ecosystems benefits. Indeed, unraveling the interplays of novel food and feed pathways 232 with the other demand- and supply-side solutions is key to design coherent roadmaps towards 233 sustainable and bioeconomy-integrated food systems. It likely requires the comprehensive integration of process-based LCA, biophysical system modeling<sup>2</sup> and socio-cultural empirical evidence<sup>43</sup>. While a 234 tailored assessment framework is built, policies should be framed to ensure that novel food initiatives 235 236 (e.g. here SSFfood) support consumers in their transition towards healthy and sustainable diets<sup>20</sup>, 237 provide enabling conditions for joint collaborations between project promoters and civil society, and 238 stimulate understanding of food and bioeconomy challenges. Moreover, in front of the lack of 239 unconstrained alternatives to plant-based proteins to sustainably supply a growing livestock demand 240 (SI), long-term policies should guide efforts towards downscaling and retailoring livestock systems to 241 make the most of locally-available constrained resources (e.g. non-food-grade co-products)<sup>44</sup>. 242 Downscaling meat consumption will synergistically reduce land usage conflicts, liberating space to fuel 243 the transition towards low-fossil carbon sourcing of other sectors (e.g. energy, materials).

244 This study proposed the basis for standardized modelling of novel food and feed pathways, 245 applied to the nutritional enhancement of agrifood co-products through SSF. We showed that SSF is a 246 promising agrifood co-product valorization option when allowing increased marketability and 247 consumer's desirability of food-grade streams. Yet, when not food-grade and as far as climate change 248 mitigation remains a top priority, direct inclusion of agrifood co-products within livestock diets (CF) 249 remains the most suitable option or, for low-feed-quality streams, their energy valorization (AD). Next 250 step should expand this analysis to a wider span of low- and mid-TRL competing waste-to-nutrition 251 solutions (e.g. insect farming, single cell proteins, etc.) to highlight how and under which conditions 252 such emerging value chains can help the food system meeting its sustainability goals.

### 253 Methods

#### 254 Modeling of SSF performance

255 SSF as a valorization option for agrifood co-products is of low-TRL, with scattered available 256 experimental data (see SI). To explore the potential of nutritional SSF pathways, a simplified fungal 257 growth model was established with the ideal assumption that (i) increase in protein content, (ii) lignin 258 and fibers degradation and (iii) increase in digestibility can be achieved simultaneously while usually trade-offs between these effects are reported<sup>15</sup>. This choice was made to reflect an optimistic range 259 260 of SSF techniques future improvements (best case), and is seen valid as the predicted results followed 261 the trend of experimental values (SI). Key performances indicators of fungal growth (energy 262 coefficient, degradation indexes, change in organic matter digestibility, etc.) were derived from a 263 literature benchmark of the strain Pleurotus Ostreatus. Only the degradation of cellulose, 264 hemicellulose and free sugars were considered to be effectively used for the fungal growth<sup>45</sup>. 265 Substrate-dependent fungal development was modeled through the use of stoichiometric 266 heterotrophic cell growth equations combined with mass balance, in a parametrical modular fashion 267 allowing to flexibly vary the key parameters (SI). The N required for fungal growth was assumed to be

supplied through the addition of ammonium sulphate, a food-grade mineral N salt<sup>46</sup>. To 268 269 homogeneously model fungal protein enrichment among all the co-products, the fungus was 270 considered to metabolize the mineral N supplied only, without using the proteins originally present in 271 the substrate. While this assumption appears valid for low-protein co-products (SI), it represents an 272 ideal behavior regarding protein-rich co-products, see SI. The estimation of all the energy and material 273 flows required for SSF process covers the whole value chain, including the standardization of moisture 274 and nitrogen content, the fungal seed preparation, the anoxic fermentation after sterilization, and 275 finally the drying and feed pelletizing stages.

#### 276 Selection of the case studies

277 Quantities, composition and current uses of French agrifood co-products were gathered by 278 cross-checking and harmonizing data of several French as well as international specialized institutions 279 and biomass composition data catalogues (details in SI). Over the 93 different agrifood co-products identified nation-wide, only streams (i) complying with EU feed legislation, (ii) considered as 280 281 unavoidable<sup>22</sup> and (iii) hosting a lignocellulosic matrix (required for *Pleurotus spp.*) were initially 282 considered. The biological efficiency (BE; proxy of feedstock' suitability for fungal growth, expressed 283 in kgDM<sub>fungi</sub>.kgDM<sub>feedstock</sub><sup>-1</sup>) was calculated for each agrifood co-product, and only streams yielding a BE 284 higher than 2% qualified. Case studies were further defined to encompass the three upgrading 285 possibilities of SSF: (i) give low feed-quality streams access to feed markets, (ii) enhance the nutritional 286 value of streams currently used as feed ingredients and (iii) unlock food markets to current feed-grade 287 streams. For case (i) and (ii), the selection criterion was based on the potential of SSF to substitute 288 soybean meal. Indeed, soybean meal is the feed ingredients whose substitution is the most prioritized in Europe (and France), as being associated with deforestation<sup>2,47,48</sup>. Avoided soybean meal was 289 290 estimated based on the Scandinavian Feed Unit (SFU) proxy<sup>49</sup>. Similarly used in e.g. Tonini et al (2016)<sup>50</sup> 291 and Vural Gursel et al (2021)<sup>51</sup>, the inclusion of agrifood co-products (as generated or after SSF) in 292 animal diets was assumed to displace a mix of three ingredients: (i) soybean meal, (ii) palm oil, (iii) 293 maize. These ingredients are respectively the fastest growing (i.e. marginal) source of (i) feed proteins, 294 (ii) feed lipids and (iii) feed carbohydrates, based on last 10 years trend of available global production 295 data<sup>52</sup> (details in SI). The soybean meal substitution potential was calculated for each agrifood co-296 product and compared with the annual French imports (reference value of 3 Mtww.y<sup>-1</sup>). Streams 297 qualified for being considered for full LCA if yielding a net potential (SSF minus current use) for avoiding 298 the equivalent of at least 1% of current soybean meal yearly imports. Resulting streams included flour 299 mill co-products, distiller' spent grains (here chosen as corn), sugar beet pulp and canola press-cake. 300 Also qualified, sunflower press-cake was not selected as a case study in its own right because of its 301 similarities to canola press-cake. No streams with current "low value" use (energy and agronomic 302 recovery) were found in significant volumes in France (Fig. 1). Indeed, these represent only around 19% of generated agrifood co-products (wet basis), and no individual streams yield over 0.2 Mt<sub>ww</sub>.y<sup>-1</sup>; 303 304 see SI. Yet, to illustrate this possibility, olive press-cake, widely available in e.g. Spain and mostly 305 undergoing bioenergy or biofertilizer valorization<sup>53</sup>, was added as a case. No specific criterion was 306 defined for the SSF valorization towards food markets. Flour mill co-products (mostly wheat bran) was 307 the only selected stream being currently food-grade, therefore its upgrading as food through SSF was 308 considered. Indeed, SSF of wheat bran is reported to enhance its organoleptic and functional properties, leading to an improvement of its attractiveness as a food ingredient<sup>54,55</sup>. Additionally, 309 310 considering the recent advances on fruit and vegetable co-products SSF valorization towards food markets<sup>27,46,56</sup>, apple pomace was chosen as the last case study (apple being the main fruit produced 311 312 in France).

#### 313 Life cycle assessment implementation

LCA standards (ISO 14040/44:2006)<sup>57</sup> were followed, applying a consequential modeling 314 approach<sup>58</sup>, recommended to assess feed services impacts<sup>59</sup>. Indeed, the main goal of the study was 315 to capture the long-term induced effects of implementing novel valorization strategies, which is the 316 purpose of consequential LCA methodology<sup>60</sup>. Background LCI data was derived from the ecoinvent 317 318 v3.7.1. consequential database<sup>61</sup>, and only unconstrained resources supplies were considered. The 319 geographical scope was set to France (in line with the case studies definition), which mostly 320 determined the electricity mix, and supplied the legal context with regards to the use of co-products 321 as food and feed. However, most required inputs are internationally traded (e.g. crops, chemicals, 322 fertilizers)<sup>62</sup>. Therefore, these were modeled using ecoinvent's "Global", "Rest of the world" or "Europe" in terms of transportation to France, as well as electricity and production processes used in 323 324 these locations. The temporal scope was set to reflect current and medium-term conditions for 325 technical performances. Environmental impacts were calculated using the ILCD 2.0 2018 midpoint 326 assessment method, with the open-access LCA software Brightway 2.0 (through the Activity Browser 327 interface)<sup>63</sup>. The common functional unit to compare all cases was set to: "the management of one 328 tonne of a given agrifood co-product stream per year, delivered at the production site".

The deterministic LUC approach established by Tonini et al (2016)<sup>50</sup> was adapted and updated with 329 latest data on emission factors and deforestation trends. The additional land required per kilogram of 330 331 crops was estimated based on the weighted average yield of corresponding marginal suppliers from a 332 variety of countries (last 10 years trends from the FAO). Therefore, in this model, differences in LUC 333 impacts between crops are essentially driven by their different marginal yields. To avoid double 334 counting, original LUC impacts were systematically removed (when existing) from the ecoinvent 335 background database, and replaced with deterministic LUC impacts as calculated herein<sup>64</sup>. More 336 detailed explanations on LUC accounting are provided in the SI.

The LCI of AD pathways (i.e. feedstock-dependent estimation of biogas and digestate production with related emissions) were mainly based on similar works from Hamelin et al (2014)<sup>65</sup>, Bareha et al (2021)<sup>66</sup> and INRAE Transfert<sup>67</sup>. For digestate's return to soils, nitrogen's mineral fertilizer equivalent (MFE) and related emissions were estimated following the method of Brockmann et al (2018)<sup>68</sup>. MFE for phosphorus was derived from literature<sup>69,70</sup>, and similar values were assumed for potassium's MFE as a proxy, due to the lack of available data. Land- and storage-related emissions induced by the management of digestate were calculated following IPPC guidelines (2019)<sup>71,72</sup>.

### 344 Global sensitivity analysis (GSA)

345 The sensitivity analysis consists in steps zero, one and two of the Global Sensitivity Analysis 346 (GSA) method described in Bisinella et al (2016)<sup>73</sup>; these are (0) contribution analysis, (1) one-at-a-time 347 parameter analysis and (2) uncertainty propagation. The choice of this method is further detailed in 348 the SI. As a result of step (0), sixteen process-based parameters were selected and assessed in step (1). 349 Only parameters yielding an average absolute result change of 3% for an initial 10% variation (SSF 350 pathway) were selected for step (2). After setting a probability distribution for each selected parameter 351 (SI), sensitivity coefficients, sensitivity indexes and analytical uncertainties were calculated for each 352 set of (parameter; pathway; case study) combinations to derive coefficients of variations of the results 353 (i.e. range of uncertainty). A process-based global sensitivity analysis for the AD pathway was out of 354 the scope of this work as the focus was rather given to nutritional services. However, for the robustness 355 of the comparison, ranges for AD pathways were quantified based on the higher and lower values of 356 four simulations (two different biogas valorization scenarios, each developed within two contexts). The 357 reference scenario (in Fig. 2) consists in valorizing the biogas through in-situ combined heat and power 358 generation (CHP) while the alternative scenario considers biogas upgrading and grid injection for 359 transport services. These two scenarios were simulated using (i) currently reported performance

- 360 parameters and (ii) optimistic (forecasted) performance parameters likely to represent future AD's
- efficiency. Finally, the sensitivity of the results to feedstock's initial biochemical composition was also
   estimated, but not displayed in the main manuscript as not yielding any additional relevant
   information.
- The full methodological details as well as background data and references are available in **the** supporting information (SI).

### 366 Data availability statement

The datasets generated during and/or analyzed during the current study are available in the dataverse
 repository, https://doi.org/10.48531/JBRU.CALMIP/C2X5I2

### 369 Acknowledgements

- 370 This work received funding from the French National Research Agency and the Occitania region under
- 371 the grants ANR-17-MGPA-0006 and 18015981 (UJ, LH). Additional funding was provided by the
- 372 Metaprogram GLOFOODS INRAE-CIRAD and by the French National Research Agency under the grant
- 373 ANR-18-EURE-0021 (UJ). Financial assistance was provided by the France-Ecuador FSPI program
- 374 (EARD). The authors thank Pr. Steven Abbott for proofreading the manuscript. All the icons used in the
- figures of the main manuscript and the SI are from <u>www.flaticon.com</u> and were made by Freepik, Good
- Ware, itim2101, wanicon, Icongek26, surang, Eucalyp, max.icons and Fliqqer.

### 377 Author contributions statement

- 378 U. Javourez: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
- 379 Visualization, Writing Original Draft.
- 380 E.A. Rosero Delgado: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
- 381 Writing Review & Editing.
- 382 L. Hamelin: Conceptualization, Methodology, Funding acquisition, Resources, Supervision, Validation,
- 383 Writing Review & Editing.

# 384 Competing interests statement

- 385 The authors declare no conflict of interest.
- 386 <u>Tables</u>

# 387 Figure legends / captions

# 388 Fig.1 legend

389 Panel A: Agrifood co-products resource potential for France were compiled by regionally relevant 390 agrifood sectors (individual streams detailed in SI). High value current uses include reuse as food, 391 petfood, within cosmetics or pharmaceutical sectors, while low value current uses mostly include 392 energy and agronomic recovery. Streams from the meat sector are not reused as animal feed in France 393 due to current low acceptance and the Animal By-products EU legislation10. Panel B: Four valorization 394 pathways for agrifood co-products streams: SSF pathways supplying human food (1) and animal feed 395 (2), direct inclusion in livestock compound feed (CF; 3) and anaerobic digestion (AD; 4). CF is 396 representative of current agrifood co-products valorization pathways, while AD was selected to 397 represent near-future low-value uses (energy) due to its forecasted role to supply renewable gas in 398 France and Europe26,27. Pathways 1-3 introduce ingredients to food and feed markets, therefore 399 avoiding the production of conventional commodities and related land use changes (LUC). Similarly, 400 AD's digestate and biogas avoid respectively fertilizer and energy services. All models were built on a 401 literature benchmark, and were flexibly designed to be process parameter- and feedstock composition-402 dependent. The functional unit for all case studies was defined as "the management of one wet tonne 403 of a given agrifood co-product stream per year, delivered at the production site". Detailed unit 404 operations and process flow diagrams are available in the SI. Dotted lines illustrate avoided products 405 or services, while full lines illustrate induced ones.

### 406 Fig.2 legend

407 LCA results for the four valorization pathways were calculated considering as an input one tonne (wet 408 basis) of a given agrifood co-product stream. The 16 International Life Cycle Data system (ILCD) 2.0 409 2018 midpoint indicators were assessed (available in the SI), but only the five tightly related with food 410 systems28,29 and most contributing to the single normalized and weighted score are detailed here (see 411 methods). The process contribution breakdown highlights the effects of unit operations on the overall 412 performance of the valorization chain pathway. Impacts above zero are induced, while those below 413 zero are avoided (savings); the red diamonds represent the net impacts. For each stream and impact 414 category, the best performing valorization pathway is the one displaying the lower net environmental 415 impact (i.e. lower red diamond). However, when net results display overlapping variation ranges 416 (calculation detailed in the methods section and SI), no conclusions can be drawn. The reference 417 scenario for AD (i.e. red diamonds and process contribution) was modeled considering current reported 418 performances of biogas valorization through in-situ combined heat and power (CHP) production 419 (details in SI). The six streams were selected based on their importance in terms of resource potential 420 for France and to have a representative panel of initial composition, digestibility, moisture and current 421 use (top; see methods). Being already food-grade, only apple pomace and flour mill co-products (mainly 422 bran) were considered for the SSFfood pathway. As olive press-cake does not currently supply animal 423 feed markets, the CF pathway was not simulated for this stream.

### 424 Fig.3 legend

425 For each stream, the biochemical composition "as generated" was derived from the literature. The 426 effects of SSF on substrate's composition "after SSF" were simulated based on a simplified model 427 combining fungal growth and mass balance. The food-grade white-rot fungi Pleurotus ostreatus was 428 selected as the biological agent, for its established abilities to degrade lignocellulose30–32 and its 429 nutritional safety33,34. The N used for fungal growth was considered to be supplied with ammonium 430 sulphate. Detailed in the SI, the model predicts rather optimistic performances when compared to 431 current experimental data (SI; Table S1), but can be seen as representative of future improvements. 432 Then, the compositions of both fermented and unfermented streams were translated in terms of 433 nutritional value (for livestock) based on the Scandinavian Feed Unit proxy (SFU; see SI). The relative 434 importance of proteins, carbohydrates and palm oil (modulated by the digestibility and fibers content) 435 in the calculated SFU allowed to derive equivalents in terms of avoided soybean meal, maize and palm 436 oil for each stream (with and without SSF). These are respectively the marginal supply of feed proteins, 437 energy and lipids (SI). As SSF not only modifies the relative distribution of macronutrients, but also the 438 digestibility and fibers content of biomass streams, not only is their SFU net value after SSF modified 439 compared to their SFU before SSF, but also the relative contribution of proteins, lipids and 440 carbohydrates to determine the SFU value is modified. The functional unit (FU) being defined per wet 441 weight of generated agrifood co-product stream, the initial moisture content strongly shapes the 442 magnitude of avoided feed services.

### 443 **References**

1. Steffen, W. *et al.* Planetary boundaries: Guiding human development on a changing planet.

445 *Science* **347**, (2015).

- 446 2. Karlsson, J. O., Parodi, A., van Zanten, H. H. E., Hansson, P.-A. & Röös, E. Halting European Union
- soybean feed imports favours ruminants over pigs and poultry. *Nat. Food* **2**, 38–46 (2021).
- 448 3. Wilfart, A. *et al.* Réduire les impacts environnementaux des aliments pour les animaux d'élevage.
- 449 INRA Prod. Anim. **31**, 289–306 (2019).
- 4. Muscat, A. *et al.* Principles, drivers and opportunities of a circular bioeconomy. *Nat. Food* 2, 561–
  566 (2021).
- 452 5. Parodi, A. *et al.* The potential of future foods for sustainable and healthy diets. *Nat. Sustain.* 1,
  453 782–789 (2018).
- 454 6. Javourez, U., O'Donohue, M. & Hamelin, L. Waste-to-nutrition: a review of current and emerging
  455 conversion pathways. *Biotechnol. Adv.* 53, 107857 (2021).
- 456 7. Hamelin, L., Borzęcka, M., Kozak, M. & Pudełko, R. A spatial approach to bioeconomy:
- 457 Quantifying the residual biomass potential in the EU-27. *Renewable and Sustainable Energy*
- 458 *Reviews* **100**, 127–142 (2019).
- 459 8. Fritsche, U. et al. Future transitions for the bioeconomy towards sustainable development and a
- 460 *climate-neutral economy: foresight scenarios for the EU bioeconomy in 2050.* (Publications Office
- 461 of the European Union, 2021).
- 462 9. FEFAC. Resource efficiency champions: Co-product, an essential part of animal nutrition. (2019).
- 463 10. Kasapidou, E., Sossidou, E. & Mitlianga, P. Fruit and Vegetable Co-Products as Functional Feed
- 464 Ingredients in Farm Animal Nutrition for Improved Product Quality. *Agriculture* 5, 1020–1034
  465 (2015).
- 466 11. Garcia-Bernet, D. & Ferraro, V. Coproduits et déchets alimentaires: un vivier pour l'élaboration
  467 de produits bio-sourcés. *Revue IAA* 24–27 (2021).
- 468 12. Strong, P. J. *et al.* Filamentous fungi for future functional food and feed. *Curr. Opin. Biotechnol.*469 76, 102729 (2022).

470 13. Ritota, M. & Manzi, P. Pleurotus spp. Cultivation on Different Agri-Food By-Products: Example of

471 Biotechnological Application. *Sustainability* **11**, 5049 (2019).

472 14. van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H. & Cone, J. W. Fungal

- treated lignocellulosic biomass as ruminant feed ingredient: A review. *Biotechnol. Adv.* 33, 191–
  202 (2015).
- 475 15. Villas-Boas, S., Esposito, E. & Mitchell, D. Microbial conversion of lignocellulosic residues for
  476 production of animal feeds. *Animal Feed Science and Technology* vol. 98 1–12 (2002).

477 16. Ibarruri, J., Goiri, I., Cebrián, M. & García-Rodríguez, A. Solid State Fermentation as a Tool to

478 Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional

- 479 Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility. *Animals* **11**, 1653
- 480 (2021).
- 481 17. Espinosa-Páez, E. *et al.* Increasing Antioxidant Activity and Protein Digestibility in Phaseolus
   482 vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. *Molecules* 22,

483 2275 (2017).

- 484 18. Granucci, N. Fruit residues: low cost substrates for development of new food products. (The
  485 University of Auckland, 2018).
- 19. Stoffel, F. *et al.* Production of edible mycoprotein using agroindustrial wastes: Influence on
  nutritional, chemical and biological properties. *Innov. Food Sci. Emerg. Technol.* 58, 102227
  (2019).
- 489 20. Mazac, R. *et al.* Incorporation of novel foods in European diets can reduce global warming
  490 potential, water use and land use by over 80%. *Nat. Food* **3**, 286–293 (2022).

491 21. Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of

492 novel aquaculture feeds could substantially reduce forage fish demand by 2030. *Nat. Food* 1,
493 301–308 (2020).

- 494 22. Teigiserova, D. A., Hamelin, L. & Thomsen, M. Towards transparent valorization of food surplus,
- 495 waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. *Sci.*496 *Total Environ.* **706**, 136033 (2020).
- 497 23. Caldeira, C. et al. Sustainability of food waste biorefinery: A review on valorisation pathways,
- 498 techno-economic constraints, and environmental assessment. *Bioresour. Technol.* **312**, 123575
- 499 (2020).
- 500 24. Escobar, N. & Laibach, N. Sustainability check for bio-based technologies: A review of process-
- based and life cycle approaches. *Renew. Sust. Energ. Rev.* **135**, 110213 (2021).
- 502 25. Agreste. Infographics Farming France. *Ministère de l'Agriculture et de l'Alimentation*
- 503 https://agriculture.gouv.fr/infographics-farming-france (2021).
- 504 26. United Nations Environment Programme. The French Approach to Circular Economy and
- 505 Coherent Product Policies. UNEP circularity platform https://buildingcircularity.org/the-french-
- 506 approach-to-circular-economy-and-coherent-product-policies/ (2022).
- 507 27. Villas-Boas, S. G. & Granucci, N. Process and composition for an improved flour product. (2018).
- 508 28. Dronne, Y. Les matières premières agricoles pour l'alimentation humaine et animale : l'UE et la
- 509 France. *INRA Prod. Anim.* **31**, 181–200 (2018).
- 510 29. Haut Conseil pour le climat. *Rapport grand public 2021*. 16 (2021).
- 30. ADEME. Un mix de gaz 100% renouvelable en 2050 ? Etude de faisabilité technico-économique.
  283 (2018).
- 513 31. Dou, Z. *et al.* Proof of concept for developing novel feeds for cattle from wasted food and crop
  514 biomass to enhance agri-food system efficiency. *Sci Rep* **12**, 13630 (2022).
- 515 32. Karan, S. K. & Hamelin, L. Crop residues may be a key feedstock to bioeconomy but how reliable
- are current estimation methods? *Resourc. Conserv. Recy.* **164**, 105211 (2021).
- 517 33. Sevigné-Itoiz, E., Mwabonje, O., Panoutsou, C. & Woods, J. Life cycle assessment (LCA): informing
- 518 the development of a sustainable circular bioeconomy? *Philos. Trans. Royal Soc. A* **379**,
- 519 20200352 (2021).

- 520 34. Saxe, H., Hamelin, L., Hinrichsen, T. & Wenzel, H. Production of Pig Feed under Future
- 521 Atmospheric CO2 Concentrations: Changes in Crop Content and Chemical Composition, Land
- 522 Use, Environmental Impact, and Socio-Economic Consequences. *Sustainability* **10**, 3184 (2018).
- 523 35. de Quelen, F., Brossard, L., Wilfart, A., Dourmad, J.-Y. & Garcia-Launay, F. Eco-Friendly Feed
- 524 Formulation and On-Farm Feed Production as Ways to Reduce the Environmental Impacts of Pig
- 525 Production Without Consequences on Animal Performance. *Front. Vet. Sci.* **8**, 703 (2021).
- 526 36. Garcia-Launay, F. *et al.* Multiobjective formulation is an effective method to reduce
- 527 environmental impacts of livestock feeds. *Br. J. Nutr* **120**, 1298–1309 (2018).
- 528 37. Muñoz, I. Country-specific life cycle inventories for human excretion of food products. Int. J. Life
- 529 *Cycle Assess.* **26**, 1794–1804 (2021).
- 38. Albizzati, P. F., Tonini, D. & Astrup, T. F. A Quantitative Sustainability Assessment of Food Waste
  Management in the European Union. *Environ. Sci. Technol.* (2021).
- 532 39. Møller, H., Samsonstuen, S., Øverland, M., Modahl, I. S. & Olsen, H. F. Local non-food yeast
- 533 protein in pig production environmental impacts and land use efficiency. *Livestock Science*
- 534 104925 (2022) doi:10.1016/j.livsci.2022.104925.
- 40. European Commission. Guidance for the development of Product Environmental Footprint
- 536 Category Rules (PEFCRs), version 6.3. (2017).
- 41. King, L. J. Combating the Triple Threat: The Need for a One Health Approach. in *One Health* 1–15
  (John Wiley & Sons, Ltd, 2014). doi:10.1128/9781555818432.ch1.
- 42. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Guidance on the preparation and
- 540 presentation of an application for authorisation of a novel food in the context of Regulation (EU)
- 541 2015/2283. *EFSA Journal* **14**, (2016).
- 542 43. Grundy, E. A. C. *et al.* Interventions that influence animal-product consumption: A meta-review.
  543 *Future Foods* 5, 100111 (2022).
- 544 44. van Selm, B. *et al.* Circularity in animal production requires a change in the EAT-Lancet diet in
- 545 Europe. *Nat Food* 1–8 (2022) doi:10.1038/s43016-021-00425-3.

- 546 45. Zhou, S., Ma, F., Zhang, X. & Zhang, J. Carbohydrate changes during growth and fruiting in
  547 Pleurotus ostreatus. *Fungal Biol.* **120**, 852–861 (2016).
- 548 46. Villas-Boas, S. G., Esposito, E. & de Mendonça, M. M. Bioconversion of apple pomace into a
- 549 nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. *World J. Microbiol.*
- 550 *Biotechnol.* **19**, 461–467 (2003).
- 47. Tallentire, C. W., Mackenzie, S. G. & Kyriazakis, I. Can novel ingredients replace soybeans and
- reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod.
- **187**, 338–347 (2018).
- 48. Recoules, E. et al. L'autonomie protéique : état des lieux et voies d'amélioration pour
- 555 l'alimentation des volailles. *INRA Prod. Anim.* **29**, 129–140 (2016).
- 49. Møller, J. et al. Fodermiddeltabel Sammensætning og foderværdi af fodermidler til kvæg -
- 557 Forskning Aarhus Universitet. (Dansk, 2005).
- 558 50. Tonini, D., Hamelin, L. & Astrup, T. F. Environmental implications of the use of agro-industrial
- residues for biorefineries: application of a deterministic model for indirect land-use changes.
- 560 GCB Bioenergy **8**, 690–706 (2016).
- 561 51. Vural Gursel, I. et al. Comparative cradle-to-grave life cycle assessment of bio-based and
- 562 petrochemical PET bottles. *Sci. Total Environ.* **793**, 148642 (2021).
- 563 52. FAO. FAOSTAT. http://www.fao.org/faostat/en/ (2019).
- 564 53. Donner, M. *et al.* Valorising olive waste and by-products in the Mediterranean region: a socio565 economic perspective. in *8th International conference on sustainable solid waste management*
- 566 (2021).
- 567 54. Tu, J. et al. Solid state fermentation by Fomitopsis pinicola improves physicochemical and
- functional properties of wheat bran and the bran-containing products. *Food Chem.* **328**, 127046
  (2020).
- 570 55. Lena, G. D., Patroni, E. & Quaglia, G. B. Improving the nutritional value of wheat bran by a white-
- 571 rot fungus. *Int. J. Food Sci.* **32**, 513–519 (1997).

- 572 56. Zhang, F., Wang, T., Wang, X. & Lü, X. Apple pomace as a potential valuable resource for full-
- 573 components utilization: A review. J. Clean. Prod. **329**, 129676 (2021).
- 574 57. International Organization for Standardization. Environmental management: life cycle
- assessment; Principles and Framework. *ISO* (2006).
- 576 58. Schaubroeck, T. et al. Attributional & Consequential Life Cycle Assessment: Definitions,
- 577 Conceptual Characteristics and Modelling Restrictions. *Sustainability* **13**, 7386 (2021).
- 578 59. van Zanten, H. H. E., Bikker, P., Meerburg, B. G. & de Boer, I. J. M. Attributional versus
- 579 consequential life cycle assessment and feed optimization: alternative protein sources in pig
- 580 diets. Int. J. Life Cycle Assess. 23, 1–11 (2018).
- 581 60. Brandão, M., Martin, M., Cowie, A., Hamelin, L. & Zamagni, A. Consequential Life Cycle
- 582 Assessment: What, How, and Why? in *Encyclopedia of Sustainable Technologies* 277–284
- 583 (Elsevier, 2017). doi:10.1016/B978-0-12-409548-9.10068-5.
- 584 61. Moreno Ruiz, E. *et al. Documentation of changes implemented in the ecoinvent database v3.7 &*585 *v3.7.1.* (ecoinvent Association, 2020).
- 586 62. Bailey, R. & Wellesley, L. *Chokepoints and Vulnerabilities in Global Food Trade*. (Chatham House,
  587 2017).
- 588 63. Steubing, B., de Koning, D., Haas, A. & Mutel, C. L. The Activity Browser An open source LCA
  589 software building on top of the brightway framework. *Soft. Impacts* **3**, 100012 (2020).
- 590 64. Tonini, D., Albizzati, P. F. & Astrup, T. F. Environmental impacts of food waste: Learnings and

591 challenges from a case study on UK. *Waste Manag.* **76**, 744–766 (2018).

- 592 65. Hamelin, L., Naroznova, I. & Wenzel, H. Environmental consequences of different carbon
- alternatives for increased manure-based biogas. *Appl. Energy* **114**, 774–782 (2014).
- 594 66. Bareha, Y., Affes, R., Moinard, V., Buffet, J. & Girault, R. A simple mass balance tool to predict
- 595 carbon and nitrogen fluxes in anaerobic digestion systems. *Waste Manag.* **135**, 47–59 (2021).
- 596 67. Esnouf, A., Brockmann, D. & Cresson, R. Analyse du cycle de vie du biométhane issu de ressources
- 597 *agricoles Rapport d'ACV*. (INRAE Transfert, 2021).

| 598 | 68. | Brockmann, | D., Pradel, | M. & Hélias, | A. Agricultura | l use of organ | ic residues in life o | cycle |
|-----|-----|------------|-------------|--------------|----------------|----------------|-----------------------|-------|
|-----|-----|------------|-------------|--------------|----------------|----------------|-----------------------|-------|

assessment: Current practices and proposal for the computation of field emissions and of the

600 nitrogen mineral fertilizer equivalent. *Resourc. Conserv. Recy.* **133**, 50–62 (2018).

- 601 69. Delin, S. Fertilizer value of phosphorus in different residues. *Soil Use Manag.* **32**, 17–26 (2016).
- 602 70. Tuszynska, A., Czerwionka, K. & Obarska-Pempkowiak, H. Phosphorus concentration and
- availability in raw organic waste and post fermentation products. J. Environ. Manage. 278,

604 111468 (2021).

- 605 71. Hergoualc'h, K. *et al.* Chapter 11 N2O emissions from managed soils, and CO2 emissions from
- 606 lime and urea application. in *Agriculture, Forestry and Other Land Use* vol. 4 48 (IPCC, 2019).
- 607 72. Gavrilova, O. et al. Chapter 10 Emissions from livestock and manure management. in
- 608 Agriculture, Forestry and Other Land Use vol. 4 209 (IPCC, 2019).
- 609 73. Bisinella, V., Conradsen, K., Christensen, T. H. & Astrup, T. F. A global approach for sparse
- 610 representation of uncertainty in Life Cycle Assessments of waste management systems. Int J Life
- 611 *Cycle Assess* **21**, 378–394 (2016).

612

### A. Resource potential estimation



# B. Life cycle assessment (LCA) and Global sensitivity analysis (GSA)







"Other" mainly composed by pectin and non-starch polysaccharides