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Differentiability of Relative Volumes Over an Arbitrary Non-Archimedean Field

Given an ample line bundle L on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of L, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge-Ampère equations and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings.
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Introduction

In [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF], a variational approach to the resolution of complex Monge-Ampère equations was introduced, inspired by the classical work of Aleksandrov on real Monge-Ampère equations and the Minkowski problem. A key ingredient in this approach is a differentiability property for relative volumes, previously established in [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF].

version for trivially valued fields was obtained in [START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], with a view towards the study of K-stability [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF].

The main result of the present paper establishes the differentiability property over an arbitrary non-Archimedean field. While only one ingredient in the variational approach, it can already be used to construct fundamental solutions to Monge-Ampère equations and to generalize the results of [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF] on equidistribution of Fekete points. Our strategy follows overall that of [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF], itself inspired by techniques of Abbes-Bouche [START_REF] Abbes | Théorème de Hilbert-Samuel «arithmétique[END_REF] and Yuan [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF] in the context of Arakelov geometry. As in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF], the extra technical input enabling us to deal with possibly non-Noetherian valuation rings is provided by the Deligne pairings machinery.

Working over non-discretely valued fields arises naturally in several contexts. First, Berkovich analytifications over trivially valued fields form a natural setting to study K-stability, as advocated in [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF]. Next, any non-Archimedean field that is nontrivially valued and algebraically closed (such as C p ) is densely valued. Another instance is in Arakelov theory, where computing the relative height of a projective variety X defined over the function field F of an adelically polarized projective variety B over Q leads naturally to a bunch of non-Archimedean absolute values on F satisfying a product formula. Here, the absolute values over a prime p are induced by Zariski dense points of the Berkovich analytification of B⊗Q p and are usually not discrete. For details about this generalization of Moriwaki's heights, we refer to [20, §3].

Differentiability of relative volumes

In what follows, K denotes an arbitrary (complete) non-Archimedean field, X is a geometrically reduced projective K-scheme, and L is an ample line bundle on X. Set n := dim X, and denote by X an the associated Berkovich analytic space.

The data of a continuous metric φ on (the analytification of) L induces for each m ∈ N a supnorm • mφ on the space of sections H 0 (mL) = H 0 (X, mL). Here and throughout the paper, we use additive notation for line bundles and metrics, see §1. This notion of relative volume, introduced in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF][START_REF] Chen | Distribution of logarithmic spectra of the equilibrium energy[END_REF], can be described in terms of (virtual) lengths in the discretely valued case as in [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF]. As a consequence of Chen and Maclean's work [START_REF] Chen | Distribution of logarithmic spectra of the equilibrium energy[END_REF], it is proved in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 9.8] that the relative volume of φ, ψ vol(L, φ, ψ) := lim

m→∞ n! m n+1 vol( • mφ , • mψ ) exists in R.
When K is non-trivially valued, a continuous metric on L is called psh (a shorthand for plurisubharmonic) if it can be written as a uniform limit of metrics on L induced by nef models of L. This definition, which goes back to the work of Shou-Wu

Zhang [START_REF] Zhang | Small points and adelic metrics[END_REF], is not adapted to the trivially valued case, where the trivial metric on L is the only model metric. An alternative description of psh metrics relying on Fubini-Study metrics can, however, be adopted [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF][START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], the upshot being that a continuous metric φ on L is psh if and only if it becomes psh after base change to some (equivalently, any) non-Archimedean extension of K. Both approaches give the same psh metrics on L in the non-trivially valued case and the latter works also in the trivially valued case.

For a continuous psh metric φ on L, a positive Radon measure (dd c φ) n on X an was constructed by Chambert-Loir [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF] for K discretely valued; the general case can be obtained from [START_REF] Gubler | Tropical varieties for non-Archimedean analytic spaces[END_REF] by base change to an algebraically closed non-trivially valued extension of K, or directly from the local approach in [START_REF] Chambert-Loir | Formes différentielles réelles et courants sur les espaces de Berkovich[END_REF]. The main result of the present paper is as follows.

Theorem A. Let K be an arbitrary non-Archimedean field, X a projective, geometrically reduced K-scheme, and L an ample line bundle on X. For any continuous psh metric φ on L and any continuous function f on X an , we then have

d dt t=0 vol(L, φ + tf , φ) = X an f (dd c φ) n . (0.1)
Such a differentiability property was already predicted by Kontsevich and Tschinkel in their pioneering investigations of non-Archimedean pluripotential theory [START_REF] Kontsevich | Non-archimedean Kähler geometry[END_REF]. A version of Theorem A when L is merely nef will be established in a subsequent paper.

In the discretely valued case, Theorem A was proved in [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF] and the present proof follows the same overall strategy. As a first step, we reduce to the case where K 

h 0 (D, mA| D ) ∼ m n n! X an φ D (dd c φ A ) n ,
which we obtain as a consequence of the results on determinant of cohomology and metrics on Deligne pairings established in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF].

Applications to non-Archimedean pluripotential theory

The relative Monge-Ampère energy of two continuous psh metrics φ, ψ on L is defined as

E(φ, ψ) := 1 n + 1 n j=0 X an (φ -ψ)(dd c φ) j ∧ (dd c ψ) n-j ,
where φψ is a continuous function on X an , in our additive notation for metrics. Given any other continuous psh metric φ , we have

d dt t=0 E (1 -t)φ + tφ , ψ = X an (φ -φ) (dd c φ) n ,
which means that φ → E(φ, ψ) is the unique antiderivative of the Monge-Ampère operator φ → (dd c φ) n that vanishes at ψ, and implies the cocycle property

E(φ 1 , φ 2 ) = E(φ 1 , φ 3 ) + E(φ 3 , φ 2 )
for any three continuous psh metrics φ 1 , φ 2 , φ 3 on L.

Next, the psh envelope P(φ) of a continuous metric φ on L is defined as the pointwise supremum of the family of (continuous) psh metrics ψ on L such that ψ ≤ φ.

We say that continuity of envelopes holds for (X, L) if P(φ) is continuous, hence also psh, for all continuous metrics φ. As observed in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Lemma 7.30], continuity of envelopes is equivalent to the fact that the usc upper envelope of any bounded above family of psh metrics on L remains psh, a classical property in (complex) pluripotential theory which leads to the natural conjecture that continuity of envelopes holds as soon as X is normal.

At present, continuity of envelopes has been established when X is smooth, and one of the following holds:

• X is a curve, as a consequence of Thuillier's work [START_REF] Thuillier | Théorie du potentiel sur les courbes en géométrie analytique nonarchimédienne[END_REF] (see [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals[END_REF]);

• K discretely or trivially valued, of residue characteristic 0 [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF][START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], building on multiplier ideals and the Nadel vanishing theorem;

• K is discretely valued of characteristic p, (X, L) is defined over a function field of transcendence degree d, and resolution of singularities is assumed in dimension d + n [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals[END_REF], replacing multiplier ideals with test ideals.

Generalizing [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF], which dealt with the discretely valued case, the main result Theorem B. Assume that continuity of envelopes holds for (X, L), and let φ be a continuous metric on L.

(i) The Monge-Ampère measure (dd c P(φ)) n is supported on the contact locus {P(φ) = φ}. In other words, the orthogonality property X an (φ -P(φ))(dd c P(φ)) n = 0 is satisfied.

(ii) For any continuous function f and continuous psh metric ψ, we have It is in fact essentially formal to show that (i) and (ii) are equivalent, and are also equivalent to the special case of (ii) where φ is psh, which corresponds precisely to Theorem A, thanks to (0.2).

d dt t=0 E(P(φ + tf ), ψ) = X an f (dd c P(φ)) n .
Using Theorem B and the variational argument of [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF][START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF], we are able to produce 'fundamental solutions' to Monge-Ampère equations, as follows.

Corollary C. Assume continuity of envelopes for (X, L). Let x ∈ X an be a nonpluripolar point, φ a continuous metric on L, and assume that x is L-regular, in the sense that

φ x := sup{ψ psh metric on L | ψ(x) ≤ φ(x)}
is continuous (and hence psh). Then

V -1 (dd c φ x ) n = δ x ,
with V := (L n ) and δ x the Dirac mass at x.

Here again, L-regularity is expected to be automatic for nonpluripolar points on a normal variety. It is established in [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF]Theorem 5.13] when X is smooth and K is trivially or discretely valued, of residue characteristic 0.

As a final consequence of Theorem A, we generalize the equidistribution of Fekete points in Berkovich spaces, which was established in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF] following the variational strategy going back to [START_REF] Berman | Fekete points and convergence towards equilibrium measures on complex manifolds[END_REF] in the complex analytic case, under assumptions guaranteeing the differentiability property (ii) of Theorem B. For any basis s = (s 1 , . . . , s N ) of H 0 (X, L), the Vandermonde (or Slater) determinant det(s i (x j )) 1≤i,j≤N can be seen as a global section det(s) ∈ H 0 (X N , L N ). Given a continuous metric φ on L, a Fekete configuration for φ is a point P ∈ (X N ) an achieving the supremum of | det(s)| φ N , a condition that does not depend on the choice of the basis s. By Theorem A, the differentiability property (0.1) holds for any continuous psh metric φ of L and hence we get the following result as a direct application of [6, Theorem 10.10].

Corollary D.

Let K be any non-Archimedean field, and let L be an ample line bundle on a projective, geometrically reduced K-scheme X. Set n := dim X, N m := h 0 (X, mL) and

V := (L n ).
Pick a continuous psh metric φ on L, and choose for each m 1 a Fekete configuration P m ∈ (X N m ) an for mφ. Then P m equidistributes to the probability measure for each continuous function f on X an where δ P m is the discrete probability measure on X an obtained by averaging over the components of the image of P m in (X an ) N m .

V -1 (dd c φ) n , i.e. lim m→∞ X an f δ P m = X an f V -1 (dd c φ) n .

Organization of paper

Section 1 collects preliminary material on norms, metrics, and their relative volumes.

We recall also properties of the energy and the Monge-Ampère measures. Section 2 reviews some facts on the determinant of cohomology, and proves the key Riemann-Roch type formula. In Section 3, we prove first Theorem A. Assuming continuity of envelopes, we then deduce Corollary B and Corollary C.

Notation and Conventions

Throughout the paper, we work over a non-Archimedean field K, that is, a field complete with respect to a non-Archimedean absolute value | • |, which might be the trivial absolute value. The corresponding valuation is denoted by

v K := -log | • |.
The valuation ring, maximal ideal and residue field are respectively denoted by

K • := {a ∈ K | |a| ≤ 1}, K •• := {a ∈ K | |a| < 1}, K := K • /K •• .
We assume that the reader is familiar with the basics of non-Archimedean geometry given in [START_REF] Berkovich | Spectral Theory and Analytic Geometry Over Non-Archimedean Fields[END_REF]. If X is a scheme of finite type over K, we denote by X an its Berkovich analytification. The space of continuous, real valued functions on X an is denoted by C 0 (X an ).

We use additive notation for line bundles and metrics. If L, M are line bundles on X endowed with metrics φ and ψ, then L + M denotes the tensor product of the line bundles and φ + ψ the induced metric, respectively. The norm on L associated to φ is

denoted by | • | φ and • φ is the associated supnorm on H 0 (X, L), which is a norm if X is reduced. See §1.2 for more details.
For line bundles L 1 , . . . , L n on an n-dimensional projective scheme X over a field,

we use (L 1 • . . . • L n ) for the intersection number of the 1st Chern classes of L 1 , . . . , L n .
Usually, we will have L = L 1 = • • • = L n and we then simply write (L n ) for this intersection number, which agrees with the degree of X with respect to L.

Preliminaries

We collect here some background results on the norms, lattices, models, Monge-Ampère measures, energy, and volumes. In what follows, X denotes an n-dimensional, geometrically reduced projective K-scheme. Recall that geometrically reduced simply amounts to X reduced whenever K is perfect.

Norms, lattices, and content

Let V be a finite dimensional K-vector space, and set r = dim V. By a norm on V, we always mean an ultrametric norm • : V → R ≥0 compatible with the given absolute

value of K. It induces a determinant norm det • on the determinant line det V = r V,
given by det τ := inf

τ =v 1 ∧•••∧v r v 1 • • • v r for any τ ∈ det V. Given two norms • , • , the relative volume of • with respect to • is defined as vol( • , • ) := log det τ det τ
for any nonzero τ ∈ det V. For more details on the determinant norm and relative volumes, we refer to [6, §2.

1-2.3]. A lattice in V is a finitely generated K • -submodule V ⊂ V that spans V over K.
The lattice norm • V associated to a lattice V is given for v ∈ V by

v V := inf a∈K, v∈aV |a|.
Relative volumes of lattice norms admit the following algebraic interpretation. By [29, Proposition 2.10 (i)] (see also [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Lemma 2.17]), every finitely presented, torsion

K • -module M satisfies M ∼ = K • /(a 1 ) ⊕ . . . ⊕ K • /(a r )
for some nonzero a 1 , . . . , a r ∈ K •• , where r and the sequence v K (a i ) are further uniquely determined by M, up to reordering. The content (this quantity was called length in [START_REF] Scholze | p-adic Hodge theory for rigid-analytic varieties[END_REF],

and corresponds tolog of the content as defined in [START_REF] Temkin | Metrization of differential pluriforms on Berkovich analytic spaces[END_REF]) of M is defined as 

c(M) = r i=1 v K (a i ) ∈ R ≥0 .

Now every finitely presented torsion K

• -module M arises as a quotient M = V/V
for lattices V ⊂ V in a finite dimensional K-vector space, and

c(M) = vol( • V , • V ).
(1.1)

Metrics

As in [6, §5], we use additive notation for metrics on a line bundle L over X. Then a metric Given two metrics φ, ψ on line bundles L, M over X, we denote by φ ± ψ the induced metric on L ± M = L ⊗ M ±1 . The corresponding norms thus satisfy 

φ on L is a family of functions φ x : L ⊗ X H (x) → R ∪ {∞} such that | | φ x := e -φ x is a norm on the 1-dimensional H (x)-vector space L ⊗ X H (x)
| • | φ±ψ = | • | φ ⊗ | • | ±1 ψ . A metric φ on L is called continuous if the function x → |t(x)| φ ,

Models

In this paper, a model X of X is a f lat projective K • -scheme, together with an identification of the generic fiber X η of X → Spec(K • ) with X. There is a canonical reduction map red X : X an → X s to the special fiber X s of X (see [START_REF] Gubler | On Zhang's semipositive metrics[END_REF]Remark 2.3] and [23, §2] for details).

We say that a model X of X is dominated by another model X if the identity on X extends to a (unique) morphism X → X over K • . This induces a partial order on the set of models of X modulo isomorphism, which turns it into a directed system.

If K is algebraically closed and nontrivially valued, then it follows from the reduced fiber theorem (see for instance [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 4.20]) that models X with reduced special fiber X s are cofinal among all models. On the other hand, in the trivially valued case, X is its only model, up to isomorphism. Now let L be a line bundle on X. A model (X , L ) of (X, L) consists of a model X of X and a line bundle L on X together with an identification L | X η L compatible with the identification X η X. We then say that L is a model of L determined on X .

Every model of the trivial line bundle L = O X determined on a model X is of the form

L = O X (D)
, where D is a Cartier divisor which is vertical, that is, supported in the special fiber.

Lemma 1.1. Assume K is algebraically closed and non-trivially valued, and let (L i ) be a finite collection of ample line bundles on X. Then models X of X that have reduced special fiber and such that all L i extend to an ample Q-line bundles on X are cofinal in the set of all models.

Proof. By [22, Proposition 4.11, Lemma 4.12], every model X of X is dominated by a model X on which all L i extend to ample Q-line bundles L i . By [6, Theorem 4.20], the integral closure of X in its generic fiber X η X is a model X with reduced special fiber, which dominates X via a finite morphism μ : X → X . As a result, μ * L i is an ample Q-line bundle extending L i , and we are done.

If (X , L ) is a model of (X, L), then H 0 (X , L ) is a lattice in H 0 (X, L). Indeed,
it follows from the direct image theorem given in [START_REF] Ullrich | The direct image theorem in formal and rigid geometry[END_REF]Theorem 3.5] that H 0 (X , L ) is a finitely generated K • -module, while f lat base change implies

H 0 (X , L )⊗ K • K H 0 (X, L).
Recall that a section t of a line bundle over a scheme Z is regular if its zero subscheme is a Cartier divisor, that is, if the corresponding function in any local trivialization of the line bundle is a nonzero divisor. The section t is relatively regular with respect to a f lat morphism Z → S if its zero subscheme is a Cartier divisor and is f lat over S.

Given a model (X , L ) of (X, L), it follows from [16, 11.3.7] that a section t ∈ H 0 (X , L ) is relatively regular (with respect to the structure morphism X → Spec K image in A ⊗ K • K is invertible. We have to show that the image of f in A/(a) is a nonzero divisor. To see this, pick g, h ∈ A such that fg = ah. We then need to prove that g ∈ (a).

Since f is relatively regular, A/(f ) is f lat over K • , and the map A/(f

) → A/(f ) ⊗ K • K is thus injective. The image of a in A/(f ) ⊗ K • K being invertible, the image of h in A/(f ) → A/(f ) ⊗ K • K is zero, and hence h ∈ (f ), that is, h = h f for some h ∈ A.
Then fg = ah f , and hence g = ah ∈ (a) as f is a nonzero divisor.

Model metrics

Let L be a line bundle on X. To every model (X , L ) of (X, L) is associated a continuous metric φ L on L, determined as follows: every point of X an belongs to the affinoid domain red -1 X (U ) induced by an affine open subset U of X on which L admits a trivializing section τ , and φ L is determined by requiring that |τ | φ L ≡ 1 on red -1 X (U ). This construction is invariant under pull-back to a higher model, that is, φ μ * L = φ L for any morphism of models μ : X → X . We refer to [6, 5.3] and [22, §2] for more details.

A model metric on L is defined as a continuous metric of the form φ = m -1 φ L where L is a model of mL for some nonzero m ∈ N. We say that φ is determined by the

Q-model m -1 L .
A model function is a continuous function on X an corresponding to a model metric on the trivial line bundle O X . It is thus determined by a vertical Q-Cartier divisor D on some model X of X, and we write φ D for the corresponding model function. Model functions form a Q-vector space of continuous functions, which is stable under max.

When K is non-trivially valued, model functions further separate points, and hence are dense in C 0 (X an ) by the Stone-Weierstrass theorem, see [START_REF] Gubler | Local heights of subvarieties over non-Archimedean fields[END_REF]Theorem 7.12].

The next result explains the importance of models with reduced special fiber in our approach. Lemma 1.3. Let X be a model of X with reduced special fiber. with respect to uniform convergence (and weak convergence of measures), and the construction is further compatible with ground field extension. These measures were first constructed in [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF] over non-Archimedean fields K with a countable dense subset. Over an arbitrary non-Archimedean ground field, the measures can be obtained by base change to a non-trivially valued algebraically closed non-Archimedean field F, using [18, §2]. One can also directly rely on the local approach in [START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF], see [6, §8.1] for details.

Example 1.5. For psh model metrics φ 1 , . . . , φ n , the measure dd c φ 1 ∧ • • • ∧ dd c φ n has finite support. When K is algebraically closed, the φ i are determined by nef Q-models L 1 , . . . , L n of L determined on a model X that can be chosen to have reduced special fiber X s ; each irreducible component Y of X s then determines a unique point x Y ∈ X an with red X (x Y ) the generic point of Y, and we have

dd c φ 1 ∧ • • • ∧ dd c φ n = Y (L 1 | Y • • • L n | Y )δ x Y ,
where δ x Y is the Dirac measure at x Y , see [START_REF] Gubler | The Bogomolov conjecture for totally degenerate abelian varieties[END_REF]Corollary 2.8] and [12, Théorème 6.9.3].

From now on we fix an ample line bundle L on X, and denote by V := (L n ) its volume. The relative Monge-Ampère energy of φ, ψ is defined as

E(φ, ψ) := 1 n + 1 n j=0 X an (φ -ψ)(dd c φ) j ∧ (dd c ψ) n-j . (1.2)
We emphasize that the present normalization is not uniform across the literature. For each ψ, the functional φ → E(φ, ψ) is characterized as the unique antiderivative of the Monge-Ampère operator φ → (dd c φ) n that vanishes at ψ, in the sense that

d dt t=0 E((1 -t)φ + tφ , ψ) = X an (φ -φ)(dd c φ) n (1.3)
for any two continuous psh metrics φ, φ . As a consequence, the cocycle property

E(φ 1 , φ 2 ) + E(φ 2 , φ 3 ) + E(φ 3 , φ 1 ) = 0
holds for all triples of continuous psh metrics φ 1 , φ 2 , φ 3 on L.

Another key property of the Monge-Ampère energy is the concavity of φ → E(φ, ψ). In view of (1.3) and the cocyle property, this amounts to

E(φ, ψ) ≤ X an (φ -ψ)(dd c ψ) n (1.4)
for all continuous psh metrics φ, ψ on L. Moreover,

E(φ + c) = E(φ) + Vc
for all c ∈ R. We refer to [10, §3.8] for details on the above properties.

Relative volumes of metrics

Recall that the volume of a line bundle L on X is defined as

vol(L) := lim m→∞ n! m n dim H 0 (X, mL) ∈ R ≥0 .
For geometrically integral projective schemes, the existence of the limit can be shown by using Okounkov bodies, see for instance [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF]. The generalization to geometrically reduced projective schemes can be found in [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 9.8]. We have vol(L) > 0 if and only if L is big, and vol(L) = (L n ) whenever L is nef.

The relative volume of two continuous metrics φ,

ψ on L is vol(L, φ, ψ) := lim m→∞ n! m n+1 vol( • mφ , • mψ ) ∈ R.
The existence of this limit was established is [6, Theorem 9.8], building on the work of Chen and Maclean [START_REF] Chen | Distribution of logarithmic spectra of the equilibrium energy[END_REF].

Proposition 1.6. The following properties hold for all continuous metrics on a given line bundle L: (vi) base change invariance: for any non-Archimedean extension F/K, we have

(i) cocycle formula: vol(L, φ 1 , φ 2 ) + vol(L, φ 2 , φ 3 ) + vol(L, φ 3 , φ 1 ) = 0;
vol(L F , φ F , ψ F ) = vol(L, φ, ψ),
with φ F , ψ F denoting the pullbacks of φ, ψ to the base change

L F = L ⊗ K F.
In particular, if L is not big, that is, vol(L) = 0, then vol(L, φ, ψ) = 0 for all continuous metrics on L, by (iv). We refer to [6, Propositions 9.11, 9.12] for proofs of the above properties.

The next result, which equates relative volume and relative energy, goes back to [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] in the complex analytic case. In the non-Archimedean context, the result was established in [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF] in the discretely valued case, and in [6, Corollary B] in the general case.

Theorem 1.7. If L is an ample line bundle and φ, ψ are continuous metrics on L with continuous psh envelopes P(φ), P(ψ), then vol(L, φ, ψ) = E(P(φ), P(ψ)).

An Asymptotic Riemann-Roch Theorem

This section reviews some facts on the determinant of cohomology and Deligne pairings, following [6, Appendix A], and uses this to prove a Riemann-Roch-type formula for vertical Cartier divisors on models. We still denote by X a geometrically reduced projective K-scheme of dimension n.

Determinant of cohomology and Deligne pairings

The determinant of cohomology of a line bundle L on X is a line bundle λ X (L) over Spec K, that is, a one-dimensional K-vector space; it can simply be described as

λ X (L) := n i=0 (-1) i det H i (X, L),
where we use additive notation for tensor products of line bundles.

Consider now a model (X , L ) of (X, L), with structure morphism π : X → S := Spec K • . Kiehl's theorem on (pseudo)coherence of direct images and the f latness of π imply that the complex Rπ * L is perfect. Thus, there exists a bounded complex of vector bundles E • on S with a quasi-isomorphism E • → Rπ * L and the determinant of cohomology of L is defined as

λ X (L ) := det E • = i (-1) i det E i ,
this line bundle on S being unique up to unique isomorphism of Q-line bundles by [START_REF] Knudsen | The projectivity of the moduli space of stable curves. I. Preliminaries on "det" and[END_REF].

This construction commutes with base change, and λ X (L ) is thus a Q-model of λ X (L),

cf. [6, Appendix A] for more details.

By f latness of π , the O S -module π * L is torsion-free, and hence locally free.

When R i π * L is locally free for all i, [24, p.43] yields

λ X (L ) = n i=0 (-1) i det R i π * L . (2.1)
Combining this with Serre vanishing (see [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Corollary A.12] for the relevant statement), we infer:

Lemma 2.1.
If L is ample and E is any line bundle on X , then λ X (mL + E) coincides with the determinant of the vector bundle π * (mL + E) for all m 1.

The fundamental property of the determinant of cohomology, which is extracted in [6, Appendix A] from a paper of François Ducrot [START_REF] Ducrot | Cube structures and intersection bundles[END_REF], is that λ X admits a canonical structure of a polynomial functor of degree n + 1. By definition, this means that the

(n + 1)-st iterated difference L 0 , . . . , L n X := I⊂{0,...,n} (-1) n+1-|I| λ X ( i∈I L i ) (2.2)
has a structure of multilinear functor, compatible with its natural symmetry structure and with base change, and called the Deligne pairing. As a consequence, we get for each line bundle L on a model X and m ∈ Z a polynomial expansion of Q-line bundles

λ X (mL ) = m n+1 (n + 1)! L n+1 X + . . . , (2.3) 
called the Knudsen-Mumford expansion. Here and thereafter, we use the shorthand notation

L n+1 X := L, . . . , L n+1-times X .
Lemma 2.2. Let L 0 be a be a line bundle on a model X of X. The polynomial structure of degree n + 1 on λ X induces a polynomial structure of degree n on

L → λ X (L + L 0 ) -λ X (L ),
whose n-th iterated difference further identifies with

(L 1 , . . . , L n ) → L 0 , L 1 , . . . , L n X . Proof. By definition, the n-th iterated difference of L → λ X (L + L 0 ) -λ X (L ) is equal to J⊂{1,...,n} (-1) n-|J| ⎛ ⎝ λ X (L 0 + j∈J L j ) -λ X ( j∈J L j ) ⎞ ⎠ = I⊂{0,...,n}, 0∈I (-1) n+1-|I| λ X ( i∈I L i ) + I⊂{0,...,n}, 0/ ∈I (-1) n+1-|I| λ X ( i∈I L i ) = L 0 , L 1 , . . . , L n X , by (2.2) 
. This finishes the proof, since the latter is a multilinear functor of (L 1 , . . . , L n ).

We finally recall the following special case of [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 8.18]. We use the terminology for model functions and model metrics introduced in §1.4.

Lemma 2.3. If D is a vertical divisor on a model X of X with associated model function φ D and L 1 , . . . , L n are nef line bundles on X , then

φ O X (D),L 1 ,...,L n X = X an φ D dd c φ L 1 ∧ • • • ∧ dd c φ L n ,
where we identify the model function φ O X (D),L 1 ,...,L n X on Spec(K) with its unique value.

An asymptotic Riemann-Roch theorem

Pick a model of X, a line bundle L on X , and an effective vertical Cartier divisor D on X . By the coherence in Kiehl's direct image theorem, the

K • -module H 0 (D, L | D )
is finitely presented and torsion (see [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Corollary A.12]). We denote by h 0 (D, L | D ) its content, as defined in §1.1.

Theorem 2.4. Let X be a model of X, L an ample line bundle on X , and D an effective vertical Cartier divisor on X . Then

h 0 (D, mL | D ) = m n n! X an φ D (dd c φ L ) n + O(m n-1 ).
Proof. By Serre vanishing [6, Theorem A.6]), we have H q (X , mL ) = H q (X , mL -D) = 0 for all q ≥ 1 and m 1. Restriction to D thus yields an exact sequence 

0 → H 0 (X , mL -D) → H 0 (X , mL ) → H 0 (D, mL | D ) → 0, which implies h 0 (D, mL | D ) = φ det H 0 (X ,mL ) -φ det H 0 (X ,mL -D) ,
(X , mL ) = λ X (mL ), detH 0 (X , mL -D) = λ X (mL -D)
and hence

h 0 (D, mL | D ) = φ λ X (mL )-λ X (mL -D) . Now Lemma 2.2 provides a polynomial expansion λ X (mL ) -λ X (mL -D) = m n n! O X (D), L n X + ...,
and hence

h 0 (D, mL | D ) = m n n! φ O X (D),L n X + O(m n-1 ) = m n n! X an φ D (dd c φ L ) n + O(m n-1 ),
by Lemma 2.3.

Differentiability and Orthogonality

In this section, we prove our main result on differentiability of relative volumes, which generalizes [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF]Theorem B] from discretely valued non-Archimedean fields to arbitrary ones. In what follows, X is a projective, geometrically reduced scheme of dimension n over an arbitrary non-Archimedean field K, and L is an ample line bundle on X.

Proof of Theorem A

The following result corresponds to Theorem A in the introduction.

Theorem 3.1. For any continuous psh metric φ on L and continuous function f on X an , we have

d dt t=0 vol(L, φ + tf , φ) = X an f (dd c φ) n .
The key ingredient in the proof is the following general estimate, which can be viewed as a local analogue of the Siu-type inequality proved in [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF]. Note that Yuan's argument was inspired by the proof of Siu's inequalities in algebraic geometry as given in [START_REF] Lazarsfeld | Positivity in algebraic geometry. I. Classical setting: line bundles and linear series[END_REF]Theorem 2.2.15], see also [26, p. 183] for a historical account of Siu's inequality.

Lemma 3.2. Let φ be a continuous psh metric on L, ψ 1 , ψ 2 be continuous psh metrics on an auxiliary ample line bundle M, and set f := ψ 1ψ 2 and C :=

((L + M) n ) -(L n ) > 0.
Then

C inf x∈X an f (x) ≤ X an f (dd c φ + dd c ψ 1 ) n -vol(L, φ + f , φ) ≤ C sup x∈X an f (x). (3.1)
Proof. In the proof, we assume that the reader is familiar with the properties of Monge-Ampère measures and relative volumes given in §1.6 and in §1.7. First, we give a few reduction steps.

By the invariance of relative volumes under ground field extension, we can pass to a non-Archimedean extension and assume that K is algebraically closed and non-trivially valued (as we did at the beginning of §1.6 for Monge-Ampère measures).

Every continuous psh metric on an ample line bundle is then a uniform limit of metrics induced by nef Q-models of L. By continuity of Monge-Ampère measures and relative volumes with respect to uniform convergence, we may thus assume that there exist nef Q-models L and M i of L and M, determined on a model X of X, such that φ = φ L and ψ i = φ M i . Since K is algebraically closed, we can further assume after passing to a higher model that X has reduced special fiber, and that L and M admit ample Q-models L , M on X , by Lemma 1.1. Replacing L and M i with (1ε)L + εL and (1ε)M i + εM , 0 < ε 1, we are thus reduced to the case where L and the M i themselves are ample Q-line bundles, using again the continuity of Monge-Ampère measures and relative volumes with respect to uniform convergence. Replacing L and M with large enough multiples and using the homogeneity property of relative volumes, we can finally assume that L and the M i are honest ample line bundles on X such that each admits a relatively regular section, using [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Proposition A.15].

Observe that adding to f a constant a ∈ R translates the quantity

X an f (dd c φ + dd c ψ 1 ) n -vol(L, φ + f , φ)
by aC. In order to prove the left-hand inequality in (3.1), we may thus replace f with finf X an f and assume inf X an f = 0. The unique vertical Cartier divisor E on X such 

→ H 0 (X , mL + (j -1)E) → H 0 (X , mL + jE)) → H 0 E, (mL + jE)| E yields vol • mφ+jf , • mφ+(j-1)f = vol • H 0 (X ,mL +jE) , • H 0 (X ,mL +(j-1)E) ≤ h 0 E, (mL + jE)| E ,
where the 1st equality follows from Lemma 1.3 and the inequality follows from (1.1).

Summing up over j and using the cocycle property of relative volumes, we infer

vol • m(φ+f ) , • mφ ≤ m j=1 h 0 E, (mL + jE)| E .
Since M 1 and M 2 admit relatively regular sections, their restrictions to E admit regular sections as well, by Lemma 1.2. For j = 1, . . . , m we thus have

h 0 E, (mL + jE)| E = h 0 E, (mL + jM 1 -jM 2 )| E ≤ h 0 E, m(L + M 1 )| E , and hence vol • m(φ+f ) , • mφ ≤ m h 0 E, m(L + M 1 )| E . As a result, vol (L, φ + f , φ) = lim m→∞ n! m n+1 vol • m(φ+f ) , • mφ ≤ lim m→∞ n! m n h 0 E, m(L + M 1 )| E = X an f (dd c φ + dd c ψ 1 ) n ,
where the last equality follows from Theorem 2.4. This concludes the proof of the lefthand inequality in (3.1).

The proof of the right-hand inequality is very similar. In that case, we may replace f with fsup X an f and assume sup X an f = 0. As a result, the vertical Cartier

divisor D with O(D) = M 2 -M 1 is effective, using φ D = -f ≥ 0. The restriction exact sequence 0 → H 0 (X , mL -(j + 1)D) → H 0 (X , mL -jD) → H 0 D, (mL -jD)| D then shows that vol • mφ , • m(φ+f ) ≤ m-1 j=0 h 0 D, (mL -jD)| D ≤ m h 0 D, m(L + M 1 )| D , which yields -vol (L, φ + f , φ) = vol (L, φ, φ + f ) ≤ X an φ D dd c (φ + ψ 1 ) n = - X an f dd c (φ + ψ 1 )
n proving the right-hand inequality and hence the claim.

Proof of Theorem 3.1. Let φ be a continuous psh metric on L and f be a continuous function on X an . Assume first that there exist continuous psh metrics ψ 1 , ψ 2 on an ample line bundle M such that f = ψ 1ψ 2 . Pick m ∈ Z >0 , t ∈ (0, m -1 ], and observe that mtf = ψ 1ψ 2,t where

ψ 2,t := ψ 1 -mtf = (1 -mt)ψ 1 + mtψ 2
is a continuous psh metric on M, as a convex combination of such metrics. By Lemma 3.2, we thus have

tmC m inf x∈X an f (x) ≤ tm X an f (mdd c φ + dd c ψ 1 ) n -vol(mL, mφ + mtf , mφ) ≤ tmC m sup x∈X an f (x) with C m := ((mL + M) n ) -((mL) n ).
By homogeneity of relative volumes, vol(mL, mφ and hence

+ mtf , mφ) = m n+1 vol(L, φ + tf , φ), thus m -n C m inf x∈X an f (x) ≤ X an f (dd c φ + m -1 dd c ψ 1 ) n -t -1 vol(L, φ + tf , φ) ≤ m -n C m sup x∈X an f (x),
X an f (dd c φ + m -1 dd c ψ 1 ) n -m -n C m sup x∈X an f (x) ≤ lim inf t→0 + t -1 vol(L, φ + tf , φ) ≤ lim sup t→0 + t -1 vol(L, φ + tf , φ) ≤ X an f (dd c φ + m -1 dd c ψ 1 ) n -m -n C m inf x∈X an f (x).
Now m -n C m → 0 as m → ∞, and we conclude as desired lim

t→0 + t -1 vol(L, φ + tf , φ) = X an f (dd c φ) n .
Let now f be an arbitrary continuous function on X an . By density of model functions in C 0 (X an ), we can pick a sequence (f i ) i∈N of model functions on X an such that

ε i := sup x∈X an |f (x) -f i (x)| → 0.
Pick any ample line bundle M on X. Since M admits ample Q-models on arbitrarily high models [22, Proposition 4.11, Lemma 4.12], each model function f i can be written as f i = ψ i1ψ i2 where ψ i1 , ψ i2 are model metrics on a i M for some non-zero a i ∈ N, Replacing f by -f , we conclude that the above holds also for t negative, and Theorem 3.1 follows.

determined by ample Q-models M i1 , M i2 of a i M. Since f i -ε i ≤ f ≤ f i + ε i ,

An application to Monge-Ampère equations

In this subsection we still assume that continuity of envelopes holds for (X, L). As in [START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], we define a (possibly singular) psh metric on L as a decreasing limit of continuous psh metrics, not identically -∞ on any component of X. A subset E ⊂ X an is pluripolar if there exists a psh metric φ with φ ≡ -∞ on E, this condition being easily seen to be independent of the choice of ample line bundle L. for all psh metrics ψ on L. Given a nonpluripolar compact E ⊂ X an and a continuous metric φ on L, we can thus define the equilibrium metric of the pair (E, φ) as P(E, φ) := sup{ψ psh metric on L | ψ ≤ φ on E}.

Since every psh metric ψ on L is a decreasing limit of continuous psh metrics, Dini's is thus psh, since we assume continuity of envelopes (see [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Lemma 7.30]). As a result, P(E, φ) ≤ φ holds on E if and only if P(E, φ) = P(E, φ) is continuous. Following classical terminology in pluripotential theory, we then say that (E, φ) is L-regular.

For a nonpluripolar point x ∈ X an , L-regularity of ({x}, φ) is independent of the continuous metric φ, as the latter only appears through its value at x, and we then simply say that x is L-regular.

Example 3.6. By [10, Lemma 2.20, Theorem 2.21], every quasimonomial point of X an is nonpluripolar.

Conjecturally, every nonpluripolar point should be L-regular; this has been shown in [START_REF] Boucksom | A non-Archimedean approach to K-stability[END_REF]Theorem 5.13] when X is smooth, K has residue characteristic 0, and is trivially or discretely valued. Relying on the variational argument developed in [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF][START_REF] Boucksom | Solution to a non-Archimedean Monge-Ampère equation[END_REF], we prove the following result, which corresponds to Corollary C in the introduction.

Theorem 3.7. Assume that continuity of envelopes holds for (X, L). Let x ∈ X an be a nonpluripolar point, φ a continuous metric on L, and assume that x is L-regular, so that φ x := P({x}, φ) = sup{ψ psh metric on L | ψ(x) ≤ φ(x)} is continuous and psh. Then V -1 (dd c φ x ) n = δ x with V := (L n ).

Proof. Pick f ∈ C 0 (X an ). Since P(φ x + f )f (x) is a continuous psh metric on L and satisfies

P(φ x + f )(x) -f (x) ≤ φ x (x) = φ(x),
we have P(φ x + f )f (x) ≤ φ x by definition of the latter, and hence E(P(φ x + f )) -Vf (x) ≤ E(φ x ). Applying this to tf , t > 0, we infer t -1 E(P(φ x + tf )) -E(φ x ) ≤ Vf (x), and Theorem 3.4 thus yields

X an f (dd c φ x ) n ≤ Vf (x).
Replacing f with -f concludes the proof.

2 .

 2 Given a second continuous metric ψ on L, one defines the relative volume of the associated supnorms as vol( • mφ , • mψ ) := log det • mψ det • mφ , where det • mφ , det • mψ denote the induced norms on the determinant line det H 0 (mL).

  is algebraically closed and non-trivially valued, and φ = φ L , f = ±φ D are respectively induced by an ample model L of L and a vertical effective Cartier divisor D, both living on some model X of X. A filtration argument that goes back to Yuan's work [33] yields an estimate for vol( • m(φ+f ) , • mφ ) in terms of the content h 0 (D, mA| D ) of the torsion K • -module H 0 (D, mA| D ), where A is a certain ample line bundle on X , and the content is a version of the length adapted to the non-Noetherian valuation ring K • . The key ingredient is then the asymptotic Riemann-Roch formula

of [ 6 ,

 6 Theorem A] states that any two continuous metrics φ, ψ on L with continuous envelope satisfy vol(L, φ, ψ) = E(P(φ), P(ψ)). (0.2) In the present non-Archimedean context, the relative Monge-Ampère energy can be interpreted as a local height, and (0.2) as a local Hilbert-Samuel formula. Combined with Theorem A, it enables us to prove the following analogue of [3, Theorem B].

  induced by any local section t of L, is continuous with respect to the Berkovich topology. For s ∈ H 0 (X, L), the associated supremum norm is denoted by s φ := sup x∈X an |s(x)| φ .

  (i) If L is a model of L determined on X , then the supnorm • φ L coincides with the lattice norm • H 0 (X ,L ) . (ii) If D is a vertical Cartier divisor on X , then D is effective if and only if φ D ≥ 0. Proof. Property (i) is [6, Lemma 6.3]. For (ii), note that the vertical Cartier divisor D induces a canonical meromorphic section s D of L = O(D) which restricts to a global section of O X = L | X . By definition of a lattice norm, we have s D ∈ H 0 (X , L ) if and only if s D H 0 (X ,L ) ≤ 1 and hence (ii) follows from (i). Differentiability of Relative Volumes 13 measure dd c φ 1 ∧ • • • ∧ dd c φ n , a positive Radon measure on X an of total mass equal to the intersection number (L 1 • . . . • L n ). This measure depends multilinearly and continuously on the tuple (φ 1 , . . . , φ n )
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  the monotonicity of relative volumes yields for eacht > 0 vol(L, φ + tf i , φ) -tVε i ≤ vol(L, φ + tf , φ) ≤ vol(L, φ + tf i , φ) + tVε i with V := (L n ).By the first part of the proof, we inferX an f i (dd c φ) n -Vε i ≤ lim inf t→0 + t -1 vol(L, φ + tf , φ) ≤ lim sup t→0 + t -1 vol(L, φ + tf , φ) ≤ X an f i (dd c φ) n + Vε i ,and letting i → ∞ yields as desired limt→0 + t -1 vol(L, φ + tf , φ) = X an f (dd c φ) n .

  If E is nonpluripolar, one proves exactly as in [9, Proposition 5.2(ii)] that for each continuous metric φ on L there exists a constant C > 0 such that sup x∈X an (ψ(x)φ(x)) ≤ sup x∈E (ψ(x)φ(x)) + C (3.6)

  φ) = sup{ψ continuous psh metric on L | ψ ≤ φ on E}, (see[START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF] Proposition 7.26]) which is thus lsc. By(3.6), the family of metrics ψ in the definition of P(E, φ) is uniformly bounded from above, the usc regularization P(E, φ)
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• ) if and only if its restriction to the special fiber X s is regular. By [6, Proposition A.15], if L is ample then H 0 (X , mL ) admits relatively regular sections for all m 1. For later use, we note: Lemma 1.2. Let (X , L ) be a model of (X, L), and D be an effective vertical Cartier divisor. If t ∈ H 0 (X , L ) is a relatively regular section, then t| D is regular on D. Proof. The statement is local, and thus reduces to the following. Let A be a f lat, finite type K • -algebra, f ∈ A a relatively regular function, and a ∈ A a nonzero divisor whose
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	by (1.1). By Lemma 2.1, we further have
	det H 0
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Plurisubharmonic metrics and envelopes

In this subsection, we recall some facts about plurisubharmonic metrics on an ample line bundle L over X. We refer to [6, §7] for a thorough discussion.

Assume first that K is non-trivially valued. Following Shou-Wu Zhang [START_REF] Zhang | Small points and adelic metrics[END_REF], we then say that a continuous metric φ on L is plurisubharmonic (psh for short) if φ can be written as a uniform limit of model metrics φ L i associated to nef Q-models L i of L.

By [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 7.8], this definition is compatible with the point of view of [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF][START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], which defines continuous psh metrics as uniform limits of Fubini-Study metrics.

When K is trivially valued, a continuous metric φ on L is called psh if there exists a non-trivially valued non-Archimedean field extension F of K such that the induced continuous metric φ F on the base change L⊗ K F is psh in the above sense. By [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF]Theorem 7.32], this condition is independent of the choice of F, and compatible with the Fubini-Study approach of [START_REF] Boucksom | Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry[END_REF][START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF].

Definition 1.4.

We say that continuity of envelopes holds for (X, L) if, for any continuous metric φ on L, the psh envelope P(φ) := sup{ψ continuous psh metric on L | ψ ≤ φ} is a continuous metric on L as well.

When this holds, P(φ) is automatically psh, and is thus characterized as the greatest continuous psh metric dominated by φ. In the complex analytic case, continuity of envelopes holds over any normal complex space, and fails in general otherwise. By analogy, we conjecture that continuity of envelopes holds as soon as X is normal. As recalled in the introduction, it is at present known when X is smooth and one of the following is satisfied:

• X is a curve, as a consequence of A. Thuillier's work [START_REF] Thuillier | Théorie du potentiel sur les courbes en géométrie analytique nonarchimédienne[END_REF] (see [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals[END_REF]);

• K discretely or trivially valued, of residue characteristic 0 [START_REF] Boucksom | Singular semipositive metrics in non-Archimedean geometry[END_REF][START_REF] Boucksom | Singular semipositive metrics on line bundles on varieties over trivially valued fields[END_REF], building on multiplier ideals and the Nadel vanishing theorem;

• K is discretely valued of characteristic p, (X, L) is defined over a function field of transcendence degree d, and resolution of singularities is assumed in dimension d + n [START_REF] Gubler | Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals[END_REF], replacing multiplier ideals with test ideals.

Monge-Ampère measures and energy

A construction of A. Chambert-Loir associates to any n-tuple φ 1 , . . . , φ n of continuous psh metrics on ample line bundles L 1 , . . . , L n over X their mixed Monge-Ampère

Differentiability and orthogonality

In this subsection, we assume that continuity of envelopes holds for (X, L). The psh envelope P(φ) of a continuous metric φ on L is thus the greatest continuous psh metric on L such that P(φ) ≤ φ, see §1.5. Note that φ → P(φ) is monotone increasing, and satisfies P(φ + c) = P(φ) + c for c ∈ R, two properties that formally imply

for all continuous metrics φ, ψ on L.

To ease notation, we fix in what follows a reference continuous psh metric φ 0 on L, and denote by

the relative energy of a continuous psh metric φ on L with respect to φ 0 . By Theorem 1.7,

we have

for all continuous metrics φ on L.

Definition 3.3. Given a continuous metric φ on L, we say that

for all f ∈ C 0 (X an ) ;

• orthogonality holds for φ if the Monge-Ampère measure (dd c P(φ)) n is supported in the contact locus {P(φ) = φ}, that is, (i) E • P is differentiable at all continuous metrics on L;

(ii) E • P is differentiable at all continuous psh metrics on L;

(iii) orthogonality holds for all continuous metrics on L.

Proof. (i) ⇒(ii) is trivial. We reproduce the simple argument for (ii) ⇒(iii) given in [START_REF] Burgos Gil | Differentiability of nonarchimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld)[END_REF]Theorem 6.3.2]. Pick a continuous metric φ, and set ψ := P(φ) and f := φψ. For each t ∈ [0, 1], ψ + tf = (1t)P(φ) + tφ satisfies P(φ) ≤ ψ + tf ≤ φ, and hence P(φ) = P(ψ + tf ).

Differentiability of E • P at ψ thus yields

which proves that φ satisfies the orthogonality property. Finally, the following simple argument for (iii) ⇒(i) is similar to the proof of [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]Lemma 6.13]. Pick a continuous metric φ and a continuous function f . By concavity of E (see (1.4)), we have