
HAL Id: hal-03845322
https://hal.science/hal-03845322

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Analysis - Lecture 8 : Time series analysis,
ARIMA models

Jérémie Sublime

To cite this version:
Jérémie Sublime. Data Analysis - Lecture 8 : Time series analysis, ARIMA models. Engineering
school. France. 2022. �hal-03845322�

https://hal.science/hal-03845322
https://hal.archives-ouvertes.fr


Data Analysis - Lecture 8
Time series analysis: ARIMA models

Dr. Jérémie Sublime

LISITE Laboratory - DaSSIP Team - ISEP
LIPN - CNRS UMR 7030

jeremie.sublime@isep.fr

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 1 / 61



Plan

1 Fundamentals of time series analysis

2 The ARMA model

3 The ARIMA model

4 Useful statistical tools

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 2 / 61



Fundamentals of time series analysis

Outline

1 Fundamentals of time series analysis

2 The ARMA model

3 The ARIMA model

4 Useful statistical tools

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 3 / 61



Fundamentals of time series analysis Introduction

Time data & Time series

Time data contain one or several attributes that describe when the observa-
tions took place: year, month, day, hour, elapsed time since the beginning
of an experiment, timestamp, etc.

Times series: Definition

A time series is a series of data points indexed in time order.

Most commonly, a time series is a sequence taken at
successive equally spaced points in time.

A time series usually describes the same observation evolving through
time.
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Fundamentals of time series analysis Introduction

Time data & Time series

Time series can be used for a large number of applications: statistics, signal
processing, weather forecast, earthquake prediction, finance analysis, bud-
get predictions, tidal predictions, astrophysics, astronomy, tidal analysis,
electroencephalography, control engineering, or any domain in science that
involves time measurements.
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Fundamentals of time series analysis Preliminary analysis of Time data

Preliminary analysis of Time data

Processing time data first require to answer the following questions:

Does my time series deals with one or several objects in time ?

Are my observations equally spaced in time ? If not, can I fill in the
gaps ?

If the observations are not equally spaced in time, most analysis are
impossible to do.

What am I looking for ?

Global trends ? Cyclic events ? Abnormalities ? Specific events ?
What is the time scale of interest for these data ?

Should I differentiate some of the variables ?
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Fundamentals of time series analysis Preliminary analysis of Time data

Differentiating the variables ?

When time is a parameter, the other variables can be differentiated
with respect to time.

∆Y = Yt+1 − Yt

Why differentiating ?

Sometimes the new variables can contain information that are more
useful than the old ones.

One must consider which is more interesting between the raw value of
a variable at a point in time and its evolution between two points in
time.
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Fundamentals of time series analysis Preliminary analysis of Time data

Differentiating the variables ?

Day Sport (min) Weight (kg) ∆ Weight
14/05 90 72.0 -0.58
15/05 25 71.42 0.42
16/05 50 71.84 -0.02
17/05 70 71.82 -0.48
18/05 45 71.34 0.3
19/05 65 71.64 -0.3
20/05 60 71.34 0.1
21/05 110 71.44 -1.22
22/05 25 70.22 0.6
23/05 45 70.82 0.16
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Fundamentals of time series analysis Preliminary analysis of Time data

Times series analysis

While creating new attributes using the time variable may lead to finding
new correlations and could help analyzing the data, it is not time series
analysis.

Times series analysis: Definition

Times series analysis is the study of how one or several variables, or even
objects behave with respect to time. Time series analysis can have several
goals.

Finding and describing trends in a time series.

Building predictive models from a time series.
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Fundamentals of time series analysis The notion of stationarity

Time series vs regular data

Cross-Sectional Data

X1,X2, · · · ,XN ∼ iid ⇒ LLN : 1
N

∑
i Xi = E[X ]

Draws from a fixed distribution

No ordering

Time series Data

x1, x2, · · · , xt , · · · , xT with t the time index, and T the size of the sample

each realization xt is a draw from a random variable Xt

Natural ordering ⇒ Conditional models: xt |xt−1, xt−2
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Fundamentals of time series analysis The notion of stationarity

Why do we need stationarity ?

Stochastic process x1 x2 · · · xt · · · xT
Realization 1 x1

1 x1
2 · · · x1

t · · · x1
T

...
Realization m xm1 xm2 · · · xmt · · · xmT

...
Realization M xM1 xM2 · · · xMt · · · xMT

Without stationarity, these two measures are different:

Ensemble Mean: Ê(xt) = 1
M

∑M
m=1 x

m
t

Time average of a realized sample path: x̄T = 1
T

∑T
i=1 xi
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Fundamentals of time series analysis The notion of stationarity

Stationarity: Definitions

Strict Stationarity

A time series is said to be strictly stationary if all its observations are drawn
from the same distribution: the join probability does not change in time.

Weak Stationarity

We do not require that each draw comes from the exact same distribution,
only that the distributions have the same mean and variance (all of them
not a function of time).

Constant mean: E(xt) = µ

Constant variance: Var(xt) = γ0

Constant co-variance: Cov(xt , xt−h) = γh ∀h ∈ [1..T ]
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Fundamentals of time series analysis The notion of stationarity

Stationarity: Examples
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Fundamentals of time series analysis The notion of stationarity

Stationarity and weak dependence

Weak dependence hypothesis

xt and xt+h are approximately independent from each other when h→∞.

Each observation contain new information about the distribution.

Under the weak dependence hypothesis and the weak stationarity
hypothesis, we have: x̄T → E(xt)
And with this, we can get information from the sample about the
underlying distribution.

Remark

The assumptions of weak stationarity and weak dependence replaces the
i.i.d hypothesis from cross-sectional data.

Weak dependence ⇒ independence

Weak stationarity ⇒ identically distributed
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The ARMA model Auto-regressive processes

From regression to auto-regressive processes

While regression analysis can be used for time series analysis, it can only
catch global trends and has the following weaknesses:

It cannot be applied to several variables.

It cannot detect cyclic or seasonal events.

It cannot be used to predict ”aftershock effects” after random shocks
in a time line.

It is ill adapted to segment a time series into several events.
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The ARMA model Auto-regressive processes

From regression to auto-regressive processes

In linear regressions, we try to find regressions coefficients to solve an
equation of form y = a · x + b + ε.

For time series predictions, the model is more like xt = ρxt−1 + εt
ρ is a coefficient to be found
εt is an error term between the prediction and the real value.

This is what we call an auto-regressive process of order one: AR(1)
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The ARMA model Auto-regressive processes

Auto-regressive processes

Auto-regressive process of order p

An auto-regressive process of order p is defined as follows:

AR(p) : Xt =

p∑
i=1

ρiXt−i + εt

the ρi are parameters

εt is a white noise term (random noise i.i.d(0, σ2))

Auto-regressive process of order 1

AR(1) : Xt = c + ρXt−1 + εt
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The ARMA model Auto-regressive processes

Auto-regressive processes of order 1: Example (1/2)

Let us consider an oil price problem. The oil price change at a moment t
∆Ot is linked to the oil price change at the instant t − 1:

∆Ot = 0.7×∆Ot−1 + εt

If some event occurs, the oil
price will suddenly change,
resulting in a spike in the oil
price change (ε spikes).

Then following this model,
the event has some
persistent effect until the
market stabilizes and the
price stops changing.
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The ARMA model Auto-regressive processes

Auto-regressive processes of order 1: Example (2/2)

The oil price change at a moment t ∆Ot is linked to the oil price change at the
instant t − 1:

∆Ot = 0.7×∆Ot−1 + εt

Remark

This is an AR(1) model for the Oil Price Change, but since we use the first
derivation of the Oil Price, we will see later that this model is an ARIMA(1,1,0)
model of the Oil Price.
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The ARMA model Auto-regressive processes

Stationarity conditions of an AR(1) Process 1/2

Xt = ρXt−1 + εt with εt ∼ iid(0, σ2)

Xt = ρ (ρXt−2 + εt−1) + εt
Xt = ρ2Xt−2 + ρεt−1 + εt

⇒ Xt = ρtX0 +
t−1∑
i=0

ρiεt−i

The first condition for stationarity is : E[Xt ] = Cte

E[Xt ] = ρtE[X0] +
t−1∑
i=0

ρiE[εt−i ] = ρtE[X0]

Condition on the mean

For this term to be constant, we need E[X0] = 0 and therefore E[Xt ] = 0.
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The ARMA model Auto-regressive processes

Stationarity conditions of an AR(1) Process 2/2

Xt = ρXt−1 + εt with εt ∼ iid(0, σ2)

Var(Xt) = ρ2Var(Xt−1) + Var(εt) NB: var(aX ) = a2var(X )

We want the variance to be constant: Var(Xt) = Var(Xt−1)

We substitute in the previous expression, and we get:

Var(Xt) = ρ2Var(Xt) + σ2 ⇒ (1− ρ2)Var(Xt) = σ2

Conditions on the variance and on ρ

Var(Xt) =
σ2

1− ρ2

Since we don’t want a negative variance or a null denominator, we
deduce that |ρ| < 1
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The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i )

= Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i )

= Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i ) = Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i ) = Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt)

=
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i ) = Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i ) = Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary covariance and weak dependence of an AR(1)
process

From our previous calculi, we know that: Xt+h = ρhXt +
∑h−1

i=0 ρ
iεt+h−i

Cov(Xt ,Xt+h) = Cov(Xt , ρ
hXt +

h−1∑
i=0

ρiεt+h−i ) = Cov(Xt , ρ
hXt)

= ρhCov(Xt ,Xt) = ρhVar(Xt) =
ρhσ2

1− ρ2

Cor(Xt ,Xt+h) =
Cov(Xt ,Xt+h)

Var(Xt)
= ρh

Weak dependence condition

We want limh→∞Cor(Xt ,Xt + h) = 0, so once we find once again that we need
|ρ| < 1.

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 23 / 61



The ARMA model Auto-regressive processes

Stationary VS non Stationary AR(1)

Figure: ρ = 0.5
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The ARMA model Auto-regressive processes

Stationary VS non Stationary AR(1)

Figure: ρ = 0.95
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The ARMA model Auto-regressive processes

Stationary VS non Stationary AR(1)

Figure: ρ = 1
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The ARMA model Auto-regressive processes

Stationary VS non Stationary AR(1)

Figure: ρ = −1.002
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The ARMA model Moving average processes

Moving average processes

A moving average mode is a common approach for modeling univariate
time series. In this model, the output variable depends linearly on the
current and various past values of a stochastic (imperfectly predictable
term).

Moving average model of order q: MA(q)

MA(q) : Xt = µ+ εt +

q∑
i=1

θi · εt−i

µ is the mean of the series (often assumed to be 0)

The θi are the parameters

εt , · · · , εt−q are white noise error terms.

Moving average model of order 1: MA(1)

MA(1) : Xt = µ+ εt + θ · εt−1
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The ARMA model Moving average processes

Example of MA processes 1/2

Let us consider an example in which we want a model for the daily
demand for soda bottles in a grocery store:

Demand = 25 + εt − 0.5 · εt−1

25 is the average number of bottles usually sold in a day.

In this example, εt could be the change in temperature: εt = ∆temp(t)

The explanation for the “−0.5 · εt−1” term is that, if the temperature
already increased yesterday, the customers already bought soda and
don’t need to buy more today.

Further terms could be added:
Demand = 25 + εt − 0.5 · εt−1 − 0.25εt−2
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The ARMA model Moving average processes

Example of MA processes 2/2

We go back to an oil price example:

OilPrice = 45 + εt + 0.5εt−1

45$ is the usual average price for a barrel

εt here could be used for modeling issues in oil delivery (hurricane at
sea, blockade, strikes, armed conflicts, etc.)

If there is a hurricane at sea at time t, the price will increase.

If there was an issue at time t − 1, the supply may still be recovering
so the prices are still higher than usual, hence the “+0.5εt−1” term.

Remark

Unlike in the previous oil price example, we study the oil price, and not the
oil price change ! It is not the same model.
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The ARMA model Moving average processes

MA(1) process: stationarity and weak dependency 1/2

Xt = µ+ εt + θ · εt−1 with εt ∼ iid(0, σ2)

E[Xt ] = E[µ+ εt + θ · εt−1] = µ+ E[εt ] + θE[εt−1] = µ

Var(Xt) = Var(µ+ εt + θ · εt−1) = Var(εt) + θ2Var(εt−1) = σ2(1 + θ2)

Stationarity: conditions on the mean and variance

The condition for a weak stationarity are always respected since we have
both the mean and the variance that are constant.
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The ARMA model Moving average processes

MA(1) process: stationarity and weak dependency 2/2

For the third stationarity hypothesis, we want Cov(Xt ,Xt+h) to be a
function of h independent from t.

Cov(Xt ,Xt−1) = Cov(εt + θ · εt−1, εt−1 + θ · εt−2)

= θCov(εt−1, εt−1) = θσ2 because the εt are iid

From there we can infer that:

∀τ > 1 Cov(Xt ,Xt−τ ) = Cov(εt + θ · εt−1, εt−τ + θ · εt−1−τ ) = 0

Stationarity and dependency

With the 3 conditions being respected, we can conclude that an MA(1)
process is always stationary. Furthermore, with the third condition, the
weak dependence hypothesis is easily verified.
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The ARMA model Moving average processes

MA(1) process: Example

Figure: Example of a MA(1) process (θ = −0.3)
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The ARMA model Moving average processes

Telling MA(1) from AR(1)

Sometimes, just looking at the time series curb is not enough to tell
whether it follows an AR(1) model, a MA(1) model, or something
else.

The best solution to guess MA(1) from AR(1) is to look at the
correlation Corr(Xt ,Xt+h)

MA(1) : Corr(Xt ,Xt+h) =

{
θ

1−θ2 if h = 1

0 if h > 1

AR(1) : Corr(Xt ,Xt+h) = ρh
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The ARMA model ARMA Processes

ARMA model

ARMA(p,q)

An ARMA(p,q) process, is a model that contain an AR(p) process and and
MA(q) process:

Xt = µ+ εt +

p∑
i=1

ρiXt−i +

q∑
i=1

θi · εt−i

The constant µ is the expectation of Xt (often assumed to be 0 and not
taken into consideration in the regressive term).

The ρi and θi are the parameters from the auto-regressive and moving
average process respectively.

The εi are white error terms.

ARMA(1,1)

ARMA(1, 1) : Xt = µ+ εt + ρXt−1 + θ · εt−1
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The ARMA model ARMA Processes

ARMA(1,1), Example 1

Let us consider a good sales problem:
Salest = εt + ρSalest−1 + θ · εt−1

ρ is a loyalty effect from the customer to the good. Let’s take ρ = 0.9

εt represents free coupons given at a time t.

θ is a negative effect due to the fact that people already bought the product
at time t − 1. Let’s take θ = −0.3
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The ARMA model ARMA Processes

ARMA(1,1), Example 1

We see that at the beginning the MA process causes a rapide decline
in sales.

Then, once the MA effect is over, the sales decrease following an AR
process.
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The ARMA model ARMA Processes

ARMA(1,1), Example 2

Let us consider the same good sales problem:
Salest = εt + ρSalest−1 + θ · εt−1

ρ is a loyalty effect from the customer to the good. Let’s take ρ = 0.9

εt is this time advertisement for the product at a time t.

θ becomes therefore a positive effect. Let’s take θ = 0.8.
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The ARMA model ARMA Processes

ARMA(1,1), Example 1

We see that with θ > 0, there is a huge initial boost on the sale.

It is again followed by an AR type decay process which takes more
time due to the initial higher boost effect.
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The ARMA model ARMA Processes

ARMA(1,1) behavior examples

Figure: ρ = 0.95 and θ = 3
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Figure: ρ = 0.95 and θ = 3
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The ARMA model ARMA Processes

ARMA(1,1) behavior examples

Figure: ρ = 0.5 and θ = 3
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The ARMA model ARMA Processes

ARMA(1,1) behavior examples

Figure: ρ = 0.90 and θ = 50
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The ARMA model ARMA Processes

ARMA(1,1) properties

ARMA processes have the same properties than AR processes when it
comes to stationarity and the weak dependence hypothesis:

|ρ| < 1 is required

The mean value of the series should be 0.
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model (1/5)

Lagged values

The lagged values of a time series are its values of t− x considered at time t.

Lagged values are often used for correlation analysis between a series at time
t and t − x .

ACF: Autocorrelation function

The autocorrelation function is the value of the correlation between the
series at time t and each of its values at time t − x .

PACF: Partial autocorrelation functions

The partial autocorrelation is like the autocorrelation, but controlled for
smaller lags. For example: the PACF at t − 2 discards any correlation that
might have shown at t − 1.

ACF and PACF are usually similar for the first lag, but diverge afterwards.
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model (2/5)

The values p and q of any ARMA model can be guessed using two tools:

The autocorrelogram for the q of the MA model.

The partial autocorrelogram for p of the AR model.

Partial autocorrelation

In time series analysis, the partial autocorrelation function (PACF)
gives the partial correlation of a time series with its own lagged values,
controlling for the values of the time series at all shorter lags. It contrasts
with the autocorrelation function, which does not control for other lags.

α(h) = Cor(xt+h − Pt,h(xt+h), xt − Pt,h(xt))

with Pt,h(x) the projection of x onto the space spanned by
xt+1, · · · , xt+h−1.
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model (3/5)

Autocorellation and partial autocorrelation confidence intervals.

Under the null hypothesis that we expect 0 autocorrelation, the confidence interval for
95% is: P0.95 = 0 ± 2√

T
Anything outside of these intervals denotes an autocorrelation and can be used to
identify the type of ARMA(p,q) model.

(a) ACF showing MA(2) (b) PACF showing AR(1) or AR(11)

Figure: A possible ARMA(1,2) or ARMA(11,2)
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model (4/5)

ACF and PACF: how to read ?

The ACF of a stationary AR(p) model goes to zero at an exponential rate, while
the PACF becomes zero after lag p.

For an MA(q) model, it is the opposite: the ACF cuts off brutally after lag q and
the PACF goes to zero relatively quickly.

(a) ACF showing MA(2) (b) PACF showing AR(1) or AR(11)

Figure: A possible ARMA(1,2) or ARMA(11,2)
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model (5/5)

Tips to interpret PACF and ACF

High values for p and q are highly suspicious. Check if your result makes sense depending
on the application field.

AR model may have echo phenomenons: An AR(2) models may show echoes on lags 4
and 6. Once again, high values are suspicious.

An isolated spike on a high value lag out of the confidence interval is probably just noise.

Important remarks

Depending on your software, your ACF and PACF graphs may look very different and it

can be confusing :

Lag 0 should have an auto-correlation of 1.
In R, the PACF starts at lag = the number of time the series was differentiated.

ACF and PACF readings are not enough, and several models still need to be tested based
on their likelihood and performances.
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The ARMA model ARMA Processes

Guessing the parameters of any ARMA(p,q) model:
Example

The autocorrelations are significant for a large number of lags. But
perhaps the autocorrelations beyond lag 1 are merely due to the
propagation of autocorrelation at lag 1.

This is confirmed by the PACF: This could be an ARMA(1,0)

Remark: The ACF does not go down exponentially which means that
the series may need to be differenciated (see ARIMA)
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The ARIMA model

Outline

1 Fundamentals of time series analysis

2 The ARMA model

3 The ARIMA model

4 Useful statistical tools
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The ARIMA model From ARMA to ARIMA

From ARMA to ARIMA

We have seen that with time series we are not always working directly with
the original series, but quite often with its differentiated version.

ARIMA : definiton

The ARIMA(p,d ,q) model is an ARMA(p,q) model applied to the d-th
derivation of a time series.

The parameter d is usually found by trying several values
incrementally until fitting model is found.

Parameters p and q are found using the same methods (acf and pacf)
than for classical ARMA models on a given d-th derivation.

Remark: Unless you are dealing with a very complicated phenomenon, d
rarely goes beyond 2.
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Remark: Unless you are dealing with a very complicated phenomenon, d
rarely goes beyond 2.
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The ARIMA model From ARMA to ARIMA

Rules to Guess the number d parameter in ARIMA (1/2)

Rule 1 : If a series has a positive autocorrelation out to a high
number of lags, then it probably needs a higher order of differencing.

Rule 2 : If the lag-1 autocorrelation is 0 or negative, or the
autocorrelations are all small and patternless, then the series does not
need a higher order of differencing. If the lag-1 autocorrelation is -0.5
or more negative, the series may be overdifferenced. BEWARE OF
OVERDIFFERENCING !

Rule 3: The optimal order of differencing is often the order of
differencing at which the standard deviation is lowest.
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The ARIMA model From ARMA to ARIMA

Rules to Guess the number d parameter in ARIMA (2/2)

Rule 4:

A model without differencing assumes that the original series is
stationary (mean-reverting).
A model with one order of differencing assumes that the original series
has a constant average trend (e.g. a random walk or SES-type model,
with or without growth).
A model with two orders of total differencing assumes that the original
series has a time-varying trend (e.g. a random trend).

Rule 5:

A model without differencing normally includes a constant term (which
allows for a non-zero mean value). A model with two orders of total
differencing normally does not include a constant term.
In a model with one order of total differencing, a constant term should
be included if the series has a non-zero average trend.
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The ARIMA model Limits of the ARIMA model

Limits of the ARIMA model

ARIMA models have several limits:

They can only handle univariate data

The parameters are quite complex to guess and the properties difficult
to assess when the parameters p and q grow beyond 2.

These models do not allow for an in depth analysis of a time series
(series segmentation event detection, state detection, etc.)
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Useful statistical tools
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Useful statistical tools

Augmented Dickey Fuller Test

Short name : ADF test

Null Hypothesis H0 (p > 0.05) : Presence of a root unit, meaning the
time series is not stationnary

Alternate Hypothesis : The time series could be stationnary

What to do with the result ?

If p > 0.05 : we can’t reject the null hypothesis and the time series is
not stationnary

In the presence of a root unit (or the absence of stationnarity),
differenciating the time series (d = d + 1 in the ARIMA model)
should be considered before looking for the ARMA parameters using
ACF and PACF

Remark: The absence of a root unit (alternate hypothesis) implies
that the time series could be stationnary, but it does not imply that it
definitely is.
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Useful statistical tools

Kwiatkowski-Phillips-Schmidt-Shin Test

Short name : KPSS test

Null Hypothesis H0 (p > 0.05) : The time series is stationnary or
trend-stationnary

Alternate Hypothesis : it is not stationnary

What to do with the result ?

If p > 0.05 : we can’t reject the null hypothesis and the time series is
stationnary

If the series is stationnary, it is possible to run an ARMA analysis by
looking at the ACF and PACF
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Useful statistical tools

Box-Pierce Test

Short name : BP test

Null Hypothesis H0 (p > 0.05) : The time series has no
auto-correlation of order 1 to R

Alternate Hypothesis : There is some auto-correlation in the time
series

When to use ?

Can be used on a time series to confirm that searching for AR
parameters is relevant (but it says nothing about MA parameters)

Can be used on the residuals of a model: Good residuals should not
have any auto-correlation.
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Useful statistical tools

LJung-Box Test

Other name : LJung-Box Q Test

Null Hypothesis H0 (p > 0.05) : The data are independently
distributed

Alternate Hypothesis : The data exhibit serial correlation and are not
independently distributed

When to use ?

Is roughly equivalent to the Box-Pierce test, but considered more
reliable

It can be used on a time series or on its residuals

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 60 / 61



Useful statistical tools

LJung-Box Test

Other name : LJung-Box Q Test

Null Hypothesis H0 (p > 0.05) : The data are independently
distributed

Alternate Hypothesis : The data exhibit serial correlation and are not
independently distributed

When to use ?

Is roughly equivalent to the Box-Pierce test, but considered more
reliable

It can be used on a time series or on its residuals

J. Sublime Data Analysis - Lecture 8 ISEP 2020/2021 60 / 61



Useful statistical tools

Shapiro-Wilk Test

Short name : SW test

Null Hypothesis H0 (p > 0.05) : The time series or the sample
follows a gaussian distribution

Alternate Hypothesis : It doesn’t not follow a gaussian distribution

When to use ?

Can be used on a time series to confirm a Gaussian distribution

Can be used on the residuals of a model to confirm that they follow a
Gaussian distribution which makes them more likely to be white noise
(desirable property).
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