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Abstract

The exponential function, including its real- and complex-valued forms, constitutes one of the most important

concepts in mathematics. In this work, the exponential function is approached in a progressive manner. After some

brief historical remarks, we start our presentation of the exponential function with its conceptual understanding and

definition, following with a succession of several related topics including its properties, related functions, statistical

aspects, the complex exponential, geometrical structures, the Fourier series and transform, the concept of instantaneous

frequency, the generalization of the Fourier transform into the Laplace transform, the matrix exponential, the logarithm

of a matrix, linear dynamic systems, discrete-time linear dynamic systems, and Markov chains. A graph obtained by

representing the main relationships addressed in the present work then suggests that the exponential function constitutes

its respective hub.

“... the exponential function is to the product as the identity

function is to the sum.”

Excerpt from the present work.

1 Introduction

The field of mathematics, one of the earliest along the his-

tory of science, is characterized by the objective quantifi-

cation and representation of diverse concepts, structures,

and dynamics in terms mainly of values (numbers), re-

lationships between these values (e.g. order or identity),

transformations between these values as typically imple-

mented by functions, as well as the organization of these

values into structures such as constants, variables, vec-

tors, matrices, graphs, etc.

Complemented by logical and computational resources,

the above concepts and constructs have provided most of

the basis for scientific modeling, which is primarily aimed

at better understanding and predicting the dynamics of

diverse real-world world phenomena. In a sense, mathe-

matics can be understood as providing a framework that

is employed to represent and simulate entities and dy-

namics from the real world, as well as a wide range of

interesting theoretical abstractions.

As could be expected, the several mathematical con-

cepts that have been developed along centuries can of-

ten be interrelated. For instance, the integer product

can be understood in terms of repeated scalar products

and sums, a polynomial on a variable x is composed of

terms involving powers of x, and the sine and cosine

can be derived from the complex exponential. The ex-

istence of these multiple relationships is related to possi-

ble ontological frameworks underlying mathematics. For

instance, starting with some basic concepts and hypothe-

sis, other mathematical concepts can then be successively

derived through respective relationships, such as in the

three above examples.

One particular interesting aspect motivated by the de-

velopment of possible mathematical ontologies concerns

the possible identification of more central, or fundamen-

tal core concepts from which several other concepts can

be related and derived. Interestingly, the possible identifi-

cation of these core concepts can not only help our under-

standing of mathematics (and therefore science), but also

provide subsidies for respective effective implementations

as well as for unifying seemingly diverse mathematical en-

tities.

Needless to say, the identification of possible mathe-

matical ontologies has constituted a substantial challenge

when taken in a systematic manner, aimed at incorporat-

ing most mathematical results. One example is Hilbert’s

program, which was aimed at developing a fully compre-
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hensive framework accounting for the whole of mathemat-

ics. Though interesting in itself, this type of approach has

been constrained by the identification of Gödel’s incom-

pleteness theorems, which showed that there are limits

to the self-consistency and formal verification of formal

mathematical systems.

The present work develops along the above presented

motivation of interrelating mathematical concepts, espe-

cially the exponential function in its real and complex

forms. However, the approach henceforth described in

this work is not aimed to be completely formal or to-

tally comprehensive. Instead, it has a simpler and more

pragmatic objective that consists in relating the exponen-

tial function to several other mathematical concepts and

results. Though we shall present several such interrela-

tionships, it is by no means implied that the exponential

function accounts for most of mathematics.

At the same time, as already observed above, the iden-

tification of these interrelationships can contribute in sev-

eral manners to better understanding and applying math-

ematics. These potential benefits include a more compre-

hensive appreciation of mathematical concepts, the de-

velopment of systems (including hardware) founded on

effective implementation and calculation of the exponen-

tial function, as well as possibly contributing as a didactic

resource in which important mathematical results can be

more effectively assimilated through the identified inter-

relationships.

As presented along the present work, the exponential

function bears an almost unending number of relation-

ships with other key mathematical concepts and struc-

tures. These interrelationships will be here presented in

a progressive, successive manner, starting with the de-

scription of the exponential function in its real and com-

plex form, followed by the presentation of its relationship

with a number of other mathematical concepts including

several basic concepts, series, other functions (including

powers, logarithms, sine and cosine), difference and dif-

ferential equations, analytical geometry, number theory,

statistics and distributions, dynamic systems, Fourier se-

ries and transforms, the Laplace transform, as well as

Markov chains.

2 Some Brief Historic Remarks

The development of the exponential and logarithm con-

cepts extends along a considerable period of time and in-

volved a substantial number of contributors (e.g. [1, 2, 3]).

Here we can only provide an extremely brief summary of

some of the respective developments that are somehow

more directly related to the subjects to be described in

the present work.

Possibly, the first approaches to the subjects of loga-

rithms, also including trigonometric functions, was de-

scribed by the Scottish mathematician John Napier

(1550–1617) in his 1614 work Mirifici logarithmorum

canonis descriptio. However, the value e, now known

as the Euler constant, was a later contribution by Jacob

Bernoulli (1655–1705). In a short period of time, these

contributions started being widely adopted as means to

facilitate numerical calculations, especially of products,

with the help of logarithmic tables. Interestingly, the

mechanical device developed by Napier, and known as

Napier’s bones constitutes a resource for calculation of

products and quotients between values that is not based

on the concept of logarithms.

After preliminary related developments by the English

mathematician Roger Cotes (1682–1716), the important

result now amply known as the Euler’s formula was de-

scribed by Leonard Euler (1707–1783) in 1748 in his two-

volume work Introduction in anaysin infinitorum. The

concepts of logarithm and exponential functions, in par-

ticular, contributed substantially for establishing rela-

tionships with the concept and calculation of the pow-

ers and roots, including concerning complex values, espe-

cially thanks to developments by Augustin-Louis Cauchy

(1789–1857), in his Cours d’analyze (1821).

The Fourier series was developed mainly by Jean-

Baptiste Joseph Fourier (1768–1830) as a means to solve

the heat equation (diffusion) on a metal plate, which he

described in his reference work Mémoire sur la propaga-

tion de la chaleur dans les corps solides (1807).

The development of matrix algebra was to a great ex-

tent pioneered by the British mathematician Arthur Cay-

ley (1821-1895), who also employed matrices as resources

for addressing linear systems of equations. Cayley focus

on pure mathematics included also important contribu-

tions to analytic geometry, group theory, as well as in

graph theory.

One of the first systematic approaches to the applica-

tion of matrices to dynamics and differential equations

has been developed in the book Elementary matrices

and some applications to dynamics and differential equa-

tions [4], whose first 155 pages present a treatise on ma-

trices, including infinite series of matrices and differential

operators. The remainder of the book described the solu-

tion of differential equations by using matrices, as well as

applications to dynamics of airplanes.

3 The Arithmetic and Geometric

Progressions

A real-valued progression is a sequence of numbers xk in-

dexed by a non-negative value k = 0, 1, 2, . . .. There are
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two special types of progressions: arithmetic and geomet-

ric.

An arithmetic progression is such that:

xk = k∆x+ a = x0, x1, x2, . . . (1)

where ∆x, a ∈ R. Observe that x0 = a.

In other words, each successive element in the sequence

can be obtained from the previous by adding a constant

amount ∆x.

For instance, in case ∆x = 2 and a = 3, we have:

xk = 2k + 3 = 3, 5, 7, 9, . . . (2)

Given N elements of an arithmetic progression, the re-

spective arithmetic series can be defined as:

N∑
k=0

xk = x0 + x1 + x2 + . . .+ xN (3)

The sum of the (N + 1) first elements of an arithmetic

progression can be immediately calculated as:

SN =
(N + 1)(xN + x0)

2
(4)

So, in the case of the above example, for N = 3, it

follows that:

S3 = 3 + 5 + 7 + 9 =
4(9 + 3)

2
= 24 (5)

A geometric progression can be similarly defined respec-

tively to the product as:

xk = rk a = x0, x1, x2, . . . (6)

where a, r,∈ R and x0 = a.

Therefore, in a geometric progression each next element

is obtained from the previous by multiplying the latter by

a fixed ratio r.

As an example, for r = 3 and a = 2 we have:

xk = rk a = 3k 2 = 2, 6, 18, . . . (7)

As with arithmetic progressions, geometric progressions

can be associated respectively to geometric series. The

sum of the N+1 first elements of a geometric progression

can be calculated as:

SN =
a
(
1− rN+1

)
1− r

=
a
(
rN+1 − 1

)
r − 1

(8)

for r 6= 1. In case N → ∞, convergence requires that

|r| < 1.

In the case of the example above, for N = 2:

S3 = 2 + 6 + 18 =
2
(
33 − 1

)
3− 1

= 26 (9)

4 The Exponential Function

The exponential function of a generic real-valued variable

x is typically expressed as:

f(x) = exp(x) = ex > 0, x ∈ R (10)

where e = 2.71828 . . . is the Euler number.

Though it is sometimes conceptualized as a function on

itself, as suggested by the form exp(x), the exponential

function can also be understood as a particular instance

of its generalized form:

g(x) = cx, ∀c, x ∈ R (11)

also with g(x) = ex > 0.

This function, which shall be henceforth referred to

as the general exponential function, should not be con-

founded with the power function p(x) = xc. Observe that

the only difference between Equations 10 and 11 is the

fact that the constant c is forced to be equal to e in the

former case.

Figure 1 illustrates several examples of the general ex-

ponential functions obtained for equally spaced values of

c centered at c = e. The exponential function for c = e is

highlighted in red.

Figure 1: Several instances of the general exponential function ob-

tained for 7 values of the constant c equally distributed (between -2

and 2) around the value c = e. The exponential function for c = e

is highlighted in red.

The exponential function should not be confounded

with the power function, which is defined as:

h(x) = xb (12)

the main difference being that, in the power function

the variable x is taken to the power of b, while in the

exponential function the Euler constant is taken to the

power of x.

Given a generic function, an immediately related aspect

concerns its respective inverse f−1(x). The inverses of the
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exponential functions correspond respectively to:

f−1(x) = lnx (13)

g−1(x) = logc x (14)

which applies for b 6= 1, b, x ∈ R+, where R+ is the set

of real values x so that x > 0. The functionln() is called

the natural logarithm.

Observe that it is the fact that f(x) = ex > 0 for x ∈ R
which restricts the domain of inverse of the exponential

function to R+.

One interesting manner to look at the exponential func-

tion and its logarithm inverse is as providing a bridge to

numeric values that are extremely large or small, consti-

tuting a kind of telescope/microscope to these realms. For

instance we have that:

1015 = 1.000.000.000.000.000

log10(1.000.000.000.000.000) = 15

10−21 = 0.000000000000000000001

log10(0.000000000000000000001) = −21

Given a generic logarithmic function logc(x), the con-

stant c is said to constitutes its respective basis. There-

fore, the Napierian logarithm has basis e, with respective

logarithm being expressed as:

lnx = loge x (15)

Recall that logarithms can have their base changed ac-

cording to the following rule:

logc x =
logb x

logb c
=

1

logb c
logb x = (constant) logb x (16)

The above results allow us to relate the exponential

function ex to its generic counterpart cx. More specifi-

cally, for c ∈ R+:

g(x) = cx > 1, ∀x ∈ R =⇒

=⇒ logc g(x) = x =
loge g(x)

loge c
=

1

ln c
ln g(x) =⇒

=⇒ ln g(x) = x ln c =⇒ g(x) = ex ln c =⇒

which leads to:

cx = ex ln c (17)

This is a particularly important relationship that

should be kept in mind. In addition, it can be shown

that the exponential function satisfies the following rela-

tionship:

(ex)
y

= (ey)
x

= ex y (18)

where x, y ∈ R. An analogue property holds for the

general exponential function, i.e.:

(bx)
y

= (by)
x

= bx y (19)

It is important to take into account that, in general:

(bx)
y 6= b(x

y) (20)

which means that the expression bx
y

is intrinsically am-

biguous unless some preliminary convention is assumed

regarding the order of the powers.

The identity in Equation 17 also allows us, assuming

x ∈ R+, to relate the exponential and power functions as:

xb = eb ln x (21)

Another particularly relevant property, more formally

known as group homomorphism (e.g. [5, 6, 7, 8]) estab-

lished between the additive and multiplicative binary

operations, which is satisfied by both the exponential

functions, is as follows:

f(a+ b) = f(a) f(b) ⇐⇒ ea+b = ea eb (22)

g(a+ b) = g(a) g(b) ⇐⇒ ca+b = ca cb (23)

where a, b, c ∈ R.

The group property also holds for the respective inverse

(logarithmic) functions:

ln(a+ b) = (ln a)(ln b) (24)

logc(a+ b) = (logc a)(logc b) (25)

where a, b, c ∈ R+.

We can employ the group property, combined with the

property in Equation 18, to better understand the opera-

tion (ea eb)c:

(ea eb)c =
(
ea+b

)c
= ec(a+b) = eca ecb (26)

where a, b, c ∈ R.

This means that the power by c is distributive respec-

tively to the product of exponentials. Actually, we also

have the more general property that:

(a b)c = ac bc (27)

with a, b, c ∈ R.

Before the advent of electronic computers, this prop-

erty that was extensively used for calculating products,

which was performed by consulting respective tables of

logarithms and calculating the simpler sum instead of the

potentially much more demanding original product.
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The exponential function also has important features

which distinguish it from its more general counterpart.

One of them concerns its derivative:

d ex

dx
= ex (28)

d cx

dx
=
d ex ln c

dx
= (ln c) cx (29)

for c ∈ R+.

Therefore, the exponential function has an intrinsically

simpler form than its more general counterpart, the latter

requiring a non-unit constant.

The intrinsic properties of the exponential function can

be better appreciated by considering graphical construc-

tions such as that shown in Figure 2. Here, we have the

exponential function ex in both its continuous form f(x)

(blue) as well as being discretized as Fk = f(xk) (red)

at equally spaced points xk = x0 + k∆x, ∀∆x > 0 and

k = 0, 1, 2, . . ., along its domain after having started at

an arbitrary position x0.

Figure 2: The continuous exponential function f(x) = ex and a pos-

sible respective discretization Fk (red points) defined by abscissae

values xk = x0 + k∆x, ∆x > 0 and k = 0, 1, 2, . . .

We have from the property in Equation 22 that:

Fk = ex0+k∆x = ex0 ek∆x (30)

which leads to the following interactions:

F0 = ex0

F1 = ex0+∆x = ex0 e∆x = F0 e
∆x

F2 = ex0+2∆x = ex0 e∆x+∆x = F1 e
∆x

F3 = ex0+3∆x = ex0 e2∆x+∆x = F2 e
∆x

. . .

Fk = Fk−1 e
∆x = r Fk−1 (31)

with k > 0 and r = e∆x.

Equation 31 can be understood as a geometrical pro-

gression with ratio r = e∆x, meaning that each successive

element along the discretized exponential can be obtained

interactively from the previous instance through a simple

real multiplication by r.

The sum of the values of the above progression can

be readily calculated by the following expression, which

involves the own exponential function:

S =

n∑
k=0

Fk = F0
rn+1 − 1

r − 1
= ex0

e∆X(n+1) − 1

e∆X − 1
(32)

By taking logarithms at both sides of Equation 31, we

derive the following interactive equation, which holds ir-

respectively of the choice of x0 ∈ R:

ln (Fk)− ln (Fk−1) = ∆x (33)

of which the time-discretized exponential function, by

the above developed construction, is intrinsically a solu-

tion.

It can be verified that all the above results also hold

for ∆x < 0 or r < 0, which can also be understood as

mirroring of the exponential function with respect to the

y− axis.

We have therefore seen in this section that the exponen-

tial function, through its basic property in Equation 22,

has the intrinsic characteristic, for equally spaced domain

points, of defining a respective geometric progression.

This also means that each new value of the discretized

exponential can be conveniently obtained through inter-

active real products with the respective ratio r = e∆x.

This result means, among other things, that the expo-

nential has a relatively simple construction rule that can

be understood in direct analogy with another fundamen-

tal mapping, namely the identity function h(x) = x, i.e.:

Hk = k∆x+H0 = Hk−1 + ∆x (34)

with H0 = x0 and k = 1, 2, . . ..

In this sense, it could be informally said that the expo-

nential function is to geometric series as the identity func-

tion is to arithmetic series. This would also mean that

the exponential function is to the product as the identity

function is to the sum.

5 Inferring the Exponential Func-

tion

In the developments described in the previous section,

we started with the exponential function being domain-

discretized and then derived the absolute and interactive

rules in Equation 22 and 31, respectively. In this section,

we will proceed the other way round. More specifically,

we will seek for a generic, as yet unknown, function g(x)

from which a domain-discrete function Gk = g(xk) can

be obtained, with

xk = k∆x+ x0, x0 ∈ R, k = 0, 1, . . . (35)
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so that Gk satisfies the following interactive rule for any

x0 and ∆x:

Gk = r Gk−1, ∀x ∈ R, k = 1, 2, . . . (36)

for ∀r ∈ R+ and G0 = g(x0).

Figure 3: A generic function g(x) (in blue) so that its values Gk
(in red) follow a geometric progression, i.e. Gk = r Gk−1, ∀x ∈
R, k = 1, 2, . . ., with G0 = g(x0).

It follows immediately from Equation 36 that:

Gk = rGk−1 = r (rGk−2) = . . . = rk G0 (37)

which holds for ∀x ∈ R, k = 1, 2, . . ..

We have from Equation 18 that:

Gk = rk G0 = ek ln r G0 (38)

From Equation 35, it follows that:

k =
xk − x0

∆x
(39)

By substituting this identity into Equation 38, we have:

Gk = g(xk) = e(
xk−x0

∆x ) ln r G0 (40)

which constitutes the solution, valid for xk = k∆x+x0,

of the interactive Equation 36 specifically to x0 and ∆x.

Now, in order the above equation does not depend on

∆x, and considering that we are free to chose any value

for r ∈ R+, without loss of generality we can make:

r = e∆x =⇒ ln r = ∆x (41)

which leads to the following possible solution of the

original problem:

Gk = g(xk) = e(
xk−x0

∆x )∆xG0 = exk−x0 G0 =⇒

=⇒ Gk = g(xk) = exk
G0

ex0
(42)

with k = 1, 2, . . ..

Though we know from the start that g(x0) = G0, we

still do not have an explicit form for g(x0) because the

above equation does not cover the case k > 0. As we are

looking for a generic solution g(x) that does not depend

on the choice of x0, we can take the ansatz G0 = ex0 ,

allowing Equation 42 to be rewritten as:

Gk = g(xk) = exk (43)

As this result does not depend on x0 or ∆, we obtain the

following generic solution to the initially sought function

g(x):

g(x) = ex (44)

from which any respectively obtained discrete function

Gk will satisfy both Equations 36 and 37 which, as devel-

oped in Section 4, turns indeed to be the case.

Though in this section we developed the concept of

the exponential function while starting from the geomet-

ric progression, there are other pathways leading to that

same function. For instance, we could start with the ques-

tion of which is the function that leads to itself under the

important operations of differentiation and integration.

The answer would be the exponential function. In addi-

tion, since:

dex

dx
= ex (45)

it also follows that the exponential function is infinitely

differentiable, i.e.:

dnex

dxn
= ex (46)

with n = 1, 2, . . ..

6 Some Basic Properties

Given a complex (therefore, including real) function f(x)

that has infinite derivatives at a point x0, its respective

Taylor series expansion around x0 is as follows:

f(x) = f(x0) +
ḟ(x0)

1!
(x− x0)+

+
f̈(x0)

2!
(x− x0) +

...
f (x0)

3!
(x− x0) + . . . (47)

where ḟ is the first derivative, and so on. When x0 = 0,

the Taylor series is often called McLaurin series.

The exponential function f(x) = ex can be expressed

in terms of its McLaurin series:

f(x) = exp(x) = ex =

= 1 + x+
x2

2
+
x3

6
+
x4

24
+ . . . =

∞∑
k=0

xk

k!
(48)
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with infinite radius of convergence, i.e. ∀x ∈ R, meaning

that the exponential function is entire (i.e. holomorphic

in the complex plane).

The series above provides a means to numerically cal-

culate the exponential function in terms of the simpler

sum and multiplication operations.

The power series for the logarithm function g(x) ln(1 +

x) is as follows:

g(x) = ln(x) =

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ . . . =

=

∞∑
k=1

(−1)k−1 (x− 1)k

k
(49)

which holds for x ∈ (0, 2), therefore not being entire as

the exponential function is.

The exponential function has several useful properties.

Some of them are presented as follows including, for ref-

erence purposes, some already seen in this work¿

e0 = 1 (50)

ex > 0, ∀x (51)

lim
x→−∞

ex = 0 (52)

lim
x→∞

ex =∞ (53)

eln x = ln (ex) = x, ∀x (54)

eα(a+b) = eαaeαb, ∀α, a, b ∈ R (55)

ln(ab) = (ln a) + (ln b), ∀a, b,∈ R+ (56)

ex ln b = bx, ∀x ∈ R, b ∈ R+ (57)

eab =
(
eb
)a

= (ea)
b
, ∀a, b ∈ R (58)

dex

dx
= ex, ∀x (59)

ˆ x

−∞
exdx = ex, ∀x (60)

An interesting graphical property of the exponential

function can is as follows. Let us start with the generic

exponential function:

g(x) = a ebx (61)

with a, b ∈ R.

If we take the natural logarithm at both sides, we ob-

tain:

ln(g(x)) = h(x) = ln
(
a ebx

)
= ln(a) + bx (62)

which corresponds to a linear function h(x) on x having

intercept equal to ln(a) and slope b. That is why the semi-

log plot of the generic exponential function in Equation 61

will necessarily yield a straight line.

Now, let us consider the following generic power func-

tion of x, also known as a power law :

p(x) = a xb (63)

In case x ∈ R+ (i.e. a positive real value), the previous

equation can be rewritten as:

p(x) = a eln(x)b (64)

Now, if we take the logarithm at both sides:

ln(p(x)) = ln(a) + ln(x)b = c+ b ln(x) (65)

That is why the power law in Equation 63 yields a

straight line when represented as a log-log plog.

7 Some Related Functions

In addition to its several roles in the form g(x) = beax, the

exponential function also integrates several other impor-

tant functions including, but by no means limited to: sig-

moid, gaussian, and gamma. Some of these functions are

briefly presented in this section. Given that the gamma

function involves the complex form of the exponential

function, it will be presented in Section 9.

We start with the following function:

f(x) =

{
1− e−ax, x ≥ 0

0, x < 0
(66)

Given that the exponential function g(x) = eax takes

values in the interval (0, 1] for x ≥ 0, the function f(x)

above, henceforth called complemented exponential, will

also take values in the same interval (0, 1]. Figure 4 illus-

trates this function for several values of a.

Figure 4: The complemented exponential function for seven values

of the parameter a, centered at a = e. The higher the value of a,

the most abrupt the transition from 0 to 1.

Another particularly important function that involves

the exponential is the gaussian, which can be written as:

gσ(x) = a e−
1
2 ( x−µσ )

2

(67)
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The parameters µ and σ controls the position of the

function along the x−axis and its width, respectively.

Observe that the gaussian can be understood as an ex-

ponential whose argument has been taken to the second

power, therefore involving the composition of these two

functions. Figure 5 depicts a gaussian function being ob-

tained as the composition of a negative parabola into an

exponential function.

Figure 5: Graphical representation of obtaining a Gaussian function

g(x) as the composition of the negative parabola −0.5x2 into the

exponential function f(x) = exp(x).

Figure 6 illustrates the gaussian function for a = 1,

µ = 1, and several values of σ. It should be kept in mind

that the area of the gaussian function is not necessarily

equal to 1, as is the case with the closely related normal

distribution to be addressed in Section 8.

Figure 6: The gaussian function for a = 1, µ = 1, and several values

of σ.

Yet another important function obtained from the ex-

ponential function is one of the types of the the sigmoid

function, which can be expressed as:

s(x) =
1

1 + e−ax
(68)

where the parameter a controls how abrupt the transi-

tion from 0 to 1 underwent by this function is. Figure 7

Figure 7: One of the types of sigmoid function for several values of

its parameter a, which controls how abrupt the transition from 0 to

1 is.

8 The Exponential Function in

Statistics

Jointly with random variables, the concept of distribution

functions plays a key role in probability and statistics

(e.g. [9, 10, 11, 12]). More specifically, a function p(x)

that satisfies the following requisites can be called a dis-

tribution function, or distribution for short:

p(x) ≥ 0, ∀x ∈ R (69)ˆ ∞
−∞

p(x)dx = 1 (70)

where X is the name of the associated random variable,

whose values are represented as x.

It follows that any function g(x) > 0 with finite area can

be, in principle, normalized as a respective distribution by

making:

p(x) =
g(x)´∞

−∞ g(x)dx
(71)

Given a distribution p(x), its expectancy can be calcu-

lated as:

E [X] =

ˆ ∞
−∞

x p(x) dx ≈ µ (72)

where µ is the average of x as estimated from respective

sample. For simplicity’s sake, we shall henceforth assume

that the average equals the expectancy, i.e. µ = E [X].
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The second central moment of p(x), also called vari-

ance, can be written as:

Var {x} = E
[
(X − µ)2

]
= E

[
X2
]
− E [X]

2 ≈ σ2 (73)

For simplicity’s sake, it is henceforth understood that

the estimated variance σ2 is equal to the second central

moment, i.e. σ2 = Var {x}.
The quantity σ = +

√
σ2 corresponds to the standard

deviation of X.

As could be expected, the exponential function re-

stricted to x ∈ R+ can be found in several important sta-

tistical distributions, some of which are briefly described

as follows.

We start by the exponential distribution, which can be

defined as:

pα(x) =

{
α e−αx, x ≥ 0

0, x < 0
(74)

µ =
1

α
(75)

σ2 =
1

α2
(76)

Figure reffig:expons illustrates several instances of the

exponential distribution respectively to varying values of

its parameter α.

Figure 8: Examples of several exponential distributions for varying

values of its parameter alpha.

One of the most important statistical distributions, if

not the most important, constitutes the normal distribu-

tion, which can be expressed as:

gσ(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(77)

(78)

The parameters µ and σ are related to the mean and

standard deviation of the respectively associated random

variable X.

Figure 9: Examples of several normal distributions assuming µ = 1

and varying the parameter σ. All these distributions have area

equal to 1. It is interesting to compare these distributions with the

respective unnormalized versions in Fig. 6.

Figure reffig:normals shows several instances of the nor-

mal distribution respectively to µ = 1 and varying values

of its parameter σ.

Interestingly, the Dirac delta can be expressed as:

δ(x) = lim
σ→0

nσ(x) (79)

this illustrates why the Dirac delta can be understood

as having unit area, as this property is preserved as σ → 0.

9 The Complex Exponential

The incorporation of complex numbers (e.g. [13, 14, 10,

15]) into mathematics constitutes one of the most impor-

tant related developments to this area.

It can be shown that the complex exponential adheres

to the following power series, which can be understood as

its definition:

g(z) = g(x, y) = exp(z) = ez =

= 1 + z +
z2

2
+
z3

6
+
z4

24
+ . . . =

∞∑
k=0

zk

k!
(80)

where and i =
√
−1 and x and y are called the real and

imaginary parts of the complex number z.

As with the real-valued exponential function, the group

property also holds:

g(z) = exp(z) = ez = ex+iy = ex eiy (81)

The complex power function is defined in terms of the

complex exponential, respectively to a complex value z

and b ∈ R, as:

zb = exp(b ln(z)), for z 6= 0 (82)
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It should be borne in mind that both the complex log-

arithm and complex power functions are multiple valued

(e.g. [13, 14]).

The Euler’s formula establishes an important relation-

ship between the complex exponential function and the

real-valued sine and cosine functions:

eiθ = cos(θ) + i sin(θ) (83)

This relation can be readily used to express a generic

complex number z = x + iy, in terms of its polar repre-

sentation:

z = x+ iy = ρeiθ = ρ [cos(θ) + i sin(θ)] (84)

with ρ ∈ R+ and θ ∈ R corresponding to:

ρ =
√
x2 + y2 (85)

θ = arctan
(y
x

)
(86)

where θ is sometimes understood as the phase of z. In

case we have:

u = ρei(θ+φ) (87)

the term φ can be understood as a phase lag, phase

delay or relative phase (e.g. [16]).

It is interesting to observe that the quantity ρ =√
x2 + y2 is intrinsically related to the concept of Eu-

clidian distance, which plays a special role in geometric

spaces.

The sine and cosine functions can themselves be derived

from the complex exponential function as follows:

cos(θ) =
eiθ + e−iθ

2
(88)

sin(θ) =
eiθ − e−iθ

2i
(89)

It is also possible to consider the complex exponential

defined respectively to a parametrized complex argument

z(t) = x(t) + iy(t), with t = [tmin, tmax] corresponding to

the respective parameter :

exp(z(t)) = ex(t) eiy(t) = ex(t) [cos(y(t)) + i sin(y(t))]

(90)

In particular, we can start with:

exp(z(t)) = ρ(t) eiω(t) (91)

and make ρ(t) = 1 and ω(t) = 2πfot, which leads to

the following complex parametric function:

h(t) = eiω(t) (92)

Interestingly, the Euler relationships indicates that this

parametric function w(t) corresponds to an helix with am-

plitude 1 and frequency f0 along the t−axis. By project-

ing this complex helix onto the Argand (or complex) plane

— with the x− and y− axes corresponding to the real and

imaginary portions of the complex values — we get the

complex circle with radius 1, which is illustrated in Fig-

ure 15.

Figure 10: The complex circle can be understood as the projection

onto the Argand plane of the complex parametric function h(t) =

eiω(t), which is periodic with period T0 = 1/f0.

It is interesting to consider the group property of the

complex exponential, which accounts for much of its es-

pecially important characteristics. Let us start with the

following complex values:

u = eσu+iθu = eσu eiθu = xu + iyu

v = eσv+iθv = eσv eiθv = xv + iyv

with σu, θu, σv, θv ∈ R. It follows that:

u v = eσu+iθu+σv+iθv = e(σu+σv)+i(θu+θv)

The resulting complex value is also a complex exponen-

tial whose exponent argument has real part corresponding

to the sum of the original correlates of u and v, and imag-

inary part given as the sum of the respective imaginary

correlates.

Let us know separate the complex value v into two re-

spective magnitude and phase parts, i.e.:

vM = eσv = ρv ∈ R
vP = eiθv ∈ C

with σv, θv ∈ R. Now we have from the group property

that:

u vM = e(σu+σv)+iθu = e(σu+σv)eiθu (93)

Thus, the product of a complex exponential u by a mag-

nitude component vM has as effect the modification only

of the real part of the the former, in a manner that is

directly analogous to the real exponential. More specifi-

cally, this product will change only the magnitude of u.

10



Similarly, the product of u by the phase component vP
yields:

u vP = eσu+i(θu+θv) = eσuei(θu+θv) (94)

implying that only the imaginary part of u is changed,

without any alteration of its magnitude ρu = eσu . More

specifically, the phase of u corresponds to the sum of the

original phases.

We can therefore conclude that the group property re-

spective to the complex exponential can be understood

as two complementary effects corresponding to two com-

plementary effects regarding change of magnitude (analo-

gous to the real exponential) and phase (exclusive to the

complex exponential).

Now, let us consider the solution of the following equa-

tion, implying the complex circle to cross the x−axis at

value 1:

eiω(t) = 1⇐⇒ ω(t) = 2kπ = 2πf0t,

k = . . . ,−1, 0, 1, . . . (95)

which is satisfied for t = k/f0, yielding the period T0

of the complex parametric function h(t). This equation

highlights the intrinsic relationship between the complex

exponential and the fundamental constant π.

The gamma function constitutes another example of

an important complex function that involves the complex

exponential function, through its related complex power

form uz−1. More specifically, we have:

Γ(z) =

ˆ ∞
0

uz−1e−udu (96)

where z is a complex number so that Re(z) > 0, and u

is a real-valued integration variable.

In particular, for a non-negative integer value n ∈ R+,

we have the following important relationship being es-

tablished between the gamma function and the factorial

function:

Γ(n) = (n− 1)! (97)

This relationship illustrates the fact that the gamma

function can be understood as a generalization of the fac-

torial function to complex values z|Re(z) > 0.

Figure 11 presents the factorial of non-negative inte-

ger values shown as points overlain onto the continuous

gamma function Γ(x) restricted to real values x ∈ (0, 5.5].

Observe that, though we have by definition that 0! = 1,

this particular case is not covered by the gamma extension

of the factorial concept.

Together with the complex exponential function, the

gamma function allows us to approach an expression for

Figure 11: The gamma function Γ(x) restricted to real values x

along the interval (0, 5.5] and respectively overlain integer-valued

factorials (points) of non-negative integers n = 1, 2, . . . considering

x ∈ (0, 5.5]. This construction emphasizes the fact that the gamma

function can be used to generalized the factorial function to contin-

uous values (and also to complex numbers).

the following infinite complex series, known as the Rie-

mann zeta function:

ζ(s) =

∞∑
k=1

1

ks
=

1

1s
+

1

2s
+

1

3s
+ . . . (98)

where s = σ + it.

More specifically, in case σ > 1, we have that the Rie-

mann zeta function can be calculated as:

ζ(s) =
1

Γ(s)

ˆ ∞
0

us−1

eu − 1
du (99)

As figured out by Leonard Euler, the Riemann zeta

function is related to the concept of prime number

(e.g. [17]), which plays a central role in Number Theory

(e.g. [18, 19]), through the following relationship:

ζ(s) =
∏

p is prime

1

1− ps
(100)

Therefore, we have that the complex exponential func-

tion is also closely related to fundamental mathematical

concepts such as those studied in Number Theory.

10 Exponential Geometry

The exponential function in its complex form can be as-

sociated to parametric curves (e.g. [20, 21]) in respective

geometrical spaces.

A parametric curve ~γ(t) can be understood as the map-

ping of a continuous parameter t ∈ [a, b] into a continuous

succession of points (x, y) in the R2 space. More specifi-

cally, we can write:

~γ(t) : t ∈ [a, b] −→ ~γ(t) = (x(t), y(t)) (101)
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Given a complex function g(z(t)) = x(t)+ iy(t), we can

always make the following bijective association:

g(z(t))←→ ~γ(t)

x(t) + iy(t)←→ (x(t), y(t)) (102)

For instance, in the case of the helix h(z(t)) = h(t) =

ei2πf0t, we would have:

h(z(t))←→ ~γ(t)

cos(2πf0t) + i sin(2πf0t)←→ (cos(2πf0t), sin(2πf0t))

(103)

Figure 12 illustrates this function for t ∈ [0, 4] and f0 =

2.

Figure 12: The complex helix h(t) = ei2πf0t represented as a para-

metric curve in the R2 × t space for t ∈ [0, 4] and f0 = 2.

Now, consider the complex parametric function g(z) =

ρ(t)eω(t), with:

ρ(t) = e−at (104)

ω(t) = ω(t) = 2πf0t (105)

This yields a parametric curve in R2 × t which is mod-

ulated by the varying amplitude corresponding to a de-

caying exponential ρ(t) = e−1t, as shown in Figure 13

respectively to a = 1 and f0 = 2.

Figure 14 depicts the same function as in the previous

example, but now projected into the R2 plane.

Given a parametric curve, it is possible to define its

respective derivatives for k = 1, 2, . . . as:

dk~γ(t)

dtk
=

(
dkx(t)

dtk
,
dky(t)

dtk

)
(106)

As an example, in the case of the helix in Equation 103,

we would have:

d~γ(t)

dt
= 2πf0 (− sin(2πf0t), cos(2πf0t)) (107)

Figure 13: The parametric function defined by the complex para-

metric function g(z) = ρ(t)eω(t) for a = 1 and f0 = 2.

Figure 14: A spiral is obtained by projecting the parametric curve

of Fig. 13 into the Argand plane (associated to the R2 plane).

11 The Fourier Series and Trans-

form

Let g(t) be a real (or complex) function with period T .

Then, in case its Fourier Series (e.g. [22, 23, 24]) exist, it

can be expressed as:

ck =
1

T

ˆ
T

g(t) exp (−i2πkt) dt (108)

g(t) ≈
N∑

k=−N

ck exp

(
i
2πkt

T

)
(109)

where ck are often called the Fourier coefficients re-

spectively to the represented function g(t). The complex

Fourier series in Expression 109 provides a means to ap-

proximate (and sometimes fully recover) the original func-

tion g(t) in terms of a linear combination of its respective

coefficients.

The Fourier transform (e.g. [22, 24]) of a non-

necessarily periodic function g(t), as well as its inverse,
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in case they exist, can be calculated as:

G(f) = F {g(t)} =

ˆ ∞
−∞

g(t) exp(−i2πft)dt (110)

g(t) = F−1 {G(f)} =

ˆ ∞
∞

G(f) exp(i2πft)df (111)

Given two complex functions g(t) and h(t), their Her-

mitian product can be expressed as:

〈g(t), h(t)〉 =

ˆ ∞
−∞

g(t) h∗(t)dt (112)

It is interesting to observe an intrinsic analogy between

the coefficients ck in the Fourier series and the Fourier

transform G(f). In fact, both these expressions can be

rewritten in terms of the Hermitian inner product as:

ck =
1

T
〈g(t), exp (i2πkt)〉 (113)

G(f) = 〈g(t), exp(i2πft)〉 (114)

As the real-valued inner product, its Hermitian coun-

terpart can be understood as a measurement of the sim-

ilarity between its two arguments, however influenced by

the magnitudes of the respectively compared functions

(e.g. [25]). In this sense, the Fourier series and transform

can be understood as approximating the original function

by linearly combining complex exponentials with diverse

frequencies with weights corresponding to the similarity

between each of those components and the original func-

tion g(t).

Of particular interest is the fact that the basic compo-

nents used for the linear combinations involved in both

the Fourier series and transform correspond to complex

exponential. The effectiveness of this basis for representa-

tion of functions stems from the fact that these complex

exponential components are orthogonal one another.

As a Fourier transform calculation example, given the

truncated (or causal) exponential function:

g(t) =

{
e−σt, t ≥ 0

0, t < 0
(115)

with σ ≥ 0:

Let us calculate its respective Fourier transform:

G(f) =

ˆ ∞
0

e−σte−i2πftdt =

=

ˆ ∞
0

e−(σ+i2πf)tdt =

=
−1

σ + i2πf
e−(σ+i2πf)t

∣∣∣∣∣
∞

0

=
1

σ + i2πf
=

1

s

(116)

with s = σ + i2πf = σ + iω.

By separating the real and imaginary part, we obtain:

1

σ + iω
=

σ

σ2 + ω2
− i ω

σ2 + ω2
(117)

When the direct and inverse Fourier transforms of a

function g(t) exist, we can write the respectively defined

Fourier transform pair as:

g(t)←→ G(g) (118)

Some examples of these pairs include:

ei2πf0t ←→ δ(f0) (119)

cos (2πf0t)←→ 0.5 [δ(−f0) + δ(f0)] (120)

sin (2πf0t)←→ 0.5i [δ(−f0)− δ(f0)] (121)

where δ(f0) = δ(f − f0) is the Dirac delta function

shifted to the position f0.

Of particular interest is the Fourier transform property:

dβg(t)

dtβ
←→ (i2πf)

β
G(f) (122)

which not only allows the generalization of the deriva-

tive to complex orders β ∈ C, but also establishes an in-

trinsic relation between the complex exponential, through

its power form, and the derivative of complex functions.

12 The Discrete Fourier Trans-

form – DFT

Let us start with the complex exponential component

with period T0 = 1/f0:

h(t) = e−i2πf0t (123)

By quantizing the time parameter t as t = k∆t, k =

0, 1, . . . , N − 1, with ∆t = T0

N = 1
f0N

:

h1,k = h(t = k∆t) = e−i
2πk
N (124)

Now, we can define additional complex exponential

components hj with periods Tj = T0/j that are integer

fractions of T0, which leads to fj = jf0 and fj = j/T0.

We can now write:

hj,k = e−i2πfjt = e−i2πjf0t = e−i
2πjk
N (125)

for j = 2, . . . , N − 1.

Jointly with the constant component h0,k = 1, the

above components hj,k constitutes the basis of the dis-

crete Fourier transform, which can be combined into an

N ×N matrix WN .

Figure 15 illustrates the DFT basis element h1,k for

N = 4.
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Figure 15: The basis elements h1,k, with k = 0, 1, 2, . . . N − 1 for

N = 4.

The DFT matrix for N = 4 corresponds to:

W4 =


← h0,k →
← h1,k →
← h2,k →
← h3,k →

 =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 i

 (126)

Observe that:

W4 = WT
4 (127)

which is verified for any N .

The DFT ~G of an N-elements time-discrete function

g(t), represented in terms of a respective vector ~g, as

well as its respective inverse (IDFT), can now be respec-

tively expressed in terms of the following matrix equations

(e.g. [22, 23, 26, 27]):

~G = WN ~g (128)

~g = W−1
N

~G (129)

These two expressions, which stem directly from the

respective Equations 108 and 110, can again be under-

stood in terms of Hermitian inner products between the

components of the Fourier basis (i.e. the complex expo-

nential ei2πft) and the time-discrete signal ~g to be anal-

ysed/transformed. More specifically, each element j of ~G

is obtained by multiplying the respective row j of WN

(which is the conjugate complex of the Fourier compo-

nents, as required by the Hermitian inner product) and

the discrete-time signal ~g = [gk] = g(k∆t).

Given a complex matrix A, it is said to be unitary if

and only if:

A−1 = (AT )∗ = (A∗)T (130)

In the case of the DFT matrix W4, it follows that:

W4

[
WT

4

]∗
= W4 [W4]

∗
= (131)

=


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 i




1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 −i

 = (132)

=


4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

 = 4 I (133)

from which it is said that W4 is a quasi-unitary matrix.

It can be verified that this property applies to any non-

negative integer value N , i.e.:

WN

[
WT
N

]∗
= WN [W ∗N ]

T
= WNW

∗
N = N I (134)

The fact of WN being a quasi-unitary and symmetric

matrix allows the effective determination of its inverse as:

WN [WN ]
∗

= N I =⇒ (135)

=⇒ [WN ]
∗

= N W−1
N I = N W−1

N =⇒ (136)

=⇒W−1
N =

1

N
[WN ]

∗
(137)

Therefore, we can calculate the DFT and IDFT as:

~G = WN ~g (138)

~g =
1

N
[WN ]

∗ ~G (139)

13 Instantaneous Frequency

The concept of instantaneous frequency (e.g. [28, 29, 30])

provides and interesting and useful extension of the more

traditional concept of frequency of a signal. The definition

of the instantaneous frequency of a signal s(t), a purely

real function of an independent variable f having S(f) as

its respective Fourier transform, relies on the respective

analytical representation of s(t) as:

sa(t) = F−1 {2 h(f)S(f)} (140)

where h(f) is the heaviside function:

h(f) =


0, f < 0

1/2, f = 0

1, f > 0

(141)

The instantaneous amplitude and instantaneous phase

of s(t) can now be defined as:{
Ai(t) = |sa(t)|
φi(t) = arctan

{
Im(sa(t))
Re(sa(t))

} (142)
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from which the instantaneous frequency of s(t) can be

expressed as:

fi(t) =
1

2π

d

dt
φi(s(t)) (143)

As an example of calculation of the instantaneous fre-

quency of a function, consider g(t) = cos(2πf0t). First,

we obtain the respective analytical representation as:

ga(t) = F−1 {2 h(f)G(f)} = F−10.5δ(f0) = 0.5ei2πf0t

(144)

from which the respective instantaneous phase can be

obtained as:

φi(t) = arctan

{
Im(sa(t))

Re(sa(t))

}
=

sin(2πfot)

cos(2πf0t)
= 2πf0t

(145)

leading to the following instantaneous frequency:

fi(t) =
1

2π

d

dt
φi(s(t)) =

1

2π

d

dt
2πf0t = f0 (146)

Therefore, as could be expected, the cosine function

g(t) = cos(2πf0t) has instantaneous frequency f0 at any

value of t ∈ R. However, the instantaneous frequency

of more general signals will often yield varying values

(e.g. [30]), being closely related to the concept of am-

plitude modulation – AM, as used in telecommunications.

14 The Laplace Transform

Given a complex function g(s) of a complex variable s, its

respectively Laplace transform (e.g. [31]) can be defined

as follows:

L{f(t)} (s) = F (s) =

ˆ ∞
0

g(s) e−stdt (147)

where s(t) = σ + iω, with σ, ω ∈ R.

Observe that the Laplace transform basis components

can be rewritten as:

e−st = e−σt e−iωt (148)

thus indicating that the Laplace transform constitutes

a generalization of the Fourier transform incorporating

components with exponential decay e−σt, which con-

tributes to the effective representation of a wider range

of possible signals.

In case g(s) = g(t) is a function of a a non-negative real

argument t so that:

g(t) =

{
g(t), t ≥ 0

0, t < 0
(149)

we can write:

L{g(t)} (s) =

ˆ ∞
0

g(t) e−σt e−iωtdt =

=

ˆ ∞
0

[
g(t) e−σt

]
e−iωtdt =

=

ˆ ∞
−∞

[
g(t) e−σt

]
e−iωtdt =

= F
{
g(t) e−σt

}
(f) (150)

As an example, let us calculate the Laplace transform

of the truncated exponential function:

g(t) =

{
e−at, t ≥ 0

0, t < 0
(151)

By applying the definition:

L{f(t)} (s) =

ˆ ∞
0

e−at e−stdt =

=

ˆ ∞
0

e−(a+s)tdt =

=
−1

a+ s
e−(a+s)t

∣∣∣∣∣
∞

0

=
1

s+ a
(152)

for Re(s) < −a.

Similarly to the Fourier transform, the Laplace trans-

form is also directly related to the operations of differen-

tiation and integration:

ˆ t

0

f(t)dt←→ F (s)

s
(153)

df(t)

dt
←→ sF (s)− f(0) (154)

15 Ordinary Differential equa-

tions

Differential equations are at the core of physical model-

ing, as they provide an effective representation of several

phenomena in terms of instantaneous properties such as

position and velocity (e.g. [32]). Among the several types

of differential equations, those called ordinary differential

equations – ODEs – are frequently adopted in modeling

approaches. Basically, this type of differential equations

is characterized by the involved unknown elements being

a function of a single variable, such as time or position.

In the present work, we shall focus on linear ordinary

differential equations, which are characterized by satisfy-

ing the superimposition principle (e.g. [33]). In particular,

consider the following linear ODE:

ġ(t) = a g(t) (155)

g(t = t0) = g0 (156)
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which means that the tendency (or velocity) of the in-

crease of the variable g(t) is proportional, through t the

constant a ∈ R, to its current value. In the case of a > 0,

we would have that the quantity g(t) tends to increase

at a rate dg(t)/dt proportional to its current value. The

initial condition, g(t = t0) = g0, informs the value of the

variable g(t) at an initial time instant t0.

Let us solve this equation as follows:

dg(t)

dt
= a g(t) =⇒

=⇒ 1

g(t)
dg = a dt =⇒

=⇒
ˆ

1

g(t)
dg =

ˆ
a dt =⇒

=⇒ ln(g(t)) = a t+ c =⇒

=⇒ eln(g(t)) = ea t+c =⇒
=⇒ g(t) = ec eat (157)

Observe that this general solution depends on the con-

stant c ∈ R, which is not yet determined. By taking into

account the initial condition, we can write:

=⇒ g(t0) = g0 = ec eat0 =⇒
=⇒ ec = g0 e

−at0 =⇒
=⇒ c = ln

(
g0 e

−at0
)

=⇒
=⇒ c = ln (g0)− at0 (158)

Thus, the solution of the original differential equation

can be expressed as:

g(t) = eln(g0)−at0 eat =⇒
=⇒ g(t) = g0 e

−at0 eat =⇒

=⇒ g(t) = g0 e
a(t−t0) (159)

Therefore, we have that the solution of the possibly

most basic linear ordinary differential equation involves

the exponential function. In other words, the exponential

function is such that its derivative is proportional to itself,

therefore constituting a kind of eigenfunction associated

to the original differential equation 155.

Interestingly enough, as we will see in Section 19, an

analogue solution can be found for a system of linear or-

dinary differential equations. However, it is necessary to

get acquainted with the useful concept of matrix exponen-

tial as a preparation for that, which provides the subject

for the following section.

16 Exponential Directional Field

Given an ordinary differential equation on a single vari-

able x, the concept of directional field provides a partic-

ularly interesting resource for visualizing, and better un-

derstanding, the characteristics of the given differential

equation as well as its possible solutions.

Let us consider the following linear ODE:

dx(t)

dt
= ẋ(t) = x(t) (160)

Its respective directional field can be obtained by plot-

ting a short line segment having inclination corresponding

to the derivative ẋ(t, x) at each of a set of respective dis-

crete lattice points (t, x) as determined by the original

differential equation, therefore defining a respective tan-

gent field. Figure 16 illustrates a directional field (set

of green line segments) obtained for the above equation

considering t ∈ [−1, 1] and x ∈ [−1, 1].

Figure 16: A directional field, corresponding to the set of green line

segments, obtained for Eq. 160. The slope (inclination) of each of

these segments corresponds to derivative ẋ(t, x) of x(t) at each of the

considered discrete points (t, x). Given an initial condition (starting

points at the left-hand side of the plot), the respective solution can

be obtained by following the tangent field.

Observe that, in the case of this particular ODE, the

derivatives ẋ(t, x) at the points (t, x) do not depend of t,

but only on x, in which case the differential equation is

said to be autonomous.

Also shown in Figure 16 are several possible solutions of

the considered differential equation, obtained respectively

to each initial conditions specified by the left-hand points.

These solutions are obtained by following the tangent field

as one moves along the horizontal axis.

The solution shown in gray, respective to the initial

condition (x(t = −1) = 0), corresponds to the only equi-

librium solution of the considered ODE. More specifically

an equilibrium solution is such that ẋ = 0 for any value of

t. In the case of this particular ODE, the only equilibrium

solution can be said to be unstable, since any small per-

turbation along its trajectory will unavoidably cause it to
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either increase or decrease, which it will do in exponential

manner.

As illustrated by the above example, the directional

field of a given ODE provides a direct visualization of all

possible solutions in the considered window. Additional

examples of directional fields, also including systems of

two differential equations, can be found in [34].

17 The Matrix Exponential

In a direct analogy to Equation 48, it is possible to express

the exponential of a complex matrix A, with dimension

N ×N in terms of the following power series:

eA = 1 + x+
A2

2
+
A3

6
+ . . . =

∞∑
k=0

Ak

k!
(161)

Observe that the exponential of the matrix A is itself

a matrix with the same dimension as the matrix A from

which it derives.

As an example, let:

A =


0 1 0 1

1 0 1 0

2 2 2 −1

0 0 0 3

 (162)

From Equation 161, we have that:

eA ≈


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+


0 1 0 1

1 0 1 0

2 2 2 −1

0 0 0 3

+ . . . =

=


2.43 2.06 1.43 6.36

4.93 5.30 4.93 0

12.7 12.7 13.7 −6.36

0 0 0 20.1


where ≈ stands for the fact of presenting truncated val-

ues in the result, and/or taking a finite number of power

series terms.

As could be expected, the matrix exponential and the

logarithm of a matrix (to be briefly addressed in Sec-

tion 18) are related as:

bA = eA ln b (163)

The following property is observed by the matrix expo-

nential:

e(A
T ) =

[
eA
]T

(164)

In the case of two complex square matrices A and B

with the same dimension, we also have that:

eA+B = eA eB (165)

which leads to:

eA e−A = eA−A = I (166)

from which we have that the inverse of matrix eA is:[
eA
]−1

= e−A (167)

Interestingly, the matrix corresponding to the matrix

exponentiation eA is always invertible.

18 The Logarithm of a Matrix

Let A be a complex matrix. In case it is invertible, it is

possible to obtain its respective logarithm in terms of the

following power series:

g(A) = ln(A) =

= (A− I)− (A− I)2

2
+

(A− I)3

3
− . . . =

=

∞∑
k=1

(−1)k−1 (A− I)k

k
(168)

We have that:

eln(A) = A (169)

The properties of the logarithm of matrix are relatively

more intricate than those of the logarithm function, of-

ten involving additional requirements as matrices being

positive definite, etc.

19 Linear Dynamic Systems

Linear dynamic systems are characterized by obeying the

superimposition principle. More specifically, if ~x and ~y

are solutions of a given such type of system, ~x + ~y will

also be a solution.

Linear dynamic systems are often represented in terms

of respective systems of (in our case ordinary) differential

equations, such as the following system of homogeneous

differential equations:
ẋ1 = a1,1x1 + a1,2x1 + . . .+ a1,NxN
ẋ2 = a2,1x1 + a2,2x1 + . . .+ a2,NxN
. . .

ẋN = aN,1x1 + aN,2x1 + . . .+ aN,NxN

(170)

which can be directly translated to the following matrix

equation:

Ẋ(t) = AX(t) (171)

X(t0) = X0 (172)
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with:

A =


a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N

. . .

aN,1 aN,2 . . . aN,N

 (173)

As with the linear ODE ġ(t) = ag(t) seen in Section 15,

the solution of the above system can be obtained as:

~x(t) = eA(t−t0) ~x0 (174)

Figure 17 presents the solution of the system of lin-

ear, homogenous differential equations specified by the

following matrix and considering ~x(0) = [−1 1 0 2]T for

t ∈ [0, 5]: 
−0.2 −0.4 −0.1 0.2

−0.4 −0.6 −0.3 −0.1

−0.1 −0.3 0.4 −0.1

0.2 −0.1 −0.1 −0.6

 (175)

Figure 17: Solution of the system of linear, homogenous differential

equations specified by the matrix in Eq. 175, obtained by using

Eq. 174, considering ~x(0) = [−1 1 0 2]T adn t ∈ [0, 5].

In case an N × N matrix A is symmetric and has N

distinct real-valued eigenvalues λi associated to respec-

tive eigenvectors ~vi (e.g. [35, 36]), the solution (e.g. [33])

of the respectively defined homogeneous system of linear

differential equations can be written as:

~x(t) =

= c1e
λ1(t−t0)~v1 + c2e

λ2(t−t0)~v2 + . . .+ cNe
λN (t−t0)~vN

(176)

where:
c1
c2
...

cN

 =

 ↑ ↑ . . . ↑
~v1 ~v2 . . . ~vN
↓ ↓ . . . ↓

−1


x0,1

x0,2

...

x0,N

 (177)

20 Discrete-Time Linear Dynamic

Systems

Given a homogeneous linear dynamic system as in the

previous section (Eq. 170), it is possible to write its (pos-

sibly approximate) interactive finite difference (order 1)

equation as follows:
x

[t+∆t]
1 =

(
a1,1x

[t]
1 + . . .+ a1,Nx

[t]
N

)
∆t+ x

[t]
1

x
[t+∆t]
2 =

(
a2,1x

[t]
1 + . . .+ a2,Nx

[t]
N

)
∆t+ x

[t]
2

. . .

x
[t+∆t]
N =

(
aN,1x

[t]
1 + . . .+ aN,Nx

[t]
N

)
∆t+ x

[t]
N

assuming that the time values t are organized as

t[k+1] = t[k∆t+t0]. In addition, the initial state is rep-

resented as X0 = X [t=t0].

The above finite difference approximation can be ob-

tained simply by considering that:

dx(t)

dt
= lim

∆x→0

x(t+ ∆t)− x(t)

∆t
≈ x(t+ ∆t)− x(t)

∆t
(178)

where tha approximation assumes small values of ∆t.

The system of interactive equations in Equation 178,

also called a map, can be compactly expressed in terms

of the following matrix equation:

~x[t+∆t] = A~x[t]∆t+ ~x[t] = (A∆t+ I) ~x[t] (179)

~x[t0] = ~x0 (180)

By making C = (A∆t+ I):

~x[t+∆t] = C~x[t] (181)

~x[t0] = ~x0 (182)

Which has the following solution:

~x[t] = elnC
(t−t0)

∆t ~x0 = C
t−t0
∆t ~x0 (183)

21 Markov Chains

In case the homogeneous system of linear ODEs in the

previous section has ∆t = 1 and t0 is an integer value, we

can write:

~x[t+1] = A~x[t] + ~x[t] = (A+ I)~x[t] (184)

~x[t0] = ~x0 (185)

By making B = A+ I, we get the mapping:

~x[t+1] = B~x[t] (186)

~x[t0] = ~x0 (187)
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In case the square matrix B is a stochastic matrix, hav-

ing non-negative entries so that the sum of respective

columns are all equal to 1, the above mapping can be

understood as a Markovian chain (e.g. [37, 38]), with the

following solution:

~x[t] = elnB(t−t0) ~x0 = Bt−t0 ~x0 (188)

A stochastic matrix can be shown always to have an

eigenvalue equal to 1. A Markov chain associated to an

irreducible matrix B will converge to an equilibrium (or

stationary) state given by the respective eigenvector as-

sociated to the eigenvalue 1. The matrix B will be said

to be irreducible when the respectively derived digraph

is not strongly connected, i.e. it is possible to reach any

of its nodes through paths starting at any other possible

node.

In case matrix P can be diagonalized, or eigendecom-

posed, we can write:

V B = V Λ =⇒ (189)

=⇒ B = V ΛV −1 (190)

where Λ is a diagonal matrices containing the eigenval-

ues λi of B in descending order and V is the matrix com-

posed having the respective eigenvectors ~vi as columns.

We have the following interesting property:

Bn = V Λ (V −1V ) Λ (V −1V ) Λ . . .Λ (V −1V ) ΛV −1 =

= V [Λ]
n
V −1 (191)

with:

Λn =


λn1 0 . . . 0

0 λn2 . . . 0

· · ·
. . . · · ·

0 0 . . . λnN

 (192)

This yields the following discrete-time solution of the

Markov chain associated to B:

~x[t] =
[
a1λ

t
1~v1 + a2λ

t
2~v2 + . . .+ aNλ

t
N~vN

]
(193)

where the constants ai ∈ R are determined from the

initial state x[0]. This interesting result confirms that the

equilibrium dynamics is defined by the eigenvector ~v1 as-

sociated to the eigenvalue with maximum value (λ1 = 1).

It is also of interest to compare the equation above with

that in Equation 176.

22 Concluding Remarks

In addition to its own theoretical importance, mathemat-

ics has provided the main foundation for modeling in the

physical sciences. To a great extent, this key role has

been allowed by the intrinsic potential of mathematical

concepts and structures to represent entities and phenom-

enal from the physical world.

In this work, after developing the concept of the ex-

ponential function, we successively presented its direct

implications and relationships with several important, or

even central, mathematical concepts ranging from funda-

mental constants to the operations of complex differenti-

ation and integration, while being related even to number

theoretical concepts as prime numbers. Figure 18 presents

a graph, or network, obtained by representing several of

the concepts addressed in the present work as nodes, while

many of their interrelationships have been indicated by

respective links.

Figure 18: A graph illustrated some of the arithmetic, algebraic

and functional relationships between the exponential function and

several other mathematic concepts. Five fundamental constants,

as well as the infinity are shown within the green box The Gaus-

sian function is shown as gs(), the sigmoid function as s(), and the

Fourier series (or transform) as F . The zeta function is shown as

ζ, the Laplace transform as L, differentiation as ∂ and integration

as
´

. Complex values and functions are shown as blue nodes, and z

and u are complex variables, while b and x are a real variables. The

node associated to the complex exponential function ez constitutes

the main hub in the presented graph. Arguably, the exponential

function directly relates to a considerable breadth of mathematical

concepts.

Despite its relatively recent history, the exponential and

its logarithm inverse are related to an impressive range of

key mathematical concepts. For instance, several of the

fundamental mathematical functions, shown within the

green box in Figure 18, are directly related to the com-

plex exponential function. In addition, several important
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functions can be derived from the exponential function,

as well as the Fourier and Laplace transforms, which al-

low important connections with the operations of complex

differentiation and integration.

Thus, in a sense, a wide range of key mathematical con-

cepts can be directly associated to the exponential func-

tion, which is reflected in the large number of connections

attached to the three respective nodes and, in particular,

to the complex exponential function, which can be iden-

tified as the main hub (i.e. node with the highest degree,

or number of connections, e.g. [39, 40, 41]) of the graph

in Figure 18.

Though the present work focused attention on mathe-

matical and statistical concepts related to the exponential

function, the latter has also plays a central role in respec-

tive applications to a wide range of areas, ranging from

electrical engineering to data science, which is planned to

be covered in subsequent works.
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