
HAL Id: hal-03845345
https://hal.science/hal-03845345

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cross-View kernel transfer
Riikka Huusari, Cécile Capponi, Paul Villoutreix, Hachem Kadri

To cite this version:
Riikka Huusari, Cécile Capponi, Paul Villoutreix, Hachem Kadri. Cross-View kernel transfer. Pattern
Recognition, 2022, 129, pp.108759. �10.1016/j.patcog.2022.108759�. �hal-03845345�

https://hal.science/hal-03845345
https://hal.archives-ouvertes.fr


Pattern Recognition 129 (2022) 108759 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Cross-View kernel transfer 

Riikka Huusari a , b , ∗, Cécile Capponi b , Paul Villoutreix 

b , c , Hachem Kadri b 

a Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland 
b Aix-Marseille University, Universit ̧E de Toulon, LIS, CNRS, Marseille, France 
c Turing Center for Living Systems (CENTURI), Marseille, France 

a r t i c l e i n f o 

Article history: 

Received 31 August 2020 

Revised 3 January 2022 

Accepted 28 April 2022 

Available online 7 May 2022 

Keywords: 

Multi-view learning 

Cross-view transfer 

Kernel completion 

Kernel learning 

a b s t r a c t 

We consider the kernel completion problem with the presence of multiple views in the data. In this 

context the data samples can be fully missing in some views, creating missing columns and rows to 

the kernel matrices that are calculated individually for each view. We propose to solve the problem of 

completing the kernel matrices with Cross-View Kernel Transfer (CVKT) procedure, in which the features 

of the other views are transformed to represent the view under consideration. The transformations are 

learned with kernel alignment to the known part of the kernel matrix, allowing for finding generalizable 

structures in the kernel matrix under completion. Its missing values can then be predicted with the data 

available in other views. We illustrate the benefits of our approach with simulated data, multivariate 

digits dataset and multi-view dataset on gesture classification, as well as with real biological datasets 

from studies of pattern formation in early Drosophila melanogaster embryogenesis. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Multi-view learning is a machine learning paradigm referring to 

 learning situation where data contains various, often heteroge- 

ous, modalities that might be obtained from different sources or 

y different measurement techniques [1] . For example a dataset 

ight contain images with captions, both of them describing the 

ame data samples but from different points of view. Learning by 

aking into account all the views and their interactions is expected 

o give better results than learning from each single view indepen- 

ently, as the views are likely to carry complementary information 

nd regularities. 

Gathering multi-view data can be very expensive and in some 

ituations (such as some biological applications, or medical diagno- 

is from several physical examination devices) it might be outright 

mpossible to simultaneously measure all the views under investi- 

ation. A typical example of the latter situation arises in develop- 

ental biology when several variables are of interest but cannot 

e measured simultaneously [2] , or when results of heterogeneous 

ypes of experiments, such as spatial information and single cell 
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ranscriptomics, need to be integrated in a common representation 

3] . While many multi-view learning approaches have been devel- 

ped to work directly with missing data elements for tasks such as 

lassification or multi-view clustering among others [4–9] , unfor- 

unately many successful multi-view methods cannot directly cope 

ith data missing from the views. The simplest approach in this 

ase would be to neglect the samples with missing views, but de- 

ending on the amount of these samples this might make the data 

et so small as to make applying many of these machine learning 

ethods non-feasible. Thus a preprocessing step to fill in the miss- 

ng values is needed. 

Kernel methods in multi-view learning are widely used in many 

elds such as computational biology and computer vision [10,11] . 

ne especially successful and widely applied set of methods is 

alled Multiple Kernel Learning (MKL) [12] . In kernel methods, the 

ata samples are not considered as is by the learning algorithm, 

ut rather via a kernel function that takes two samples and acts 

s a kind of similarity measure between them. This can be an es- 

ecially advantageous property for the learning algorithm, as ker- 

el functions can be defined for many types of data. For exam- 

le, graphs can be difficult for many machine learning algorithms 

o handle, but kernel-based methods are able to treat them with 

o more difficulty than any other data, as the kernel-based algo- 

ithms consider the kernel matrix calculated with the samples, not 

he samples themselves. There are several possibilities on how to 
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efine kernels for many traditionally difficult data types, such as 

trings [13] , histograms [14] or graphs [15] , among others [16,17] .

hus, in this framework it is natural to directly complete the ker- 

els themselves instead of the original missing features. Kernel 

ompletion in multi-view setting is an emerging topic which has 

ot been much investigated so far [18] . 

Existing matrix completion methods can be applied to a kernel 

ompletion problem only when some individual kernel values are 

issing, and not the whole rows and columns. More often than 

ot, in our setting the missing values span indeed whole rows and 

olumns, and regular matrix completion approaches cannot cope 

ith the completion task. In order to succeed in filling in the val- 

es, the multi-view structure of the data should be leveraged for 

ernel completion. In this paper we propose a novel method for 

roblem of multi-view kernel completion, that is based on the 

dea of information transfer across the views. One assumption in 

ulti-view learning is that there are some relationships between 

he views; the views are connected and they describe the same 

ata, they are not fully independent. In our method we learn and 

ransfer the information that other views contain to represent the 

iew we wish to complete. We consider the features of the other 

iews and align their transformation to known values we have in 

he kernel of the view we wish to complete, using the notion of 

ernel alignment [19,20] . When we have learned this transforma- 

ion, we can predict the missing values based on the information 

n the other views. Our method is a very general in the sense that 

e do not require any of the views to be complete; all of them 

ay have some missing data. 

Going beyond this assumption, [21] and [22] have proposed 

ethods filling in missing values of multi-view kernel matrices. 

oth of these methods hinge crucially on treating the kernel matri- 

es as combinations of each other, something we do not consider 

n our approach. 

Cross-view learning, or learning mappings between the views, 

as been previously considered in the deep learning regime for 

issing view imputation in [23,24] . Of these, [24] considers adver- 

arial encoder-decoder architecture, and [23] convolutional neural 

etworks to work with image data. These works operate in a very 

ifferent regime than our proposition – as deep learning methods, 

hey require large amounts of data, and are restricted in the types 

f data they can accept as input. Moreover, [24] considers only two 

iews, while our method generalizes to any number of views. 

Previous work has shown that it is possible to use a linear 

ransformation on the kernel matrix to learn optimal domain adap- 

ation [25] . This transformation is similar to ours, however in 

25] the features to be transformed were explicitly fixed to be em- 

irical features obtained from kernel matrix, and instead of opti- 

izing with respect to kernel alignment they considered Hilbert- 

chmidt independence criterion [26] . In contrast to our work, the 

dea of transforming the features was considered in the context of 

omain adaptation, where the goal was to learn a common feature 

epresentation given kernel containing data from two domains. In 

ur case the transfer is done from multiple feature representations 

o one that describes still another kernel. 

This paper is organized as follows. The next section intro- 

uces relevant background about related works and kernel meth- 

ds. Section 3 introduces our algorithm (called CVKT for Cross- 

iew Kernel Transfer), which we validate with experiments on sim- 

lated and real data in Section 4 . Our experiments have a two- 

old focus: first of all to show the validity of our method from the 

oint of view of kernel completion, and secondly we aim to show 

he applicability also when the completed kernels are consequently 

sed in classification. For the first goal, of particular interest to us 

s a set of real biological data from studies of pattern formation 

n early Drosophila melanogaster embryogenesis, in part motivating 
a

2

ur work. Section 5 concludes and discusses possibilities for future 

ork. 

. Background 

We now discuss more in depth the problems of matrix and 

ernel completion, in both traditional and multi-view settings. We 

hen follow with short introduction to kernel methods. 

We denote scalars, vectors and matrices as a , a and A , respec-

ively. We consider the sample size to be n , and denote number of 

iews in the data with V . The view of e.g. a matrix is indicated in

arenthesis in superscript, as M 

(v ) . We denote 〈·, ·〉 F and || · || F the

robenius inner product and norm over matrices, and M 

� denotes 

he matrix transpose. 

.1. Multi-view kernel matrix completion 

Dealing with missing samples or features is a much studied 

roblem in data sciences. Missing data often refers to missing fea- 

ure values in the dataset, for example in a recommendation sys- 

em a feature of a data sample is missing if an user has not given

 rating to one item in the catalogue. Usually the data samples 

re stacked in a matrix, and the matrix structure is used in filling 

n the missing values here and there in the matrix. Matrix com- 

letion approaches often consider a low-rank approximation with 

hich the missing values are inputed [27,28] . In addition to matri- 

es built directly from the features, matrix completion can be used 

n filling in individual missing values in a kernel matrix. However 

atrix completion is not always applicable to kernel completion, 

ince kernel matrices have properties (symmetry, positiveness of 

igenvalues) that matrix completion algorithms might not guaran- 

ee to preserve. 

Matrix completion usually deals with only one set of data, and 

hus there are some restrictions in the ways the data can be com- 

leted. For example every data sample must contain some fea- 

ures, and every feature must be present in some samples. In other 

ords, there cannot be fully missing data samples or features, or 

ully missing rows or columns in the matrix. Of course in most 

ettings if a data sample is fully missing no algorithm can recover 

t. However if there is some additional information available, even 

his can be done. Data completion in multi-view setting uses the 

omplementary information from the views as this sort of addi- 

ional information. Even here, filling in a fully missing data sam- 

le completely is a challenge. As kernel methods are prominent in 

ulti-view learning, the kernel matrices containing similarities be- 

ween data samples can be filled instead, giving rise to multi-view 

ernel matrix completion. It is reasonable to predict the similari- 

ies in a view where some of them are missing based on the in- 

ormation available in the other views – as the various views are 

elated to each other, so are the subsequent kernel matrices. The 

tandard assumption in the multi-view learning paradigm is that 

he views are correlated with each other. Even if our method does 

ot explicitly use the mathematical formulation of correlation, it 

eavily relies on the relationships between the views in the data in 

rder to build the linear feature transformations across the views. 

First works for completing kernels of multiple views contain 

elatively restrictive assumptions, requiring one complete observed 

iew [29,30] . Going beyond this assumption, [21] proposed an EM- 

lgorithm that minimizes the KL-divergence of all the individual 

iew matrices to their linear combination. Lastly, a framework for 

ompleting kernel matrices in multi-view setting has been pro- 

osed in [22] , where both within- and between-view relationships 

re considered in solving the problem. As within-view relationship 

hey learn a low-rank approximation of the kernel based on the 

vailable values there, while the between-view relationship strat- 
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gy is based on finding a set of related kernels for each missing 

ntry and modelling the kernel as a weighted sum of those matri- 

es. In contrast to these works, our method directly considers the 

ata interactions in the other views, and predicts the missing data 

n a kernel matrix with them. The work of [8] considers multi- 

iew learning with kernels and in their framework presents a way 

o deal with missing data. However the completion they are inter- 

sted in is done in a specific landmark space, and not on the kernel 

alues we wish to complete. 

Some works use matrix completion methods in multi-view 

etting in predicting the labels of a supervised learning prob- 

em [31,32] . These approaches stack the multi-view data with their 

abels in a large matrix, and complete the test data labels. Usu- 

lly this is done for multi-output predictions, and this transduc- 

ive learning setting (only the labels are learned) is very distinct 

rom our problem; we consider unsupervised setting where kernel 

alues on the data are learned without considering the associated 

abels. 

It is also possible to bypass the problem of matrix comple- 

ion completely, if one uses learning methods that are able to take 

nto account the missing views. For example for incomplete multi- 

iew clustering, methods learning a latent space via e.g. matrix 

actorization [4] , consensus graph [6] or with generative adversar- 

al networks [5] . In supervised setting, works adapting to incom- 

lete multi-view data include for example a landmark-based SVM 

ethod [8] , deep networks [9] and in the context of weakly la- 

eled multi-label data [7] . 

.2. Learning with kernels 

We introduce here relevant background of kernel methods, and 

he notation we use in this paper in developing our method to 

olve the kernel completion problem. We consider multi-view data 

 ∈ X = X 

(1) × . . . × X 

(V ) such that each (complete) data sample x 

s observed in V views, x = (x (1) , . . . , x (V ) ) . 

In machine learning kernel methods are a very successful group 

f methods used in various tasks [16] . The main advantage of using 

 kernel function k : X × X → R in a learning task comes from the

act that it corresponds to an inner product in some feature space 

more concretely in the reproducing kernel Hilbert space (RKHS) H
nduced by the kernel), that is, 

 (x, z) = 〈 φ(x ) , φ(z) 〉 H 

. 

his allows one to map data inexpensively to some (possibly 

nfinite-dimensional) feature space where the data is expected to 

e better represented. In kernel-based learning algorithms the data 

s always dealt with via the kernel function so this feature repre- 

entation is never explicitly needed. In practice a matrix, K , is built 

ith the kernel function applied to all pairs of data samples such 

hat K i j = k (x i , x j ) . 

For multi-view learning the simplest and most widely used 

ernel-based approach is to build the kernel as a combination 

f kernels from individual views. This combination is usually a 

eighted sum 

 (x, z) = 

V ∑ 

v =1 

α(v ) k (v ) 
(
x (v ) , z (v ) 

)
, (1) 

here the weights α(v ) are often learned (multiple kernel learning, 

KL) [12] . Whenever there is some missing data in the views, ob- 

iously the sum cannot be calculated and the corresponding values 

n the final kernel matrix will be missing, too. This is illustrated 
3

elow, where grey areas of the kernel matrices indicate that the 

alues are available, and white areas thus unknown. 

he goal of our work is to fill in these missing values in the kernel

atrices by using the multi-view properties of the data, and lever- 

ging the information contained in the other views in completing 

he missing values of a view. 

Our kernel completion method is based on the idea of trying to 

orm a kernel matrix as similar as possible to the one under com- 

letion by transforming features from other views. In order to do 

his, we need a way to compare two kernel matrices. We choose to 

se the notion of kernel alignment [19,20] as the similarity mea- 

ure between two kernel matrices. Alignment between two matri- 

es M and N is defined as 

 (M , N ) = 

〈 M c , N c 〉 F 
‖ M c ‖ F ‖ N c ‖ F 

, (2) 

here subscript c refers to centered matrices, that is, M c = CMC 

here C = 

[
I n − 1 

n 1 n 1 
� 
n 

]
with I n the identity matrix, 1 n vector of 

nes, and M is of size n × n . Kernel alignment has been success- 

ully used in kernel learning problems for classification and regres- 

ion, when kernel alignment has been used to match the kernel to 

e learned with a so-called ideal kernel calculated with labels of 

he learning task ( yy � ). This approach is expected to produce good 

redictors [20] . 

. Cross-View kernel transfer algorithm 

We propose to fill in the missing values in multi-view kernel 

atrices by transferring the information available in other views to 

epresent the view in question. Contrary to other approaches based 

n treating/processing the view interactions as linear combinations 

f the kernels on views (or some quantity tied to the kernels), ours 

irectly considers the features and feature interactions, and based 

n those is able to predict the missing views. 

.1. Building blocks of cross-view transfer 

Given a multi-view data set X (1) , . . . , X (V ) containing n sam- 

les, we can build a n × n kernel matrix for each of the views,

 

(1) , . . . , K 

(V ) . Kernel-based learning algorithms take these kernels 

nstead of original data samples when solving the learning prob- 

em. 

As mentioned, a kernel corresponds to an inner product of data 

amples mapped to some feature space. If we know the feature 

ap the kernel uses, we can stack the features φ(x i ) , into a matrix
(v ) of size n × f , with f the dimensionality of the feature space. 

e can then write K 

(v ) = �(v ) [�(v ) ] � . For example with linear ker- 

el we would have �(v ) = X 

(v ) and K 

(v ) = X 

(v ) [ X 

(v ) ] � . Of course if

he feature map is infinite-dimensional (as is the case with Gaus- 

ian kernel, for example), it is not possible to stack the data pro- 

ections into a matrix. However the �(v ) is not unique, and for a 

et of samples it is usually easy to find an alternative feature map 

roducing the same kernel matrix. For any kernel matrix, the em- 

irical feature map [33] defined as ˆ �(v ) = K 

(v ) (K 

(v ) ) −1 / 2 is equally 

alid choice that produces the same kernel matrix, since 

ˆ (v ) [ ̂  �(v ) ] � = K 

(v ) [ K 

(v ) ] −1 / 2 [ K 

(v ) ] −1 / 2 K 

(v ) = K 

(v ) [ K 

(v ) ] −1 K 

(v ) = K 

(v

ue to the fact that the empirical feature map is easy to obtain for 

ny kernel, our method is applicable no matter what the kernels 

f the views are. 

It is also possible to approximate the feature map, for exam- 

le through Nystr ȵ m approximation scheme [34] which is widely 
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Table 1 

The components in the CVKT model, their sizes/lengths and corresponding explanations. Here m 

(v ) the dimensionality of the (possibly approximated) 

features of the v th view, and r is the rank (or number of columns) chosen for the transformation matrix. 

Notation Size Explanation 

K (v ) n × n Kernel matrix on view v 
�(v ) n × m 

(v ) Matrix of features on view v , with �(v ) [�(v ) ] � = K (v ) 

I (v ) i (v ) Set of observed samples of view v 
K (v ) I i (v ) × i (v ) Kernel matrix on the observed samples of view v 
�(v ) n ×

[∑ V 
j=1 m 

( j) − m 

(v ) 
]

Matrix of concatenated feature representations from all views but v , on all samples 

�(v ) 
I i (v ) ×

[∑ V 
j=1 m 

( j) − m 

(v ) 
]

Matrix of concatenated feature representations from all views but v , on the samples known in view v ; I (v ) 

U 

(v ) 
[∑ V 

j=1 m 

( j) − m 

(v ) 
]

× r Matrix transforming the features in �(v ) 
I 

u

o

t

t  

K

p

e

c

t  

t

w

n

v  

s

t

i

3

t

k

c

m

t

m

�

N

n

t

s(
f

d

h

o

t

o

i

b

o

o  

t

m  

C

i

n

t

t

m
U

w

i  

t

W

g

t

f

j

a

s

r

k

a

�

a

K

W

A

A

R

u

e

a

�

w

m

z

1 The CVKT code is available at RH’s personal website. 
sed in approximating kernel matrices. Nystr ȵ m approximation is 

btained by randomly sampling m < n data samples, and with 

hose calculating K 

(v ) ≈ K 

(v ) 
: ,P 

[ K 

(v ) 
P,P 

] −1 K 

(v ) 
P, : 

where subscript P denotes 

he set of these m samples. In this case ˜ �(v ) = K 

(v ) 
: ,P 

[ K 

(v ) 
P,P 

] −1 / 2 and

 

(v ) ≈ ˜ �(v ) [ ̃  �(v ) ] � . This is the approach we follow in our ex- 

erimental section, however any proper kernel approximation is 

qually valid to be used in our algorithm. 

Obviously, the kernel matrix K 

(v ) contains missing rows and 

olumns if some of the data is missing for this view. We denote 

he set of indices where data is available for view v as I (v ) , and

he size of the set as i (v ) ≤ n . Whenever clear from the context 

hich view is in question we might leave the superscript out, de- 

oting I (v ) = I . We denote the section of the kernel matrix of 

iew v containing the known values as K 

(v ) 
I ; this is a matrix of

ize i (v ) × i (v ) . We have summarized this notation (among the no- 

ation introduced in next section describing the CVKT algorithm) 

n Table 1 . 

.2. Cross-View kernel transfer algorithm 

We propose to learn to represent the kernel K 

(v ) 
I with the fea- 

ures of other views, and their interactions. We can leverage the 

ernel matrices available in other views and obtain the (empiri- 

al) features for the data samples, which we use for predicting the 

issing values of K 

(v ) . To transfer the knowledge from other views 

owards the view v under question, we firstly build a large feature 

atrix from the feature matrices of all the other views as 

(v ) 
I = 

[
�(1) 

I (v ) , . . . , �
(v −1) 

I (v ) , �(v +1) 

I (v ) , . . . , �(V ) 

I (v ) 
]
. (3) 

ote that the features of the view under completion task are 

aturally left out from this matrix. From each view we take to 

his matrix only the samples that are available in view under 

tudy, I (v ) . The new feature matrix �(v ) 
I is thus of size i (v ) ×

m 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(v ) 
)
. If features are missing 

rom some views in �(v ) 
I , they are inputed there with zeros to in- 

icate this. While we do not assume that no data sample has to 

ave complete view in general, we do assume that at least one 

ther view is observed at the same time with view under comple- 

ion. Thus every row in �(v ) 
I contains at least some features from 

ther views, even if some are missing. This procedure is illustrated 

n Fig. 1 . 

Learning to represent the target kernel K 

(v ) 
I with �(v ) 

I is done 

y considering a linear transformation of these features to some 

ther feature space. This transformation is defined by matrix U 

(v ) 

f size 
(
m 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(V ) 
)

× r . Here r refers

o ”rank” of the transformation and should be less than, or equal to 

 

(1) + . . . + m 

(v −1) + m 

(v +1) + . . . + m 

(V ) , and is chosen when the

VKT algorithm is called. In essence, the parameter r tells what 

s the dimension of the transformed features representing the ker- 

el K 

(v ) . We wish to learn the optimal transformation U 

(v ) such 

hat the transfer kernel �(v ) U 

(v ) [�(v ) U 

(v ) ] � is maximally aligned 
I I 

4 
o the target kernel, giving us the optimization problem 

ax 
 

(v ) ∈ S 
A 

(
K 

(v ) 
I , �(v ) 

I U 

(v ) 
[
�(v ) 

I U 

(v ) 
]� )

, (4) 

here we regularize the transformation matrix U 

(v ) by constrain- 

ng it to the sphere manifold S, meaning that ‖ U 

(v ) ‖ F = 1 . The op-

imization problem can be solved with gradient-based approach. 

e implemented this with the Pymanopt package [35] . 1 

We wish to highlight the fact that our transformation is very 

eneral, and indeed much more powerful than simply re-weighting 

he views. Our approach learns, in a sense, one transformation 

or each view other than v . Yet these transformations are learned 

ointly in U 

(v ) , ensuring the overall quality of the alignment. This 

lso means that our method is capable of learning if one view 

hould be favoured over the others, for example, or more general 

elationships between the views. 

After solving this optimization problem, a prediction on the full 

ernel matrix can be done via selecting all the other views to �(v ) 

s 

(v ) = 

[
�(1) , . . . , �(v −1) , �(v +1) , . . . , �(V ) 

]
(5) 

nd calculating 

˜ 
 

(v ) = �(v ) U 

(v ) 
[
�(v ) U 

(v ) 
]� 

. (6) 

e summarize the Cross-view Kernel Transfer (CVKT) procedure in 

lgorithm 1 . 

lgorithm 1 CVKT algorithm 

equire: Set of kernels K 

(1) , . . . , K 

(V ) ; indices of known values 

I (1) , . . . , I (V ) ; parameter r to control the size of transformation 

matrices U 

(v ) 

for v ∈ [1 , . . . , V ] do 

Calculate feature representation �(v ) 
I from K 

(v ) 
I 

end for 

for v ∈ [1 , . . . , V ] do 

Build �(v ) 
I and �(v ) as in Eqs. 3 and 5 

Solve for U 

(v ) in Eq. 4 

Predict ˜ K 

(v ) with �(v ) and U 

(v ) as in Eq. 6 

end for 

return 

˜ K 

(1) , . . . , ̃  K 

(V ) 

It is important to note that we do not assume that the views 

sed in completing the other are fully observed. We assume that 

ach data sample is fully observed in at least one other view, 

nd that each view contains some observed data samples. Thus 
(v ) will always have some observations available in every row to 

hich we can apply the transformation. In learning the transfor- 

ations, we fill in the missing values in the features in �(v ) with 

eros, as shown in Fig. 1 . When learning the transformation matrix 
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Fig. 1. Illustration on building the feature matrix �(1) 
I (see Eq. (3) ) in our method from the feature representations �(2) − �(4) . The white areas represent the missing data, 

and are filled with zero-inputation. 
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2 The CVKT code and the datasets used in the experiments are available at 
 

(v ) , the zero values in features have no effect on it; the areas of

 

(v ) that would be affected by this feature will be multiplied with 

ero, and in a sense left out in the decision process. (Note how- 

ver that there is always at least one view available to learn with, 

s per our assumption.) Thus when learning U 

(v ) , it also learns 

hich view combinations work together and how. From this we 

an see that the structure of missing data distribution can affect 

he transformation, as after training CVKT expects to use only cer- 

ain subsets of views in predicting kernel values. More concretely, 

he missing data distributions should be the same in training and 

esting for CVKT to be able to generalize. For example let us con- 

ider a dataset with three views, 0, 1 and 2, from which we want

o fill in missing values in view 0. If view 1 only has samples avail-

ble where 0 does, and view 2 only where 0 does not, CVKT natu- 

ally will not be able to learn a predictive mapping from view 2 to 

 as there are no training samples for this configuration. The same 

ogic applies similarly also to other settings, for example if view 1 

s as described above and view 2 is full, CVKT should be trained 

nly with view 2. Otherwise in training it would learn a mapping 

 1 , 2 } → { 0 } , while it should predict { 2 } → { 0 } . 
Multi-view learning paradigm focuses on data where different 

epresentations (or views) are drawn from one source. The various 

iews describe different aspects of the same data, and may con- 

ain complementary information to each other. As the views are 

rawn from the same source, it is to be expected that they agree 

n predictive tasks (consistency). In unsupervised learning settings 

such as our work for the unsupervised task of multi-view ker- 

el completion), it can be difficult to talk about view agreement, 

ince there is no prediction task in which the views can agree. 

et we argue that our alignment-based optimization problem pro- 

otes consistency between the views. One can see the maximal 

lignment between K 

(v ) 
I (the kernel matrix on available data, to be 

ompleted) and �(v ) 
I U 

(v ) 
[ 
�(v ) 

I U 

(v ) 
] � 

(the kernel matrix built from 

eature representations of other views) as promoting consistency 

etween the views: the transformation learns to match the differ- 

nt views as well as possible. 

Compared to the only two other approaches for multi-view ker- 

el matrix completion [21,22] , CVKT differs in the basic optimiza- 

r

5 
ion procedure. The other approaches treat the optimization jointly 

ver all the views, meaning that all the values have to be com- 

leted at once, while CVKT treats the view completion problems 

ndependently, one view at a time. Therefore CVKT can be applied 

o kernel completion problems more flexibly. Moreover, the other 

pproaches only consider that the views are interacting via linear 

ombinations over the whole views; our algorithm works in trans- 

orming a full feature space concatenated over set of views: its ap- 

licability is broader. The transformation we learn on the kernel 

eatures is very expressive, and can be expected to learn compli- 

ated relationships between the views, and thus to adapt to com- 

lementary views better than the more restrictive model of repre- 

enting the kernel matrices as linear combinations of each other. 

The complexity of the CVKT algorithm is naturally dependent 

n the number of samples available in the view processed at each 

teration, i (v ) , meaning that our algorithm is faster with more miss- 

ng data. The other two important parameters, m 

(v ) for the fea- 

ure dimensions, and r for the number columns in U 

(v ) can be 

re-set or cross-validated. As CVKT is solved with gradient-based 

ethod we consider the complexity of calculating the derivative 

f (4) w.r.t U 

(v ) . The derivative is straight-forward to calculate, 

nd the complexity arises from simple matrix multiplications. The 

atrix multiplications can be performed in various orders, and 

he preferred order depends on which variables are assumed to 

e small. For convenience, let us denote m = m 

(1) + . . . + m 

(v −1) +
 

(v +1) + . . . + m 

(V ) . Recall that r ≤ m . If we further assume that

t is very small (i.e. r � m ), and that the feature approximations 

re relatively small (i.e. m < i (v ) , we can calculate the gradient in

([ i (v ) ] 2 m ) . 

. Experiments 

In this section we empirically validate our approach (CVKT) in 

rder to illustrate and validate its properties and performance. 2 

n our experiments we aim to show that CVKT performs the ker- 

el matrix completion accurately, and we do this with simple 
iikkahuusari.com . 
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imulated data alongside with a real dataset from study of pat- 

ern formation in Drosophila melanogaster embryogenesis. We fur- 

her show its utility for classification problems with multi-view 

atasets containing also class labels (handwritten digits and time- 

eries data on gestures). Our results show that using CVKT-inputed 

ernel matrices in learning problems will yield superior perfor- 

ance w.r.t classification accuracy, compared to other ways to fill 

n the data in the kernel matrices. This shows that our kernel com- 

letion results, while being accurate with respect to completion er- 

or measures, are also suitable to be used in consecutive machine 

earning tasks. 

.1. Compared methods 

There are very few works in multi-view kernel completion set- 

ing, and very few relevant methods to compare ours to. Taking ex- 

mple from another paper solving multi-view kernel matrix com- 

letions problem [21] , we compare our method to two simple 

aselines; mean and zero imputation, where the missing values are 

eplaced with kernel mean value, or zeros, respectively. Addition- 

lly, we also consider the more elaborate MKC [22] method, and 

se the code provided. 3 From the methods introduced in the pa- 

er, we focus on MKC emdb(ht) , as it is very general in the sense that

t is intended to be used when kernel functions in different views 

re not the same and the kernel matrices have different eigen- 

pectra. In their experiments, [22] have considered as a competing 

ethod an EM-based algorithm. However it operates with more 

estrictive assumptions than our algorithm, requiring a view where 

here are no missing samples present. In order for us to use this 

ethod, we would need to make our experimental setting consid- 

rably easier than that which our paper considers, and thus we 

ave left it out. 

Going beyond the specific area of multi-view kernel matrix 

ompletion, many methods exist that work with incomplete multi- 

iew data. For example for classification with kernel methods, 

8] adapts a landmark-based approach, and provides also an ex- 

ension for adapting the method to the case with missing samples 

n the data. Unfortunately this method assumes that the landmarks 

re fully observed under all the views, which is not applicable to 

ur experimental setting where each view can have missing sam- 

les, and each data sample can have missing views. 

In the multi-view clustering literature there are many works 

ealing with missing views. One line of work in this context is 

ased on nonnegative matrix factorization (NMF). While cluster- 

ng with incomplete views is very different from the problem of 

ernel matrix completion tackled in this paper and thus compar- 

ng for completion accuracy is not possible, we can nevertheless 

ake some comparisons to this approach. Namely, as these meth- 

ds build a common representation of the views, we can use this 

ommon representation in classification task, instead of applying 

-means clustering on it. Thus, we consider the MIC method pre- 

ented in [4] as a competitor for our classification experiments. 

ven with this change to the method the settings are still very 

ifferent: while with the other methods we can use the individ- 

al views completed with the different schemes, with MIC we only 

ave the common representation from all the views. 

We wish to highlight that NMF applied on the individual views 

s not applicable in missing views setting by itself, since in this 

ase the whole row of data is missing. Moreover, the NMF ap- 

roaches assume that the features for the data are available, which 

s something we do not require (we require only the incomplete 

ernel matrices). Also, the NMF methods require vectorial data 

rom all the data views, while as a kernel method our CVKT can 
3 https://github.com/aalto-ics-kepaco/MKC_software 

k

t

u

6 
andle views of widely different data types, as long as a kernel 

an be defined on them. 

.2. Experimental protocols 

In all CVKT experiments we use features extracted with 

ystr ȵ m approximation, and cross-validate over different approx- 

mation levels (20%, 40%, ..., 100%). We also cross-validate over the 

ank (or number of columns r) of matrices U 

(v ) , over similar inter- 

als (20%, 40%, ..., 100% of the full rank m ). For MKC, we performed

he cross-validation over the parameters suggested in the code 

 c 1 = [10 0 0] , c 2 = [1 , 10] and c 3 = [0 . 001 , 0 . 01 , 0 . 1 , 1 , 10] ), adding

alues 10 and 0.1 for c 1 . With MIC method we fix α = β = 0 . 01 for

ll the views as suggested [4] . We cross-validate over the ”mean 

t ratio” and ”error” parameters, in [0, 0.2, 0.4, 0.6, 0.8, 1] and 

0.1, 0.01, 0.001, 0.0 0 01], respectively, and use random initialisa- 

ion for initial NMFs for the views. In choosing the best results in 

ross-validation we used the CA error measure defined below. For 

ll our experiments we choose the samples assumed to be miss- 

ng randomly, taking care that no view or sample would go fully 

nobserved. 

For measuring the unsupervised kernel completion perfor- 

ance, we consider the metrics in the two other multi-view kernel 

atrix completion papers; the completion accuracy (CA) in [21] and 

verage relative error (ARE) in [22] . The CA error measure is defined 

s 

A = 

1 

V 

V ∑ 

v =1 

( 

1 −
Tr 

(
K 

(v ) 
true K 

(v ) 
pred 

)∥∥K 

(v ) 
true 

∥∥
F 

∥∥K 

(v ) 
pred 

∥∥
F 

) 

, (7) 

nd the ARE over one view as 

RE = 

1 

n 

(v ) − i (v ) 

∑ 

t �∈I (v ) 

∥∥K 

(v ) 
pred 

[ t, :] − K 

(v ) 
true [ t, :] 

∥∥
2 ∥∥K 

(v ) 
true [ t, :] 

∥∥
2 

, (8) 

here K 

(v ) 
true and K 

(v ) 
pred 

are the correct and the predicted kernel ma- 

rices on view v , respectively, and [ t, :] refers to the row t of the

ernel matrix. Unlike CA, the error measure ARE is only computed 

ver the rows corresponding to the originally missing samples. We 

lso consider Frobenius norm error, that is, 

 ro = ‖ K 

(v ) 
true − K 

(v ) 
pred 

‖ F / ‖ K 

(v ) 
true ‖ F . (9) 

ompared to ARE, this measure considers also the already known 

ows of kernel matrix. In all of these error measures lower value 

eans better completion performance. In addition to these two 

easures, we use the structural similarity index [36] , defined as 

.sim = 

(
2 μ

K (v ) true 
μ

K (v ) 
pred 

+ c 1 

)(
2 σ

K (v ) true K 
(v ) 
pred 

+ c 2 

)
(

μ2 

K (v ) true 

+ μ2 

K (v ) 
pred 

+ c 1 

)(
σ 2 

K (v ) true 

+ σ 2 

K (v ) 
pred 

+ c 2 

) , (10) 

n which μx is mean of x , σx is variance of x , σxy is covariance

f x and y , and c 1 and c 2 are variables for stabilizing the divi-

ion (see [36] ). It is a measure dedicated for image comparisons, 

n which properties like luminance or contrast do not affect the 

omparison result since they do not affect the structure of the im- 

ge. For structural similarity index ( s.sim ) a high value means that 

he two images are similar. 

In the second set of our experiments with labeled multi-view 

ata, we use the traditional classification accuracy in assessing the 

erformance of our method. We further validate these results with 

he McNemar’s test of statistical significance. 

Our method is expected to find generalizable structures on the 

ernel and predicting them in the completed matrices. It is impor- 

ant to notice that while this is the case, the original known val- 

es of the kernel are not necessarily fully preserved in the learned 
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Table 2 

The kernel completion results on simulated data averaged over the seven views in the data with various amounts of missing 

views per data sample ( a ). The arrow below error measure shows whether higher values ( ↑ ), or lower values ( ↓ ) indicate 

superior performance. 

Error measure a CVKT MKC zero-input. mean-input. 

CA 1 0.010 ±0.003 0.071 ± 0.065 0.143 ± 0.039 0.015 ± 0.006 

(↓ ) 2 0.012 ±0.002 0.054 ± 0.024 0.285 ± 0.048 0.027 ± 0.007 

3 0.015 ±0.004 0.114 ± 0.058 0.427 ± 0.049 0.038 ± 0.009 

4 0.025 ±0.002 0.309 ± 0.062 0.571 ± 0.043 0.047 ± 0.011 

ARE 1 0.152 ±0.025 0.599 ± 0.286 1.000 ± 0.000 0.328 ± 0.033 

(↓ ) 2 0.169 ±0.026 0.486 ± 0.121 1.000 ± 0.000 0.335 ± 0.028 

3 0.198 ±0.015 0.592 ± 0.162 1.000 ± 0.000 0.336 ± 0.029 

4 0.283 ±0.026 0.825 ± 0.060 1.000 ± 0.000 0.336 ± 0.032 

Fro. 1 0.138 ±0.020 0.330 ± 0.167 0.509 ± 0.069 0.166 ± 0.035 

(↓ ) 2 0.154 ±0.016 0.341 ± 0.078 0.695 ± 0.050 0.231 ± 0.031 

3 0.176 ±0.018 0.482 ± 0.106 0.817 ± 0.034 0.272 ± 0.032 

4 0.254 ±0.020 0.758 ± 0.075 0.902 ± 0.020 0.301 ± 0.034 

S.sim 1 0.701 ±0.035 0.417 ± 0.216 0.269 ± 0.105 0.633 ± 0.110 

(↑ ) 2 0.606 ±0.036 0.326 ± 0.097 0.106 ± 0.032 0.480 ± 0.072 

3 0.516 ±0.026 0.205 ± 0.074 0.055 ± 0.017 0.418 ± 0.043 

4 0.385 ± 0.048 0.072 ± 0.025 0.030 ± 0.006 0.401 ±0.021 
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4 the view ind of the third dataset remains unused because of the lesser quality 

of the staining [2] . 
ernel. Thus in all the experiments we perform post-processing on 

he kernel predicted with CVKT by scaling the kernel values to the 

ange of values in original kernel matrix, and shifting it so that the 

ean is the same as in the known part of the original kernel. 

.3. Experiments in multi-view kernel matrix completion 

We now describe our experiments on multi-view kernel ma- 

rix completion with unsupervised setting; i.e. there are no labels 

vailable and we assess the performance of the compared meth- 

ds only on the matrix completion error measures introduced in 

he previous section. Thus, the MIC method is not applicable for 

omparison in this section. 

.3.1. Simulated data 

To validate our algorithm and to illustrate its generalization 

roperties in predicting kernel values, we performed experiments 

ith a simple simulated data set. We have created 100 data sam- 

les with a simple vector autoregression model of memory 1 

here we periodically change the parameters of the model evo- 

ution, and constructed 7 views from overlapping column groups 

f the matrix to which the time series vectors have been stacked 

nto. We calculated RBF kernels from these views. We consider a 

issing data scenario where every data sample is missing from 

andomly selected a views, a ranging from 1 to 4. 

We report the results averaged over all the views for the vari- 

us levels of missing data in Table 2 , where we compare our CVKT

o the other completion methods. To highlight the difference of our 

ethod to mean imputation that also performs relatively well with 

espect to the error measures, we show examples of completed 

ernel matrices in Fig. 2 . Our method learns the overall trends in 

he kernel matrices, and is able to predict and generalize those. 

.3.2. Drosophila melanogaster pattern formation data set 

We now turn to a kernel completion task with a complex real- 

orld multi-view dataset in order to validate our CVKT approach. 

Image multiplexing is a relevant application of the cross-view 

ernel transfer method in biology. To study how cell fates are 

stablished by gene regulatory networks in the field of develop- 

ental biology, it has recently been proposed that a first neces- 

ary step is to integrate multiple views from heterogeneous image 

atasets [2] . Gene regulatory networks describe the sequence of in- 

eraction between various chemical species inside a cell or within 

 tissue, which ultimately lead to cell differentiation into a variety 

f functional types. The number of variables in these networks can 
7 
o up to hundreds and each of them have to be measured sepa- 

ately with specific reporters. To understand the kinetics of these 

nteractions it is necessary to reconstruct the time courses of their 

evels in various parts of the embryo. Despite many advances in 

icroscopy techniques, it is still challenging to measure more than 

hree of these variables at the same time, in addition, in the ab- 

ence of reliable live reporters, some variables can only be mea- 

ured in fixed images where the development is arrested, hence 

he need to integrate multiple views. As an illustration, live imag- 

ng of gastrulation provides information about nuclear positions as 

 function of time, but is silent about the levels of gene expres- 

ion. On the other hand, an image of a fixed embryo reveals the 

istribution of an active enzyme but has no direct temporal infor- 

ation. 

In the following example, we follow [2] and focus on the dorso- 

entral patterning in Drosophila melanogaster early development. 

n this model system a graded profile of nuclear localization of 

 transcription factor named Dorsal (Dl) establishes the dorsoven- 

ral (DV) stripes of gene expression. Four datasets of fixed images 

ere acquired to visualize nuclei (referred to as M, for morphol- 

gy), protein expression of doubly phosophorylated ERK (dpERK, 

1), Twist (V2), and Dorsal (V4), and mRNA expression of ind (V3) 

nd rho (V5). The first dataset contains 108 images stained for 

pERK and Twist. The second dataset contains 59 images stained 

or dpERK, ind , and Dorsal. The third dataset contains 58 images 

tained for dpERK, ind , and rho . The fourth dataset contains 30 im- 

ges stained for Twist, ind , and rho . Examples of the images the 

ata contains can be seen in Fig. 3 . The distribution of the vari-

bles are shown on Fig. 4 . 4 

In order to quantify the success of the proposed CVKT method, 

e select randomly samples to be missing for each of the views. 

he samples are selected in addition to the already missing sam- 

les, meaning that the selection is done in the teal coloured ar- 

as in Fig. 4 . We then complete these samples with the informa- 

ion available in the other views. Note that we do not try to com- 

lete the truly missing samples, as our goal is to evaluate our al- 

orithm and we want to be able to compare the completion re- 

ults to known values. Thus for example when we consider view 

, we will only deal with datasets 1 and 4 (see Fig. 4 ), and we

ave five problems of different sizes. In addition to validating our 

ethod, this experiment mimics a real cross-validation situation 

hen some samples in the data are truly missing. 
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Fig. 2. Examples of target kernel matrices (left), our predicted kernel matrices (second from left), MKC completed kernel matrices (second from right) and mean imputed 

kernel matrices (right) on simulated data. On top row the matrices correspond to view 1 in the scenario when two views are missing per data sample, on the bottom row 

to view 4 in the scenario when three views are missing per data sample. The kernel matrices are reordered for better visualization such that top left corner contains the 

originally known data samples. 

Fig. 3. Example images from the embryo dataset. In these images the colours identifying the views are modified so that they correspond over the datasets, e.g. dpERK is 

shown in red in all the images. In the dataset the views are highly correlated, a fact that can be exploited in the kernel completion task. Figure is adapted from Villoutreix 

et al. [2] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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5 https://archive.ics.uci.edu/ml/datasets/Multiple +Features 
6 http://www.timeseriesclassification.com/description.php?Dataset= 

UWaveGestureLibraryAll 
Our CVKT performs better in most of the views than other 

tate-of-the-art methods with respect to CA error measure, shown 

n Table 3 . Moreover, from Fig. 5 we can see that the structure of

he kernel matrix is learned very well; however the exact values 

n our learned kernel matrices are slightly different (”lighter” im- 

ges), which is no doubt then seen in the error measures. For the 

ake of clarity and brevity, we have focused in showing the case 

ith 30% of missing data (a significant amount) in detail. 

.4. Classification accuracy with completed kernels 

While it is good to analyse the performance of our method 

n only matrix completion task, it is important to remember that 

he reason for filling in the data in kernels is to make it possible

o perform classification (or some other learning task) with them. 

hus, in our next experiments our goal is to validate our CVKT as a 
8

ernel completion method also by applying the completed kernel 

atrices to their accompanying classification problem. This is done 

n order to highlight the differences between CVKT and mean im- 

utation, methods producing very different results but for which 

he kernel completion error measures are sometimes very similar. 

e highlight that CVKT acts here as a preprocessing method for 

lassification, as it only fills in the missing values in the multi-view 

ernel matrices. After applying CVKT (or other imputation method) 

e train a standard SVM classifier using the learned kernel matri- 

es. 

We consider the multiple features digits dataset 5 consisting of 

ix views, as well as the uWaveGesture dataset 6 [37] containing 

https://archive.ics.uci.edu/ml/datasets/Multiple
http://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibraryAll
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Fig. 4. Data availability in the views of Drosophila melanogaster data, coloured part referring to available data and white to missing; D to dataset and V to view. The datasets 

are of different sizes: 108, 59, 58 and 30 samples, respectively. 

Table 3 

Kernel matrix completion results on embryo data set [2] where 30% of available 

data is selected to be missing randomly per view. The arrow below the error mea- 

sure shows whether higher values ( ↑ ) or lower values ( ↓ ) of the error measure 

indicate superior performance when comparing the various methods. 

Error measure view CVKT MKC zero-input. mean-input. 

CA 1 0.295 0.230 0.254 0.206 

(↓ ) 2 0.179 0.190 0.251 0.165 

3 0.162 0.244 0.259 0.166 

4 0.129 0.148 0.246 0.151 

5 0.132 0.170 0.225 0.164 

ARE 1 0.843 0.966 1.000 0.919 

(↓ ) 2 0.723 0.915 1.000 0.842 

3 0.739 0.968 1.000 0.831 

4 0.690 0.805 1.000 0.820 

5 0.734 0.884 1.000 0.882 

Fro 1 0.717 0.647 0.666 0.608 

(↓ ) 2 0.574 0.608 0.663 0.551 

3 0.546 0.656 0.671 0.551 

4 0.490 0.528 0.657 0.529 

5 0.497 0.559 0.632 0.549 

S.sim 1 0.526 0.584 0.692 0.672 

(↑ ) 2 0.740 0.641 0.554 0.704 

3 0.722 0.571 0.519 0.673 

4 0.730 0.703 0.530 0.690 

5 0.636 0.566 0.602 0.566 
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hree views. For the digits dataset, we selected 20 samples from 

ll the 10 classes, resulting in six 200 × 200 -sized kernel matrices 

or the completion problem. The views are various descriptions ex- 

racted from digit images, such as Fourier coefficients (view ’fou’) 

r Karhunen-Lo ȿ ve coefficients (view ’kar’). We use RBF kernels for 

iews with data samples in R 

d , and Chi 2 kernels for views with 

ata samples in Z 

d . The view ’mor’ seems to 7 contain features fit- 

ing to both categorical and real data, so we consider a sum of the 

wo appropriate kernels. 

We randomly set samples to be assumed missing in this 

ataset. We vary the level of total missing samples in the whole 

ataset from 10% to 50%, by taking care that all the samples are ob- 

erved at least in one view, and that all views have observed sam- 

les. We note that in order to fill in missing values for a given view

 , we need data at least from one other view to learn the trans-

ormation from. Thus we cannot consider arbitrarily high levels of 

issing data in our experiments. For example with 3-view data 
7 According to the data source, the source image dataset is lost, and there is very 

ittle information on the views. 

f

a

t

p

9 
his threshold would be 33% missing values; with 5-view data 60% 

issing values. When we consider levels higher than this threshold 

ot all the samples will end up having enough data to be used in 

earning the transformation (i.e. they will only be observed in one 

iew), and in essence our training set size diminishes. For example 

he uWaveGesture experiments end up operating in this regime for 

he highest levels of missing data. 

After we perform kernel completion with CVKT and the com- 

eting methods, we give the completed matrices (selected again 

.r.t. highest CA) to SVM classifiers. For CVKT the selection based 

n CA was done individually for all the views, since it performs in- 

ividual optimization. For MKC the errors were averaged over the 

iews, and the result with lowest overall error was chosen, as MKC 

erforms joint optimization. The MIC method, originally introduced 

or incomplete multi-view clustering, builds a common representa- 

ion of the views that can be then used in the classification task, 

hile the individual views rest incomplete. Thus, with this method 

e cannot compare the view-specific performance, but show com- 

arisons to this common representation. With MIC we also use 

VM classifier, with RBF kernel. In order to perform classification 

e divide the data in half for training and testing, and this selec- 

ion is the same for all the kernel matrices. Both training and test- 

ng sets contain samples for which the views were assumed miss- 

ng in completion task. 

We report the accuracies on test data averaged over five differ- 

nt selections for missing data in Fig. 6 for the digits dataset. Our 

VKT performs the classification superiorly to other kernel com- 

letion methods, and comparably to using the original fully known 

ernel matrix up to the case with 30% of missing data. The MIC 

ethod does not perform as well as CVKT in most of the views, 

xcept in two where it is the same with the lowest amount of data 

issing. However even in these views its performance drops much 

ore rapidly with level of missing data than for example CVKT, 

nd for 50% of missing data it performs always worse than even 

ean or zero inputed kernels. 

In previous experiments the mean imputation has sometimes 

erformed similarly to CVKT with respect to matrix completion 

rror measures. It is the case also with the digits dataset (see 

able 4 ), but the classification accuracy CVKT obtains is consis- 

ently higher than that of mean imputation (see Fig. 6 ). This is 

s expected; the inputed mean values do not carry meaningful in- 

ormation about the data samples they are supposed to represent, 

nd thus will not allow for successful classification. It is interesting 

o notice that for view ’fou’, the classification accuracy after com- 

leting 10% missing data is higher with CVKT kernel than with the 
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Fig. 5. Target kernel matrices (left), our predicted kernel matrices (middle) with CVKT, and MKC predicted kernel matrices (right) of embryo data [2] when randomly selected 

30% of the available samples were set to be missing. The kernel matrices are reordered for better visualization such that top left corner contains the originally known data 

samples (areas with unknown and known samples are separated with white lines). 

10 
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Fig. 6. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all six views of the digits dataset as a 

function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots. 

Table 4 

Completion error measures on digits data set with various levels of missing data samples in the views, averaged over the 

views. The arrow below the error measure shows whether higher values ( ↑ ) or lower values ( ↓ ) of the error measure 

indicate superior performance when comparing the various methods. 

Error measure missing % CVKT MKC zero-input. mean-input. 

CA 10 0.0097 ±0.0059 0.214 ±0.281 0.097 ±0.021 0.004 ±0.002 

(↓ ) 20 0.0104 ±0.0062 0.147 ±0.205 0.195 ±0.026 0.008 ±0.004 

30 0.012 ±0.006 0.143 ±0.043 0.295 ±0.031 0.012 ±0.005 

40 0.014 ±0.007 0.189 ±0.051 0.392 ±0.035 0.015 ±0.007 

50 0.018 ±0.009 0.232 ±0.064 0.493 ±0.042 0.017 ±0.008 

ARE 10 0.148 ±0.054 4.916 ±12.008 1.000 ±0.000 0.217 ±0.057 

(↓ ) 20 0.155 ±0.049 1.808 ±4.356 1.000 ±0.000 0.213 ±0.052 

30 0.167 ±0.048 0.739 ±0.112 1.000 ±0.000 0.214 ±0.052 

40 0.181 ±0.048 0.790 ±0.141 1.000 ±0.000 0.214 ±0.053 

50 0.197 ±0.052 0.851 ±0.269 1.000 ±0.000 0.213 ±0.052 

Fro 10 0.131 ±0.044 2.579 ±6.389 0.427 ±0.045 0.090 ±0.024 

(↓ ) 20 0.137 ±0.045 1.914 ±5.539 0.591 ±0.036 0.124 ±0.030 

30 0.146 ±0.042 0.545 ±0.092 0.708 ±0.031 0.148 ±0.035 

40 0.163 ±0.044 0.631 ±0.121 0.793 ±0.027 0.167 ±0.039 

50 0.182 ±0.047 0.731 ±0.246 0.860 ±0.026 0.181 ±0.042 

S.sim 10 0.760 ±0.117 0.304 ±0.150 0.393 ±0.088 0.862 ±0.050 

(↑ ) 20 0.730 ±0.114 0.252 ±0.132 0.185 ±0.057 0.755 ±0.068 

30 0.678 ±0.115 0.146 ±0.072 0.105 ±0.039 0.660 ±0.087 

40 0.598 ±0.124 0.101 ±0.047 0.069 ±0.025 0.581 ±0.092 

50 0.509 ±0.134 0.078 ±0.027 0.048 ±0.016 0.509 ±0.104 
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riginal full kernel matrix. It might be that in this case CVKT has 

een able to filter out some noise distortions in samples, which 

ould give it better performance than the baseline. This could be 

nalogous to using kernel approximation schemes as regulariza- 

ion [38] . We emphasize that in the experiments the kernel matrix 

ompletion is done fully independently from the consecutive clas- 

ification task, without knowing which samples would be used in 

raining and which in testing. 

We follow the same experimental protocol also for the 

WaveGesture dataset, where we consider the 896 training sam- 

les in three views, with 8 classes. We report the completion er- 

or measures in Table 5 . Again, according to some error measures, 

he mean imputation seems to be performing better than the ded- 

cated matrix completion methods. However, again, from Fig. 7 , we 

an see that CVKT performs better in the subsequent classification 

ask in most of the cases. It is clear that CVKT retains more rele-

ant information about the data than the simple imputation meth- 
11 
ds, yet this is not always reflected in the completion error mea- 

ures. The MIC method performs here better than other baselines, 

ut were we to consider MKL-style combinations of the individual 

ernels used in experiments of Fig. 7 , the performance of CVKT and 

IC would be almost identical. 

Furthermore, we performed statistical testing to assess the sig- 

ificance of our classification results, excluding the MIC method 

ince it cannot be used for individual views, nor can it be used in 

he task of kernel matrix completion. First of all, we consider the 

cNemar test. We compared the CVKT-based classification to the 

our other methods: classification with full kernels, MKC-filled ker- 

els, and mean and zero-inputed kernels. We show in Tables 6 and 

 the obtained p-values, and also how often the null hypothesis 

as rejected (p-value threshold 0.05), i.e. how often the two clas- 

ification results were significantly different. We observe that the 

ifferences mostly grow with the level of missing values. For the 

igits dataset, the CVKT results with 10% and 20% of missing data 
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Table 5 

Completion error measures on uWaveGesture data set with various levels of missing data samples 

in the views, averaged over the views. The arrow below the error measure shows whether higher 

values ( ↑ ) or lower values ( ↓ ) of the error measure indicate superior performance when comparing 

the various methods. 

Error measure missing % CVKT MKC zero-input. mean-input. 

CA 10 0.021 ±0.001 0.101 ±0.031 0.097 ±0.009 0.006 ±0.001 

(↓ ) 20 0.023 ±0.001 0.099 ±0.037 0.192 ±0.012 0.011 ±0.001 

30 0.025 ±0.002 0.184 ±0.100 0.302 ±0.022 0.016 ±0.003 

40 0.027 ±0.003 0.223 ±0.106 0.379 ±0.041 0.019 ±0.003 

50 0.028 ±0.003 0.252 ±0.078 0.452 ±0.072 0.022 ±0.001 

ARE 10 0.198 ±0.004 0.889 ±0.146 1.000 ±0.000 0.246 ±0.018 

(↓ ) 20 0.207 ±0.005 0.679 ±0.178 1.000 ±0.000 0.245 ±0.017 

30 0.217 ±0.009 0.750 ±0.180 1.000 ±0.000 0.244 ±0.015 

40 0.226 ±0.012 0.770 ±0.171 1.000 ±0.000 0.243 ±0.015 

50 0.229 ±0.011 0.757 ±0.175 1.000 ±0.000 0.244 ±0.015 

Fro 10 0.205 ±0.004 0.587 ±0.204 0.430 ±0.019 0.108 ±0.009 

20 0.213 ±0.005 0.468 ±0.086 0.589 ±0.016 0.147 ±0.009 

30 0.222 ±0.009 0.559 ±0.128 0.716 ±0.022 0.178 ±0.014 

40 0.230 ±0.012 0.615 ±0.118 0.782 ±0.034 0.194 ±0.013 

50 0.235 ±0.011 0.664 ±0.090 0.832 ±0.050 0.206 ±0.003 

S.sim 10 0.466 ±0.064 0.244 ±0.176 0.508 ±0.033 0.898 ±0.010 

(↑ ) 20 0.424 ±0.057 0.192 ±0.143 0.294 ±0.037 0.793 ±0.014 

30 0.362 ±0.047 0.217 ±0.059 0.178 ±0.014 0.670 ±0.025 

40 0.304 ±0.021 0.149 ±0.061 0.129 ±0.029 0.588 ±0.049 

50 0.278 ±0.026 0.108 ±0.034 0.099 ±0.044 0.503 ±0.075 

Fig. 7. Accuracies of classification with full, mean inputed, zero inputed, CVKT-completed and MKC-completed kernel matrices for all three views of the uWaveGesture 

dataset as a function of level of missing data in views. The MIC results are for a common representation, and thus identical in all the plots. 

Table 6 

McNemar’s test on various classification results compared to CVKT classification results with the digits dataset. The 

table displays the average p-values ± its standard deviation, and in parenthesis as percentage with how many of the 

runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically significantly different) 

with p-value threshold at 0.05. 

missing % full MKC zero-input. mean-input. 

all 0.299 ± 0.317 (33.3) 0.000 ± 0.001 (100.0) 0.023 ± 0.086 (90.7) 0.023 ± 0.086 (90.7) 

10% 0.505 ± 0.284 (3.3) 0.000 ± 0.001 (100.0) 0.066 ± 0.104 (63.3) 0.066 ± 0.104 (63.3) 

20% 0.445 ± 0.310 (3.3) 0.000 ± 0.002 (100.0) 0.031 ± 0.148 (96.7) 0.031 ± 0.148 (96.7) 

30% 0.362 ± 0.299 (20.0) 0.000 ± 0.000 (100.0) 0.009 ± 0.039 (96.7) 0.009 ± 0.039 (96.7) 

40% 0.171 ± 0.265 (50.0) 0.000 ± 0.000 (100.0) 0.002 ± 0.006 (100.0) 0.002 ± 0.006 (100.0) 

50% 0.011 ± 0.025 (90.0) 0.000 ± 0.000 (100.0) 0.004 ± 0.014 (96.7) 0.004 ± 0.014 (96.7) 

Table 7 

McNemar’s test on various classification results compared to CVKT classification results with the uWaveGesture 

dataset. The table displays the average p-values ± its standard deviation, and in parenthesis as percentage with 

how many of the runs McNemar’s test rejects the null hypothesis (i.e. the results can be said to be statistically 

significantly different) with p-value threshold at 0.05. 

missing % full MKC zero-input. mean-input. 

all 0.071 ± 0.200 (83.3) 0.007 ± 0.034 (96.7) 0.272 ± 0.317 (33.3) 0.272 ± 0.317 (33.3) 

10% 0.337 ± 0.334 (16.7) 0.000 ± 0.000 (100.0) 0.387 ± 0.327 (33.3) 0.387 ± 0.327 (33.3) 

20% 0.016 ± 0.011 (100.0) 0.000 ± 0.001 (100.0) 0.166 ± 0.213 (50.0) 0.166 ± 0.213 (50.0) 

30% 0.000 ± 0.000 (100.0) 0.000 ± 0.000 (100.0) 0.376 ± 0.379 (16.7) 0.376 ± 0.379 (16.7) 

40% 0.000 ± 0.000 (100.0) 0.004 ± 0.009 (100.0) 0.286 ± 0.309 (16.7) 0.286 ± 0.309 (16.7) 

50% 0.000 ± 0.000 (100.0) 0.032 ± 0.071 (83.3) 0.146 ± 0.245 (50.0) 0.146 ± 0.245 (50.0) 

12 
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Table 8 

Summary of the results of Friedman-Nemenyi test, showing if CVKT 

results are statistically significantly different (in bold: test value 

larger than critical difference, ”CD”) to other compared multi-view 

kernel completion methods (mean and zero imputation, MKC) with 

uWaveGesture and digits datasets, with α = 0 . 1 and α = 0 . 05 . 

error measure CD MKC mean i. zero.i. 

α = 0 . 1 CA 1.32 1.35 0.7 1.95 

ARE 1.32 2.2 1.0 2.8 

Accuracy 0.62 2.91 1.28 1.46 

α = 0 . 05 CA 1.48 1.35 0.7 1.95 

ARE 1.48 2.2 1.0 2.8 

Accuracy 0.70 2.91 1.28 1.46 
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R

re almost indistinguishable from the full classification according 

o the test, and the mean and zero imputation results are very dif- 

erent from those obtained with CVKT. 

Secondly, we perform the Friedman-Nemenyi test [39] on 

Wave gesture and digits datasets in both classification and ker- 

el matrix completion settings, in order to verify if the results of 

he different methods are overall statistically significantly different. 

ere we consider the various levels of missing data as different 

atasets from the point of view of the test, in classification we 

lso consider the different views. In kernel completion we consider 

nly the CA and ARE error measures, as the Frobenius norm error 

nd structural similarity index give very similar results to the CA 

easure. 

First, for all the error measures, we perform the Friedman test. 

or this we compute the Friedman statistic 

 

2 
F = 

12 N 

k (k + 1) 

[ ∑ 

j 

[ R x ] 
2 
j −

k (k + 1) 2 

4 

] 

, 

n which R x is either R CA , R ARE or R acc , and [ R x ] j stands for aver-

ge ranking for the method j; the mean values of the rankings 

ith CA, ARE or accuracy measure. As we consider four algorithms, 

 = 4 , and N stands for the number of experiments. For CA and

RE as we have averaged the results over the views N = 10 (both

atasets are considered with five different levels of missing data), 

hile with accuracy score we perform and show classification with 

he views independently: N = 45 . We can use directly the Fried- 

an statistic in rejecting the null hypothesis, or as it is somewhat 

onservative (see [39] and references therein), we can consider 

 F = 

(N − 1) χ2 
F 

N(k − 1) − χ2 
F 

, 

nd reject the null hypothesis by comparing its values to the criti- 

al values of f-distribution. 

After observing that the null hypothesis is in all the cases re- 

ected, we proceed with the pairwise comparisons (CVKT to MKC, 

ean imputation and zero imputation) and perform the Nemenyi 

est by comparing the differences of the average rankings to the 

ritical difference value 

D = q α

√ 

k (k + 1) 

6 N 

ith both α = 0 . 05 and α = 0 . 1 . From this, we obtain information

hether the results of the two algorithms are statistically signifi- 

antly different or not. We summarize the results in Table 8 . It is

asy to conclude that while the matrix completion error measures 

ave not necessarily shown much difference between CVKT and 

ean imputation (or MKC with α = 0 . 05 ), the performance differ- 

nce measured in classification accuracy clearly shows the superior 

erformance of CVKT. 
13 
. Conclusion 

We have introduced a novel idea for performing multi-view 

ernel matrix completion by transferring cross-view knowledge to 

epresent the views with missing values. We learn to represent 

he kernels with features of other views linearly transformed to 

 new feature space. This allows predicting the missing values of 

 kernel with features available in the other views. Our algorithm 

olves the problem efficiently, since the views can be treated in- 

ividually, and no heavy joint optimization is performed. This in- 

ividual treatment of views also gives more flexibility to our ap- 

roach. As our experiments with simulated and real data demon- 

trate, our method is able to find generalizable structures from the 

ncomplete kernel matrices, and is able to predict those structures 

n completing them. Our method completes the kernel matrices in 

 way that allows using them successfully in machine learning ap- 

lications, as demonstrated with experiments on datasets of hand- 

ritten digits and images of flowers. The competing method, MKC, 

erformed worse than expected. It might be that the assumptions 

f the chosen algorithm, MKC embd(ht) , are not optimal for this spe- 

ific problem, and one of the slower ones would have performed 

etter. In [22] it is assumed that each view has a small basis set 

f samples with which the view can be characterized, and it might 

ot be the case in our experiments. Additionally, the experimental 

etting is challenging with a lot of missing data samples. As the 

ata is randomly missing from views for some data samples, even 

n lower levels of missing data, only one or two views might be 

vailable. 

Our experiments propose that the current metrics to evaluate 

he matrix completion results are not fully usable by themselves. 

wo very different approaches can give similar errors on kernel 

ompletion, but give widely different accuracies on application to 

lassification. One possible line of future work would be studying 

ow one could better quantify the success of the kernel comple- 

ion task. 

As a successful multi-view kernel completion method, this work 

pens up novel avenues of research also for the reconstruction of 

he initial data samples. As multi-view kernel learning method, 

t would be interesting to further study the suitability of feature 

ransfer, for example in aligning the features with ideal kernel 

ormed on the labels. This might prove a competitive way to form 

 multi-view kernel, compared to the currently widely used multi- 

le kernel learning framework. Also, investigating the connections 

o operator-valued kernels on multi-view setting with missing data 

ould be a possible way to move forward with this research. 
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