Why do we need stationarity ? From regression to auto-regressive processes
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In linear regressions, we try to find regressions coefficients to solve an equation of form y = a • x + b + .

For time series predictions, the model is more like x t = ρx t-1 + t ρ is a coefficient to be found t is an error term between the prediction and the real value.

This is what we call an auto-regressive process of order one: AR(1)

Auto-regressive processes

Auto-regressive process of order p An auto-regressive process of order p is defined as follows:

AR(p) :

X t = p i=1 ρ i X t-i + t
the ρ i are parameters t is a white noise term (random noise i.i.d(0, σ 2 ))

Auto-regressive process of order 1 AR(1) :

X t = c + ρX t-1 + t
Auto-regressive processes of order 1: Example (1/2)

Let us consider an oil price problem. The oil price change at a moment t ∆O t is linked to the oil price change at the instant t -1:
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Auto-regressive processes of order 1: Example (1/2)

Let us consider an oil price problem. The oil price change at a moment t ∆O t is linked to the oil price change at the instant t -1:

∆O t = 0.7 × ∆O t-1 + t
If some event occurs, the oil price will suddenly change, resulting in a spike in the oil price change ( spikes).

Then following this model, the event has some persistent effect until the market stabilizes and the price stops changing.

Auto-regressive processes of order 1: Example (2/2)

The oil price change at a moment t ∆O t is linked to the oil price change at the instant t -1:

∆O t = 0.7 × ∆O t-1 + t

Remark

This is an AR(1) model for the Oil Price Change, but since we use the first derivation of the Oil Price, we will see later that this model is an ARIMA(1,1,0) model of the Oil Price.
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Condition on the mean For this term to be constant, we need E[X 0 ] = 0 and therefore E[X t ] = 0.

Stationarity conditions of an AR(1) Process 2/2

X t = ρX t-1 + t with t ∼ iid(0, σ 2 ) Var (X t ) = ρ 2 Var (X t-1 ) + Var ( t ) NB: var (aX ) = a 2 var (X )
Stationarity conditions of an AR(1) Process 2/2

X t = ρX t-1 + t with t ∼ iid(0, σ 2 ) Var (X t ) = ρ 2 Var (X t-1 ) + Var ( t ) NB: var (aX ) = a 2 var (X )
We want the variance to be constant:

Var (X t ) = Var (X t-1 )
Stationarity conditions of an AR(1) Process 2/2

X t = ρX t-1 + t with t ∼ iid(0, σ 2 ) Var (X t ) = ρ 2 Var (X t-1 ) + Var ( t ) NB: var (aX ) = a 2 var (X )
We want the variance to be constant:

Var (X t ) = Var (X t-1 )
We substitute in the previous expression, and we get:

Var (X t ) = ρ 2 Var (X t ) + σ 2
Stationarity conditions of an AR(1) Process 2/2

X t = ρX t-1 + t with t ∼ iid(0, σ 2 ) Var (X t ) = ρ 2 Var (X t-1 ) + Var ( t ) NB: var (aX ) = a 2 var (X )
We want the variance to be constant:

Var (X t ) = Var (X t-1 )
We substitute in the previous expression, and we get:

Var (X t ) = ρ 2 Var (X t ) + σ 2 ⇒ (1 -ρ 2 )Var (X t ) = σ 2
Stationarity conditions of an AR(1) Process 2/2

X t = ρX t-1 + t with t ∼ iid(0, σ 2 ) Var (X t ) = ρ 2 Var (X t-1 ) + Var ( t ) NB: var (aX ) = a 2 var (X )
We want the variance to be constant:
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We substitute in the previous expression, and we get:

Var (X t ) = ρ 2 Var (X t ) + σ 2 ⇒ (1 -ρ 2 )Var (X t ) = σ 2
Conditions on the variance and on ρ

Var

(X t ) = σ 2 1 -ρ 2
Since we don't want a negative variance or a null denominator, we deduce that |ρ| < 1

Stationary covariance and weak dependence of an AR(1) process

From our previous calculi, we know that:
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From our previous calculi, we know that:
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Weak dependence condition

We want lim h→∞ Cor (X t , X t + h) = 0, so once we find once again that we need |ρ| < 1.

Stationary VS non Stationary AR(1)

Figure: ρ = 0.5
Stationary VS non Stationary AR(1)

Figure: ρ = 0.95
Stationary VS non Stationary AR(1)

Figure: ρ = 1
Stationary VS non Stationary AR(1)

Figure: ρ = -1.002
Moving average processes A moving average mode is a common approach for modeling univariate time series. In this model, the output variable depends linearly on the current and various past values of a stochastic (imperfectly predictable term).

Moving average model of order q: MA(q) MA(q) :

X t = µ + t + q i=1 θ i • t-i
µ is the mean of the series (often assumed to be 0)

The θ i are the parameters t , • • • , t-q are white noise error terms.

Moving average model of order 1: MA(1)

MA(1) :

X t = µ + t + θ • t-1
Example of MA processes 1/2 Let us consider an example in which we want a model for the daily demand for soda bottles in a grocery store:

Demand = 25 + t -0.5 • t-1
25 is the average number of bottles usually sold in a day.

In this example, t could be the change in temperature: t = ∆ temp (t)
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Example of MA processes 1/2 Let us consider an example in which we want a model for the daily demand for soda bottles in a grocery store:

Demand = 25 + t -0.5 • t-1
25 is the average number of bottles usually sold in a day.

In this example, t could be the change in temperature: t = ∆ temp (t)

The explanation for the "-0.5 • t-1 " term is that, if the temperature already increased yesterday, the customers already bought soda and don't need to buy more today.

Further terms could be added:

Demand = 25 + t -0.5 • t-1 -0.25 t-2
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45$ is the usual average price for a barrel t here could be used for modeling issues in oil delivery (hurricane at sea, blockade, strikes, armed conflicts, etc.)
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Example of MA processes 2/2

We go back to an oil price example:

OilPrice = 45 + t + 0.5 t-1
45$ is the usual average price for a barrel t here could be used for modeling issues in oil delivery (hurricane at sea, blockade, strikes, armed conflicts, etc.) If there is a hurricane at sea at time t, the price will increase.

If there was an issue at time t -1, the supply may still be recovering so the prices are still higher than usual, hence the "+0.5 t-1 " term.

Remark

Unlike in the previous oil price example, we study the oil price, and not the oil price change ! It is not the same model.

MA(1) process: stationarity and weak dependency 1/2

X t = µ + t + θ • t-1 with t ∼ iid(0, σ 2 ) E[X t ] = E[µ + t + θ • t-1 ] = µ + E[ t ] + θE[ t-1 ] = µ Var (X t ) = Var (µ + t + θ • t-1 ) = Var ( t ) + θ 2 Var ( t-1 ) = σ 2 (1 + θ 2 )
Stationarity: conditions on the mean and variance The condition for a weak stationarity are always respected since we have both the mean and the variance that are constant.
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For the third stationarity hypothesis, we want Cov (X t , X t+h ) to be a function of h independent from t.

Cov

(X t , X t-1 ) = Cov ( t + θ • t-1 , t-1 + θ • t-2 ) = θCov ( t-1 , t-1 ) = θσ 2 because the t are iid
From there we can infer that:

∀τ > 1 Cov (X t , X t-τ ) = Cov ( t + θ • t-1 , t-τ + θ • t-1-τ ) = 0

Stationarity and dependency

With the 3 conditions being respected, we can conclude that an MA(1) process is always stationary. Furthermore, with the third condition, the weak dependence hypothesis is easily verified. Telling MA(1) from AR(1)

MA(1) process: Example

Sometimes, just looking at the time series curb is not enough to tell whether it follows an AR(1) model, a MA(1) model, or something else.

The best solution to guess MA(1) from AR( 1) is to look at the correlation Corr (X t , X t+h )

MA(1) : Corr (X t , X t+h ) = θ 1-θ 2 if h = 1 0 if h > 1 AR(1) : Corr (X t , X t+h ) = ρ h ARMA model ARMA(p,q)
An ARMA(p,q) process, is a model that contain an AR(p) process and and MA(q) process:

X t = µ + t + p i=1 ρ i X t-i + q i=1 θ i • t-i
The constant µ is the expectation of X t (often assumed to be 0 and not taken into consideration in the regressive term).

The ρ i and θ i are the parameters from the auto-regressive and moving average process respectively.

The i are white error terms.

ARMA(1,1)

ARMA(1, 1) :

X t = µ + t + ρX t-1 + θ • t-1 ARMA(1,1), Example 1
Let us consider a good sales problem:

Sales t = t + ρSales t-1 + θ • t-1
ρ is a loyalty effect from the customer to the good. Let's take ρ = 0.9 t represents free coupons given at a time t. θ is a negative effect due to the fact that people already bought the product at time t -1. Let's take θ = -0.3

ARMA(1,1), Example 1

We see that at the beginning the MA process causes a rapide decline in sales.

Then, once the MA effect is over, the sales decrease following an AR process.

ARMA(1,1), Example 1

We see that with θ > 0, there is a huge initial boost on the sale. It is again followed by an AR type decay process which takes more time due to the initial higher boost effect. Guessing the parameters of any ARMA(p,q) model (1/5)

ARMA(1,1) behavior examples

Lagged values

The lagged values of a time series are its values of tx considered at time t.

Lagged values are often used for correlation analysis between a series at time t and tx.

ACF: Autocorrelation function

The autocorrelation function is the value of the correlation between the series at time t and each of its values at time tx.

Guessing the parameters of any ARMA(p,q) model (1/5)

Lagged values

The lagged values of a time series are its values of tx considered at time t.

Lagged values are often used for correlation analysis between a series at time t and tx.

ACF: Autocorrelation function

The autocorrelation function is the value of the correlation between the series at time t and each of its values at time tx.

PACF: Partial autocorrelation functions

The partial autocorrelation is like the autocorrelation, but controlled for smaller lags. For example: the PACF at t -2 discards any correlation that might have shown at t -1.

ACF and PACF are usually similar for the first lag, but diverge afterwards.

Guessing the parameters of any ARMA(p,q) model (2/5)

The values p and q of any ARMA model can be guessed using two tools:

The autocorrelogram for the q of the MA model.

The partial autocorrelogram for p of the AR model.

Partial autocorrelation

In time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a time series with its own lagged values, controlling for the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for other lags.

α(h) = Cor (x t+h -P t,h (x t+h ), x t -P t,h (x t ))
with P t,h (x) the projection of x onto the space spanned by

x t+1 , • • • , x t+h-1 .
Guessing the parameters of any ARMA(p,q) model (3/5)

Autocorellation and partial autocorrelation confidence intervals.

Under the null hypothesis that we expect 0 autocorrelation, the confidence interval for 95% is:

P0.95 = 0 ± 2 √ T
Anything outside of these intervals denotes an autocorrelation and can be used to identify the type of ARMA(p,q) model. Guessing the parameters of any ARMA(p,q) model (4/5)

ACF and PACF: how to read ?

The ACF of a stationary AR(p) model goes to zero at an exponential rate, while the PACF becomes zero after lag p.

For an MA(q) model, it is the opposite: the ACF cuts off brutally after lag q and the PACF goes to zero relatively quickly. Guessing the parameters of any ARMA(p,q) model (5/5) Tips to interpret PACF and ACF High values for p and q are highly suspicious. Check if your result makes sense depending on the application field.

AR model may have echo phenomenons: An AR( 2) models may show echoes on lags 4 and 6. Once again, high values are suspicious.

An isolated spike on a high value lag out of the confidence interval is probably just noise.

Important remarks

Depending on your software, your ACF and PACF graphs may look very different and it can be confusing : Lag 0 should have an auto-correlation of 1.

In R, the PACF starts at lag = the number of time the series was differentiated.

ACF and PACF readings are not enough, and several models still need to be tested based on their likelihood and performances.

Guessing the parameters of any ARMA(p,q) model: Example
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The autocorrelations are significant for a large number of lags. But perhaps the autocorrelations beyond lag 1 are merely due to the propagation of autocorrelation at lag 1. This is confirmed by the PACF: This could be an ARMA(1,0)

Guessing the parameters of any ARMA(p,q) model: Example

The autocorrelations are significant for a large number of lags. But perhaps the autocorrelations beyond lag 1 are merely due to the propagation of autocorrelation at lag 1. This is confirmed by the PACF: This could be an ARMA(1,0) Remark: The ACF does not go down exponentially which means that the series may need to be differenciated (see ARIMA)

From ARMA to ARIMA

We have seen that with time series we are not always working directly with the original series, but quite often with its differentiated version.

ARIMA : definiton

The ARIMA(p,d,q) model is an ARMA(p,q) model applied to the d-th derivation of a time series.
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From ARMA to ARIMA

We have seen that with time series we are not always working directly with the original series, but quite often with its differentiated version.

ARIMA : definiton

The ARIMA(p,d,q) model is an ARMA(p,q) model applied to the d-th derivation of a time series.

The parameter d is usually found by trying several values incrementally until fitting model is found.

Parameters p and q are found using the same methods (acf and pacf) than for classical ARMA models on a given d-th derivation.

Remark: Unless you are dealing with a very complicated phenomenon, d rarely goes beyond 2.

Rules to Guess the number d parameter in ARIMA (1/2)

Rule 1 : If a series has a positive autocorrelation out to a high number of lags, then it probably needs a higher order of differencing.

Rule 2 : If the lag-1 autocorrelation is 0 or negative, or the autocorrelations are all small and patternless, then the series does not need a higher order of differencing. If the lag-1 autocorrelation is -0.5 or more negative, the series may be overdifferenced. BEWARE OF OVERDIFFERENCING !

Rule 3: The optimal order of differencing is often the order of differencing at which the standard deviation is lowest.

Rules to Guess the number d parameter in ARIMA (2/2)

Rule 4:

A model without differencing assumes that the original series is stationary (mean-reverting).

A model with one order of differencing assumes that the original series has a constant average trend (e.g. a random walk or SES-type model, with or without growth).

A model with two orders of total differencing assumes that the original series has a time-varying trend (e.g. a random trend).

Rule 5:

A model without differencing normally includes a constant term (which allows for a non-zero mean value). A model with two orders of total differencing normally does not include a constant term.

In a model with one order of total differencing, a constant term should be included if the series has a non-zero average trend.

Limits of the ARIMA model ARIMA models have several limits:

They can only handle univariate data

The parameters are quite complex to guess and the properties difficult to assess when the parameters p and q grow beyond 2.

These models do not allow for an in depth analysis of a time series (series segmentation event detection, state detection, etc.)

  stationarity, these two measures are different:Ensemble Mean: E(x t ) = 1

Figure :

 : Figure: Example of a MA(1) process (θ = -0.3)
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Stationarity conditions of an AR(1) Process 2/2 X t = ρX t-1 + t with t ∼ iid(0, σ 2 )

ARMA(1,1) properties ARMA processes have the same properties than AR processes when it comes to stationarity and the weak dependence hypothesis:

The mean value of the series should be 0.
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Guessing the parameters of any ARMA(p,q) model (1/5)

Lagged values

The lagged values of a time series are its values of tx considered at time t.

Lagged values are often used for correlation analysis between a series at time t and tx.