Data partitioning : Examples We want to automatically discover groups of similar data

How many clusters ?

Guessing the right number of clusters is one of the oldest problem in clustering, and several methods require it as a parameter.

Clusters, similarity and distance

The similarity or dissimilarity between two observations is most often computed using a distance function.

Depending on the data and the application, some distances may prove more appropriate than others (e.g. Hamming distance for text data).

Euclidian distance ||a -b|| 2 = i (a i -b i ) 2 Squared Euclidian distance ||a -b|| 2 2 = i (a i -b i ) 2 Manhattan distance ||a -b|| 1 = i |a i -b i | Maximum distance ||a -b||∞ = max i |a i -b i | Mahalanobis distance (a -b) S -1 (a -b)
where S is the covariance matrix Hamming distance

Hamming (a, b) = i (1 -δ a i ,b i )

Table: Examples of common distances

Creating custom distance functions is sometimes required.

Clustering partitions

Let us denote X = {x 1 , • • • , x N }, x n ∈ R d a data data set containing N observations described by d real features, and C = {c 1 , ..., c K } the set of possible clusters.

Clustering partitions

The result of a clustering algorithm is called a clustering partition, or just partition. Depending on whether or not a data can belong to several clusters, the partition can be hard, soft, or fuzzy.

(a) Hard clustering 

c 1 c 2 c 3 x 1 1 0 0 x 2 0 1 0 x 3 0 0 1 x 4 0 0 1 (b) Soft clustering c 1 c 2 c 3 x 1 1 1 0 x 2 0 1 1 x 3 0 0 1 x 4 0 0 1 (c) Fuzzy clustering c 1 c 2 c 3 x 1 0.9 0.1 0 x 2 0 0.8 0.2 x 3 0 0.3 0.7 x 4 0 0 1.0
c 1 c 2 c 3 x 1 1 0 0 x 2 0 1 0 x 3 0 0 1 x 4 0 0 1 (b) Soft clustering c 1 c 2 c 3 x 1 1 1 0 x 2 0 1 1 x 3 0 0 1 x 4 0 0 1 (c) Fuzzy clustering c 1 c 2 c 3 x 1 0.9 0.1 0 x 2 0 0.8 0.2 x 3 0 0.3 0.7 x 4 0 0 1.0
Let us note S the clustering partition:

In hard clustering, S is a vector

S = {s 1 , • • • , s N }, s n ∈ [1..K ] In soft clustering, S is a matrix S = {s n,k } (N×K ) , s n,k ∈ (0, 1)
In fuzzy clustering, S is a matrix too:

S = {s n,k } (N×K ) , s n,k ∈ [0, 1] ∀n, k s n,k = 1

Types of clustering algorithms

Now that we know what we want to do, the question is: Given a data set, a distance function and a desired type of partition, how do we find the clusters ?

There are several "families" of clustering algorithms that favor different methods to extract the clusters from the data: 

Density

Spectral clustering algorithms

Sees clustering as a graph partitioning problem using the similarity matrix between the different objects.

Examples of algorithms: Shi-Malik algorithm (normalized cuts), Meila-Shi algorithms.

Mainly use for image analysis

Properties Pros: Good results, does not assume any shape for the clusters, fast with sparse data.

Cons: High complexity O(N 3 ), does not scale well, not very intuitive. The "Density" is based on the number of data within the radius "Eps" of a given element.

Outline

A point is a core point if it has more data in its neighboring radius than a specified number of points "MinPts".

Core points are the main structures for the clusters.

A border point has fewer points in its radius Eps than the number MinPts but it is within range of a core point.

A noise point has fewer points in its radius Eps than the number MinPts and is not within range of a core point.

DBSCAN: Limits

Difficult to parametrize High Computational cost Does not handle well varying densities OPTICS is a good evolution of DBSCAN that handles varying densities a lot better.

HCA: Introduction

Principle Create a partition a each step by aggregating together the 2 closest clusters.

Each data starts out as a single cluster.

During the process a cluster can be a single data, or a group of data.

The algorithm return a hierarchy of partitions in the form of a tree containing the history of the different aggregations.

HCA: Algorithm

1 Repeat until there is only one cluster left:

1.a Compute the distance matrix between all existing clusters 1.b Merge the two closest clusters 1.c Update the dendrogram (hierarchical tree)

2 Cut the tree according to a criterion of your choice to get the final partition.

This algorithm requires distance criterion between clusters: the linkage criterion.

HCA: Linkage criteria

Name Formula Comments

Single-linkage 

Ds (c 1 , c 2 ) = min x∈c 1 ,y ∈c 2 d(x, y ) Distance between the two closest elements Complete-linkage Dc (c 1 , c 2 ) = max x∈c 1 ,y ∈c 2 d(x, y ) Distance between the two farthest element Average-linkage Da(c 1 , c 2 ) = 1 |c 1 ||c 2 | x∈c 1 y ∈c 2 d(x, y ) Average pairwise distance Centroid-linkage Dµ(c 1 , c 2 ) = ||µ 1 -µ 2 ||

Centroid-linkage

A good compromise between single and complete link.

Less sensitive to noise and outliers.

tends to favor elliptical clusters.
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HCA: Other linkages

Average-linkage

Less noise sensitive, tends to favor hyper-spherical clusters High computational cost for roughly the same results as the centroid-linkage.

Centroid-linkage

A good compromise between single and complete link.

Less sensitive to noise and outliers.

tends to favor elliptical clusters.

Ward's method

This similarity is based on the increase on the mean squared distance to the centroid when 2 clusters are merged.

Less sensitive to noise and outliers.

tends to favor elliptical clusters.

K-Means: Introduction

The method of the K Means, or K-Means algorithm, is a special case of the mobile centers methods. Its principle consists in using a certain number of representatives (centroids, or prototypes) in the data space. Each of these representative will represent a cluster.

In the end, each data is associated to its closest prototype in order to obtain the clustering partition.

The groups formed with this process are homogeneous and well separated.

1 Randomly select K initial center.

2 Assign each data x to its closest center µ i .

3 If the partition doesn't change: stop 4 Else, update the centers, each µ i must be the gravity center of its cluster:

µ i = 1 |c i | x∈c i x 5 Go to 2
Like in most clustering algorithms, step 2 is dependent on a chosen distance function. For the K-Means algorithm, the Euclidian distance is usually prefered:

d(x, y ) = d i=1 (x i -y i ) 2
Guaranteed to monotonically decrease average squared distance in each iteration

L(µ) (t) = N i=1 min j ||µ j -x i || 2 2 L(µ) (t+1) ≤ L(µ) (t)
Convergence to a local minimum Algorithmic complexity at each iteration :

O(n • d • K )
Guaranteed to monotonically decrease average squared distance in each iteration This problem can be reduced by running the algorithm several time.

L(µ) (t) = N i=1 min j ||µ j -x i || 2 2 L(µ) (t+1) ≤ L(µ) (t)
It is also possible to initialize the centers using another clustering algorithm.

EM algorithm for the GMM: introduction

The Expectation-Maximization algorithm (EM) is an iterative method used to find the maximum likelihood or the maximum a posteriori estimate of parameters in probabilistic and statistical models.

Adapatation to clustering

In clustering, it is possible to represent clusters using parametric distribution: Each cluster has its own distribution with its own parameters.

The EM algorithm can then be used to figure out these parameters and link each data to a cluster.

EM algorithm for the GMM: Gaussian mixture model

Gaussian model in dimension 1 µ ∈ R the mean value of the gaussian distribution σ ∈ R + the standard deviation of the distribution

N (µ, σ) = 1 σ √ 2π exp -1 2 (x-µ) 2 σ 2
Gaussian model in dimension d µ ∈ R d the mean value of the gaussian distribution Σ = (σ i,j ) d×d the variance-covariance matrix of the distribution

N (µ, Σ) = exp -1
EM algorithm for the GMM: Optimization process

The goal of the EM algorithm is to find the parameters Θ that maximize the likelihood of generating the observed data:

Θ ML = Argmax Θ log P(X |Θ) = Argmax Θ N i=1 P(x i |Θ) Θ ML = Argmax Θ N i=1 log K k=1 π K • N (µ k , Σ k , x i )
This is done via an iterative two-step process: Expectation step: Update the latent variables (cluster labels) using the current parameters Θ: assign each data to the cluster c that maximizes p(x ∈ c).

Maximisation step: Use the new latent variables to update the parameters: Update the mean value, covariance matrix and mixing probabilities of all clusters.

EM algorithm for the GMM: Update rules

E-Step P(x n ∈ c) = s n,c = π c N (µ c , Σ c , x) K k=1 π k N (µ k , Σ k , x) = 1 Z π c exp -1 2 (x-µc ) T Σ -1 c (x-µc ) |Σ c |(2π) d M-Step N c = N n=1 s n,c =⇒ π c = N c N µ c = 1 N c N n=1 s n,c • x n Σ c = 1 N c N n=1 s n,c • (x n -µ c )(x n -µ c ) T
EM algorithm for the GMM: Algorithm

Algorithm 1: EM Algorithm for the GMM Initialize Θ randomly while the partition S is not stable do Picking a similarity measure Whatever the type of clustering algorithm, they all rely on a similarity measure. Picking a good similarity measure is therefore of paramount importance.

E-Step: evaluate S = argmax S p(S|X , Θ) forall x n ∈ X do s n (k) = 1 Z π c N (x n , µ c , Σ c ) end M-Step: Re-evaluate Θ forall c ∈ [1..K ] do Update µ c , Σ c
It is the core of any model.

It determines what type of structures are considered interesting.

It will ultimately change the clustering result.

Remarks

Choosing a similarity measure, or building one often require a good knowledge of the data to analyze, or at least of the field they come from.

Picking a similarity measure already introduces a bias in a task that is supposed to be exploratory.

Picking a similarity measure 

Validating clustering results

Validating clustering results is a difficult process:

There is no proper definition of what a "good cluster" is, or looks like.

There is no "ground truth" in unsupervised learning to check the quality of a partition.

Clusters come in all shapes and forms.

The number of clusters to be found is usually unknown, and sometimes there are none.

Not all data sets have well-defined clusters.

Identifying clusters

While it is usually obvious to visually spot the clusters in 2D or 3D data sets, it is almost impossible to do so when there are more features !

Internal indexes

Internal indexes are criteria that can be used to evaluate the quality of a clustering partition.

Internal indexes can be subjective as they favor some cluster shapes, and can be biased toward a lower number of clusters.

They usually assess the compactness of the clusters and whether they are well separated.

Remark

Internal indexes are said to be "internal", by opposition to "external indexes" that compare a result with an external ground truth.

Internal indexes: Davies-Bouldin Index Let S i be the average scatter of a cluster c i around its mean value µ i :

S i = 1 |c i | x∈c i ||x -µ i || 2
Let M i,j = ||µ i -µ j || 2 be the average distance between two clusters c i and c j .

Davies-Bouldin Index for K clusters

DB = 1 K K i=1 max j =i S i + S j M i,j
Internal indexes: Davies-Bouldin Index

The Davies-Bouldin index has the following properties:

A lower DB value means a better clustering.

This index is not normalized.

It favors spherical clusters.

it is biased so that it gives lower values with less clusters.

Remark

The Davies-Bouldin index is usually the favored internal index used to evaluate partitions created using the K-Means algorithm.

Internal indexes: Silhouette Index

The Silhouette index is another internal index with interesting properties: It is normalized between -1 and 1 (a value bellow 0 meaning a bad partition).

It can evaluate if a a data belongs to a cluster, if a cluster is well formed, or the whole partition. Let a x ||x -µ i || 2 be the mean distance between x ∈ c i and the data that belong to the same cluster. And b x the mean distance to the data that belong to the closest other clusters.

b x = min k =i 1 |c k | y ∈c k ||x -y || 2 Silhouette index of an element x SC (x ∈ c i ) = b x -a x max(a x , b x )

Internal indexes: Calinski & Harabasz

This index is defined as follows: Criteria to pick the right number of clusters Some criteria exist to pick the optimal number of clusters, but they require to run the algorithm several times with different number of clusters in order to evaluate the solutions:

CH(k) = B/(k -1) W /(N -k) B is
The Bayes Information Criterion (BIC) and Akaike Information Criterion (AIC) work well with probabilistic algorithms.

The Minimum Description Length criterion (MDL) and the Minimum Message Length criterion (MML) are recommended for hierarchical clustering.

Stability can also be used to guess the right number of clusters.

Remark

Most of the time, the best solution is to ask the advice of an expert in the field of the studied data.

Picking a clustering algorithm

Picking the right clustering algorithm depends on several factors and requires prior knowledge on the data. With high dimensional data sets, you usually don't have this knowledge:

Are there any clusters ?

What is the shape of the clusters and how well separated are they ?

Other considerations may include the complexity of your algorithm:

Complexity depending on the size of the data set.

Complexity depending on the number of attributes of the data set.

Picking an algorithm often ends up being a trade-off between the expected quality of the result and the computational complexity of your algorithm. 

Figure :

 : Figure: Example of 2 clusters with Gaussian distributions

  not presume the shape of the clusters or their number, detect outliers. Cons: High complexity O(N 2 ), difficult to parametrize Hierarchical clustering algorithms Inspired from phylogenetic trees in biology. Approaches: agglomerative, divisive Examples of algorithms: HCA, CURE, CLINK Properties Pros: Highlight hierarchical cluster structures, comprehensive visualization of the clusters Cons: High complexity O(N 2 log N)toO(N 3 ), choosing where to cut the dendrogram can be cumbersome. Prototype-based clustering algorithms Uses vector quantization to sum up the data using representatives (e.g. mean values) Examples of algorithms: K-Means, Fuzzy C-Means Properties Pros: Lower complexity O(N) Cons: Requires to give the number of clusters and to presume of their shapes. Distribution-based clustering algorithms Uses strong mathematical models to describe the clusters (e.g. mixture of gaussian distributions) Examples of algorithms: EM Properties Pros: Lower complexity O(N), strong models, convergence proofs Cons: Requires to give the number of clusters and to assume that the clusters will follow a given distribution.

  Less noise sensitive, tends to favor hyper-spherical clusters High computational cost for roughly the same results as the centroid-linkage.

  Convergence to a local minimum Algorithmic complexity at each iteration : O(n • d • K ) Non-convex optimization : NP-hard problem K-Means: Limits Instability The K-Means algorithm is highly dependent on the initialization of the centers.

Figure :

 : Figure: Depending on the similarity measure, both partitions can make sense.

  the sum of square distances between clusters W is the sum of square distances within clusters k is the number of clusters Properties of the CH-Index Not normalized Better when higher With balanced clusters, the CH index is generally a good criterion to indicate the correct number of clusters.
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DBSCAN: Algorithm
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K-Means: Properties

Guaranteed to monotonically decrease average squared distance in each iteration

Convergence to a local minimum Clusters with different density or sizes can also be difficult to find using the K-Means algorithm.
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K-Means: Limits

Choosing the number of clusters The K-means algorithms requires the number of clusters "K " to be provided as a parameter. In purely exploratory data mining tasks, this number is not always known and must be guessed.

Sometimes the only solution is to try several values for K and to see which gives the best results.
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EM algorithm for the GMM: Gaussian mixture model

The Gaussian mixture model consists in modeling clusters as Gaussians described by their mean value, their covariance matrix and a mixing probability.

J. Sublime Data Analysis -Lecture 6 ISEP 2021/2022

EM algorithm for the GMM: Gaussian mixture model

The Gaussian mixture model consists in modeling clusters as Gaussians described by their mean value, their covariance matrix and a mixing probability.

On note P(x i |Θ) la probabilité d'observer x i sachant les paramètres de tous les clusters, avec EM algorithm for the GMM: Limits

The EM algorithm for the GMM model detects only ellipsoid clusters.

Computing Σ -1 the inverse of the variance-covariance matrix can be both difficult and time consuming in high dimension.

Can be solved by using diagonal matrices, but it is less accurate.

Very much like the K-Means algorithm, the K needs to be provided and the EM algorithm is dependent on its initialization.

Can be improved by initializing the EM algorithm using K-Means or HCA ... EM algorithm for the GMM: Limits

The EM algorithm for the GMM model detects only ellipsoid clusters.

Computing Σ -1 the inverse of the variance-covariance matrix can be both difficult and time consuming in high dimension.

Can be solved by using diagonal matrices, but it is less accurate.

Very much like the K-Means algorithm, the K needs to be provided and the EM algorithm is dependent on its initialization.

Can be improved by initializing the EM algorithm using K-Means or HCA ...

Remark

The K-Means algorithm is a degenerate case of EM algorithm for the GMM where Σ = I d and ∀c, π c = 1 K .

Internal indexes: Silhouette Index

Silhouette index of a partition

The silhouette index best value is 1.

It favors spherical clusters. Using External indexes to asses cluster quality Quite often clustering algorithms will be tested in a non-exploratory setting:

Range

A data set for which the real classes are known will be used for test purposes (with the added advantage that the number of clusters will be known)

In this case, the cluster found will be compared to the real classes using external indexes or purity measures.

Cluster purity

Examples of external indexes

Rand Index, Adjusted Rand Index, Accuracy, etc. 

Summary of open problems in clustering

Defining the notion of similarity, and picking or defining a distance function accordingly.

Picking the right algorithm and the right parameters for this algorithm.

Figuring out how many clusters to search for.

Evaluating clustering results.

Comparing clustering results.

All known data analysis problems: normalizing the data or not, picking relevant attributes, removing the outliers or not, etc.
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