Table: Test data

The notion classifier

Besides for regression applications, most supervised algorithms are known as classifiers.

Classifiers

A classifier learns a model in the form of a function, a set of logic rules, the parameters of a probabilistic model, the parameters of a neural network, a set of prototypes, etc.

The classifier will use the model it learned to label new and previously unknown data.

When the target attribute is an integer number, we usually refer to it as a class.

When the target attribute is categorical, we talk about labels.

When the target attribute is a real number, the process involved is a regression.

Formalism

Let us denote X = {x 1 , • • • , x N }, x i ∈ X be the matrix the N observed examples of the training set.

The x i are vectors containing the attributes of each object.

Let Y = {y 1 , • • • , y N }, y i ∈ [1..K] be the vector containing the labels/classes associated to the observed examples.

We note L = {(x i , y i), i ∈ [1.

.N]} the training set.

A classifier induced from the traning set L will be denoted ψ(•, L). It is a function that for any vector x i from X associates a class:

ψ(•, L) : X → [1..K]
Applying ψ on a new object x from the test set will therefore return a class prediction: ŷ = ψ(x, L)

How are patterns and models expressed ? There are 2 extremes: Black box representation: The model, structure or function is impossible to grasp for a human unfamiliar with the generating algorithm.

Examples: Deep learning algorithms

White box representation:

The model and its construction process are easy to understand and reveal which kind of structure to expect.

Examples: Decision trees, K-Nearest neighbors

The different types of models come from various fields such as AI, statistics and research in databases.

The 5 steps of supervised learning The bias-variance trade-off Supervised learning faces several challenges.

The bias-variance trade-off in supervised learning The bias-variance trade-off is a problem in which a supervised algorithm has to achieve simultaneously two seemlingly incompatible goals:

Building a model that gives good results on the validation set.

Building a model that can generalize beyond de training set.

The bias is the error from erroneous assumptions in the learning algorithm or model that usually results in the algorithms missing important links between the input variables and the output, thus leading to underfitting.

The variance is the error caused by a too high sensitivity of the model toward small variations in the training set. This results in overfitting and the model being unable to generalize to data outside of the training set.

Function complexity and amount of training data

The second issue is the available amount of training data when compared to the relative complexity of the real model to be learned:

If the model is simple, a learning algorithm with a high bias and a low variance should be able to learn it from a small amount of data.

If the model is complex, it will only be learnable from a very large amount of training data and using a learning algorithm with a low bias and a high variance.

Remark

Good learning algorithms should be able to adjust their bias-variance tradeoff based on the amount of available data and the apparent complexity of the model to be learned.

Picking the right input variables

The problem with too many input variables Even if the real learning model depends only on a very small number of variables, the algorithm may never figure it out if it is flooded with a very high number of input variables.

The result may end up being a very complex and overfitting model.

Models with too many variables cannot easily be understood and interpreted.

A good understanding of your data and of the problem that you want to modelize will help remove irrelevant features.

Scaling your data may have a huge influence on the results.

It is important to check for correlation between the attributes and to remove redundant variables. Types of trees Decisions trees can be categorized according to three criteria:

The type of data: Numerical, Categorical, Mixed

The type of nodes: Binary leaves, multiple leaves

The overall shape of the tree

Types of trees

Deep trees are usually very biased, can't generalize much outside of their training set and are difficult to interpret.

Setting the right Depth for your tree Most Decision trees algorithms will allow you to choose the maximum depth of your tree.

How Deep is too deep will depend on the complexity of the problem Deeper trees tend towards overfitting, while less deep trees will tend towards underfitting.

The best option is to start from a deep tree and to prune it in a way that minimizes the error on the training set.

While balanced-trees are usually the most preferable option, bushy trees should not be frowned upon in problems with a lot of classes, or when they can help reducing the depth of the tree.

Examples

The Weather Problem The goal of this problem is to determine which weather conditions are the most favorable to let your kids go play outside.

From the resulting tree, we can see that temperature is not among the most relevant parameters here.

Examples

The Weather Problem The same problem can be processed with mixed attributes. A similar tree can be found.

Remark

It usually takes more time to compute a decision tree with numerical values, because of the time required to find the optimal cut value. This example would be labeled Yes by the decision tree.

Examples

The Contact Lenses Data

Intuition

To find out the probability of the previously unseen instance belonging to each class, simply pick the "most probable" class.

These probability are assessed using Bayes theorem applied on the training data.

Introduction

Naive Bayes Classifiers: Introduction

Bayes Theorem p(c j |x) = p(x|c j)p(c j) p(x)
p(c j |x) The probability of instance x belonging to class c j .

It is the posterior probability. We want to compute it.

p(x|c j) The probability of generating instance x knowing class c j .

Knowing the distribution function of class c j and the features of x, what is the likelihood of x ?

p(c j) The a priori probability of class c j .

How frequent is class c j in the training set ?

p(x) The occurrence probability of instance x, also called evidence.

This can often be ignored for a given instance because it is independent from c j , and is often intractable.

Naive Bayes Classifiers: Simple example

One year ago, on my way back from Holland, I was arrested by a police officer names "Claude". I was a bit high and can't remember whether Officer Claude was a male or a female ... Using a bayesian classifier, and a police data base with names and sex, we can try to guess whether it is more likely that officer Claude was a male or a female. We have two classes: c 1 =male and c 1 =female.

Naive Bayes Classifiers: Simple example Naive Bayes with several features

In the previous example there was only one features: the name. What happens when there are more ?

To make the problem simpler, naive Bayes classifiers assume that the attributes have independent distributions (which is not always true).

Independence Hypothesis

Let us note x = {x 1 , ..., x d } a data with d features.

Under the hypothesis that all attributes are independent, we can write:

p(x|c j) = p(x 1 |c j) × p(x 2 |c j) × • • • × p(x d |c j)
Therefore, we have:

p(c j |x) = p(c j) d i=1 p(x i |c j) p(x) ∝ p(c j) d i=1 p(x i |c j)
Naive Bayes with several features

Note that Naive Bayes is not sensitive to irrelevant features.

Naive Bayes with several features

Note that Naive Bayes is not sensitive to irrelevant features.

Remark

This assumes that the estimates of the probabilities are good enough. Therefore the training set must be as big and as unbiased as possible.

Naive Bayes: Properties

Pros

The only things to store are the probabilities: The training data need not be kept in memory and a single scan of the data is necessary to acquire the probabilities.

The model is quite simple to understand.

One of the fastest prediction model.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Naive Bayes: Properties

Pros

The only things to store are the probabilities: The training data need not be kept in memory and a single scan of the data is necessary to acquire the probabilities.

The model is quite simple to understand.

One of the fastest prediction model.

Cons

Naive Bayes assumes that the features are fully independent. It is usually not true and can lead to more or less bias when several of them are too correlated.

Naive Bayes tend to be biased toward the training data and can't generalize easily (e.g. It is impossible to classify a new instance with a single -or more-attribute values the occurrence of which is 0 in the training set).

Mosquito identification

In this example we consider 3 species of mosquitoes:

Culex Pipiens, the common house mosquito Anopheles Stephensi, a common mosquito from the middle East Aedes Aegypti, the yellow fever mosquito (may also carry Dengue fever, Zika, or Chikungunya) Suppose I see a mosquito with a wing frequency of 500Hz, which one is it? Remark It is P(wingbeat|mosquitoe) that follows the normal law and not the other way around !

Mosquito identification

Suppose I see a mosquito with a wing frequency of 500Hz, which one is it?

p(Culex|wingbeat = 500) ∝ exp - (500-390) 2 2×14 2 14 √ 2π ≈ 0 p(Anopheles|wingbeat = 500) ∝ exp - (500-475) 2 2×30 2 30 √ 2π = 0.0094 p(Aedes|wingbeat = 500) ∝ exp - (500-576) 2 2×43 2 43 √ 2π = 0.0019
Without further information, it is most likely an Anopheles.

Mosquito identification: More features

We now have additional informations in the form of a chart representing how many mosquitoes are active depending on the time of the day.

Suppose I am savagely attacked by a mosquito with a wingbeat frequency of 420Hz at 11:30am. Which one is the most likely culprit knowing that Culex are 30% of the population in France, Anopheles 50% and Aedes 20% ?

Remarks

At this point you should be wondering where was the training set in this example.

You

1-Nearest Neighbor

The simplest and laziest classifier consists in using the training set itself as a model without building or computing anything.

1-NN Classifier "Learning" process: Remember all the observed examples.

Classification process: When a new data arrives, find the most similar registered example (distance-wise) and assign it to the same class.

1-Nearest Neighbor

The 1-Nearest Neighbor classifier is sensitive to noise and prone to overfitting.

Figure : The 1-NN algorithm would assign this data to the red class. On the other hand, a majority vote would assign it to the blue class.

K-Nearest Neighbors

The K-Nearest Neighbors algorithm (KNN) considers the K closest observed data from the training set to decide on a class for an unlabeled data. K is a parameter chosen by the user. Because the distance between instances is based on all the attributes, less relevant attributes and even the irrelevant ones are used in the classification of a new instance.

Because the algorithm delays all processing until a new classification/prediction is required, significant processing is needed to make the prediction.

Learning without remembering all the data

The main issues of the KNN algorithm is that all data have to be kept in memory and that it is unstable when classes that are not well separated: It's a problem with both large and complex datasets.

Idea

Instead of using all the data, we could use a prototype representing each class (like in the mean-shift and K-Means algorithm).

Can be learned incrementally.

Helps building a model.

Issues

Works only with spherical classes Doesn't work with classes that aren't well separated.

Learning without remembering all the data Learning Vector Quantization algorithm

The LVQ algorithm (Kohonen) is a primitive neural network classifier that represents the classes from the training set using several prototypes per class.

It is closely related to both the K-Means and the KNN algorithm.

It is an early ancestor to the Self-Organizing Maps

Remark

In many neural networks algorithms, prototypes learned from an iterative process are called neurons due to their evolutive behavior and the fact that thay do not represent a cluster or class on their own.

Learning Vector Quantization algorithm : Training

1 Initialization: Set up the initial M prototypes Z = {z 1 , • • • , z M }.
It can be done randomly or using an initialization with the K-Means algorithm. Then use a majority vote to assign each of prototype to a class C (z m). Choose a learning rate ∈ [0, 1].

2 Go through the training set and update Z for each observation:

For each observation x i , find the nearest prototype

z m . If C (x i) = C (z m), move z m towards x i : z m ← z m + (x i -z m). If C (x i) = C (z m), move z m away from x i : z m ← z m -(x i -z m)
3 Repeat step 2 until convergence.

Optional: Reduce after each step 2 to enhance convergence.

Remark

The learning rate is a critical parameter that can change drastically the outcome of the classification.

Learning Vector Quantization: Classification

Once the prototypes have been learned, the LVQ classifier behaves like the 1-NN algorithm using the prototypes instead of the training data.

The class of each presented unlabeled data is determined based on the class of the closest prototype.

Remark

Using LVQ, the prototype can be trained (updated) in real time while being use on unlabeled data. This algorithm is therefore great for online learning.

LVQ vs KNN

Use KNN when: You have a relatively small data set, you don't need to build a model, you don't need to generalize from your training set.

Use LVQ when: You have a large data set, you need to build a model, you are dealing with a semi-supervised problem, you need to learn data incrementaly or on-line, you can afford a slightly lower accuracy or want a higher variance.

Remark

For simple problems, both will work just fine.

Support Vector Machines (1/2)

The Support Vector Machine algorithm is another somewhat distance-based algorithm proposed by Vapnik in the 90's and whose aim is to find a hyperplane of space that separates different classes.

Let us suppose that the training data are linearly separable: There is at least 1 hyperplane (or a line in 2D) that can separate the data. But which one is the best ?

SVMs : 3 Key ideas Use optimization to find the solutions (the best hyperplane) with as few errors as possible.

Seek large margin separators to improve the generalization Use kernel trick to make large feature spaces computationally efficient or to tackle non-linear cases.

Linear case optimization

For each point (x t , y t), with y t = {-1; +1}, we want:

w .x t + b ≥ 1 if y t = +1 w • x t + b ≤ -1 if y t = -1
Equivalently, we have : ∀t, y t (w • x t + b) ≥ 1.

Linear case optimization

For each point (x t , y t), with y t = {-1; +1}, we want:

w .x t + b ≥ 1 if y t = +1 w • x t + b ≤ -1 if y t = -1
Equivalently, we have : ∀t, y t (w • x t + b) ≥ 1.

Simple optimization

So long as the linear separator exists, this can easily be solved using methods such as the simplex algorithm, or other optimization algorithms.

The non-linear case

Without linear separation, if we formulate the problem with a 0-1 loss, we have:

min w ,b t 0,1 (y t , w • x t + b) where 0,1 (y , ŷ) = 1[y = sign(ŷ)]
Can we solve it ? Unfortunately, this is a NP-hard problem in the worst cases.

Using the hinge loss hinge (y , ŷ) = max(0, 1 -y • ŷ) simplifies the problem.

Soft margins and slack variables (1/2)

Modeling potential errors

In real problems, a perfect classification is not feasible. Some instances are in the wrong side of the margins.

ξ i = 0 instance is in the right side of the hyperplane and the margin. We leave it alone ! ξ i ≤ 1 instance is within the margin but on the wrong side of the hyperplane.

ξ i > 1 instance is misclassified and on the wrong side of the margin.

Soft margins and slack variables (2/2)

The system to minimize with the slack variables

min w ,b,ξ 1 2 ||w || 2 + C i ξ i
With C a margin parameter, y i (w • x i + b) ≥ 1 -ξ i , and ξ i ≥ 0.

Influence of the margin parameter A C too high will lead to overfitting.

A C too low will lead to underfitting.

SVMs: Kernel trick

A Kernel trick consists in applying a mathematical function to the original data (or data space) in order to transform them into data more easy to tackle.

Creating extra variables from the original ones can help finding a higher dimension hyperplane that may separate otherwise non-separable data.

Space transformations using kernel tricks makes it possible to tackle separators with shapes other than lines.

Many Kernel functions exists, but only a few have interesting properties.

Introduction Decision trees

Naive Bayes Classifiers

Distance-based approaches

Validation Criteria

Bibliography

Evaluating classifiers

The evaluation of a classifier is usually done using the validation set, the labels of which are known.

There are several ways to validate classifier results depending on their type and the number of classes. The specificity (or TNR) is a statistical measure of how well a binary classifier correctly identifies the negative cases.

Evaluating binary classifiers

Precision or Positive Predictive Value (PPV) precision = TP TP + FP The precision is the probability that a predicted positive case is really positive.

F-Measure

F-Measure = 2 × precision × recall precision + recall

The F-Measure is the harmonic mean of the precision and the recall.

It can be used as a single measure to evaluate the performances of a binary classifier.

Evaluating binary classifiers

Generalizing to non-binary classifiers

Generalizing to classifiers that have more than 2 classes is often complicated.

Criteria exist in the literature but they are often quite complex and restricted to specific cases.

It is possible to do some basic analysis using confusion matrices between the expected classes and the found classes.

Otherwise, indexes such as the accuracy, or vector comparing measures (e.g. Rand Index and Adjusted Rand Index) are good solutions.

Introduction

 (c) Example of a binary tree (d) Example of a numerical nonbinary tree

 Suppose that we are trying to classify persons gender based on several features, including eye color (which is irrelevant):p(Jessica|c j) = p(eye = brown|c j) × p(wears dress = yes|c j) × • • • p(Jessica|female) = 9000/10000 × 7500/10000 × • • • p(Jessica|male) = 9001/10000 × 3/10000 × • • •p(eye = brown|female) and p(eye = brown|male) should be almost identical and won't affect the outcome much. Wearing a dress however ...

 Suppose that we are trying to classify persons gender based on several features, including eye color (which is irrelevant):p(Jessica|c j) = p(eye = brown|c j) × p(wears dress = yes|c j) × • • • p(Jessica|female) = 9000/10000 × 7500/10000 × • • • p(Jessica|male) = 9001/10000 × 3/10000 × • • •p(eye = brown|female) and p(eye = brown|male) should be almost identical and won't affect the outcome much. Wearing a dress however ...

 N (µ = 390, σ = 14) Anopheles Stephensis: N (µ = 475, σ = 30) Aedes Aegypti: N (µ = 567, σ = 43)

Figure :

 : Figure: For K>1, the KNN algorithm would assign this unlabeled data to the blue class.

Figure : A

 : Figure: A single prototype per class will never work here ...

AccuracyFP:

 Binary classifiers (with 2 classes: True and False) have specific validations measures that assess different parameters. Let us consider the following notations: TP: True positive (data classified True and that are really in this class) False positive (data classified True but are not) TN: True negative (data classified False and are really in this class) FN: False negative (data classified False but are actually True) Remark Accuracy = TP + TN TP + TN + FP + FN Fall-out or False Positive Rate (FPR) FPR = FP TN + FP specificity (SPC) or True Negative Rate specificity = TN TN + FP = 1 -FPR

 Supervised data are described by several attributes and a target class (or label), which is known in the training and validation set, but unknown in the test set.

	Supervised Learning data sets examples		
	Introduction						
	Decision trees Size Weight Shoe size Sex	Size Weight Shoe size Sex
	176	72	43	M	205	85	47	?
	Naive Bayes Classifiers 159 61 37	F	172	60	40	?
	180	66	39	F	164	57	38	?
	Distance-based approaches 185 85 44	M	169	52	36	?
	177	70	41	F	183	78	42	?
	155	88	38	M	175	65	44	?
	210	110	45	M	191	77	41	?
		Table: Training data					

 They are mostly applied to categorical data, but not only. They decompose the feature space according to the most discriminating variable at each stage. There are usually more than one possible tree per data set.

		Introduction Introduction Introduction	
	Decision trees Decision trees Decision tree: Classification Process	
	Introduction Decisions trees are very common classifiers that mine rules from the A decision tree is a tree of a function-discrete representation. It can be training set: used as a decision support tool that uses a tree-like graph or model of
	decisions and their possible consequences. Learning decision trees are
	Decision trees among the most commonly used classification methods. The main
	algorithms are ID3, ID4, C4.5 and C5.0	
	Naive Bayes Classifiers Properties		
	Expressiveness: It can represent disjunctions of conjunctions Distance-based approaches Readability: It can be translated as a set of decision rules
	Validation Criteria Notae		
	Bibliography Disjunction : A or B		
	Conjunction : A and B		
	J. Sublime	Data Analysis -Lecture 7	ISEP 2021/2022

 never saw the training set, you only saw the model: Wing beat frequencies distributions and mosquito activity diagram. The training set was used to build the wing beat frequencies laws and the distribution diagram. Once you have them, you don't need the training set anymore.

	Introduction
	Decision trees
	Naive Bayes Classifiers
	Important remark Distance-based approaches
	You saw normalization constants pretty much everywhere in the calculi. You don't need them to classify new items. Unless you really want Validation Criteria
	probabilities, you don't have to normalize your results. In most cases, you don't compute anything and the algorithm does it for you ! Bibliography

 TP, FP, TN and FN provide relevant informationNo single measure tells the whole story A classifier with 90% accuracy can be useless if 90% of the population does not have cancer and the 10% that do are misclassified.If possible, use multiple measures. Beware of the obscure terminological confusion in the literature ! Depending on the field, specificity is sometimes refers to precision Different name exist for the same thing Always provide the formula when you use terms such as FP, TP, etc.

J. SublimeData Analysis -Lecture 7 ISEP 2021/2022

Cons

The process to build the tree is complex There are always several possible trees Choosing the depth of the tree is a complex decision Does not work well with datasets that have too many attributes.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Mosquito identification

Suppose I see a mosquito with a wing frequency of 500Hz, which one is it?

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Mosquito identification: Getting the probability

Similarity and distance

Very much like in clustering, the distance function is a key element for many supervised classifiers.

Creating custom distance functions is sometimes required.

Weighted Nearest Neighbors

The Weighted Nearest Neighbors solves 2 of the previous problems by adding a weight w k to each neighbor.

Examples:

Remark

The real Weighted Nearest Neighbors classifier uses a much more complex weight system that satisfies N n=1 w ni = 1.

K-Nearest Neighbors: Summary

LVQ vs KNN

In the bias variance trade-off, 1-NN tends toward bias while LVQ tends toward variance. KNN is somewhere in between depending on the value of K .

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Support Vector Machines (2/2)

The goal of the SVM algorithm is to fine the linear separator with the largest margin.

Good according to intuition, theory and practice. SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task. Evaluating binary classifiers: ROC space

The ROC space (Receiver operating characteristic) is a type of graph based on the fall-out and the sensitivity and that can be used to evaluate a classifier.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Evaluating binary classifiers: ROC curves A ROC curve plots uses the ROC space to assess the quality of a classifier. It is plotted using different parameters as reference points to draw the curb.

Useful to find the right parameters Useful to compare binary classifiers

Building a model and complexity issues

The complexity of a model is an important criterion to evaluate a model: When comparing several models/classifiers that show similar performances in term of accuracy (or error), and have similar bias and variance, the simplest models are usually considered the best.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Building a model and complexity issues

The complexity of a model is an important criterion to evaluate a model: When comparing several models/classifiers that show similar performances in term of accuracy (or error), and have similar bias and variance, the simplest models are usually considered the best.

Examples of complexity measures

The Bayesian Information Criterion (BIC)

The Akaike Information Criterion (AIC)

For both criteria, the lower the better.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Building a model and complexity issues

The complexity of a model is an important criterion to evaluate a model: When comparing several models/classifiers that show similar performances in term of accuracy (or error), and have similar bias and variance, the simplest models are usually considered the best.

Examples of complexity measures

The Bayesian Information Criterion (BIC)

The Akaike Information Criterion (AIC)

For both criteria, the lower the better.

Remark: Models that are too simple tend to have a low accuracy (high error), while models that are too complex tend too overfit.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Bias-variance trade-off and complexity

The bias tends to decrease with the complexity of the model

The variance tends to increase with the complexity of the model

The mean square error (MSE) on validation data first decreases when the model gets more complex, and then increases again when the model gets too complex and overfit.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022

Bias-variance trade-off and complexity

The bias tends to decrease with the complexity of the model

The variance tends to increase with the complexity of the model

The mean square error (MSE) on validation data first decreases when the model gets more complex, and then increases again when the model gets too complex and overfit.

Deciding between several models relies on finding the one(s) with the best variance-bias trade-off, and the lowest complexity.

J. Sublime Data Analysis -Lecture 7 ISEP 2021/2022