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Introduction Reminders from last course

Limits of linear methods (1/2)

Techniques such as SVD, PCA and their variants perform a global
transformation of the data using basic operations:

Rotation

Translation

Rescaling

The problematic of non-linearity

Using the 3 operations, linear methods assume that most of the
information in the data is contained in a linear subspace.

This raises the question of how to deal with data that are actually
embedded in a non-linear subspace (a low-dimensional manifold).
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Introduction Reminders from last course

Limits of linear methods (2/2)

Linear methods such as PCA cannot discover the structure of a data set
with a non-linear shape.

Figure: Example of a spiral data set that could be modeled in 2D or even 1D, but
that PCA and non-linear methods cannot handle.
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Introduction Finding embedded manifolds

Euclidian distance VS Geodesic distance

Euclidian based distances are one of the main problem when dealing
with data embedded in a non-linear subspace.

Custom distances embedded in the low-dimensional manifold, such as
the geodesic distance, can help dealing with such data.

Figure: Euclidian distance
Figure: Geodesic distance
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Isomap Principle

ISOMAP: Principle

The Isometric feature mapping (Isomap) [Tenebaum et al. 2000] is a
reduction method that can handle non-linear subspaces. It is based on the
following principles:

For neighboring samples (close data points), the Euclidian distance
provides a good approximation of the geodesic distance.

For distant points, the geodesic distance can be approximated using
an Euclidian distance-based neighborhood graph of the data and
searching the shortest path between the two points.
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Isomap Principle

ISOMAP: Algorithm

1 Build a distance neighborhood graph G using the Euclidian distance
in the input space: This can be done using KNN, or by connecting
the points within a radius ε.

2 Approximate the geodesic distance between all data points: Compute
the shortest path between all points of the graph using Dijkstra
algorithm or Floyd algorithm.

3 Apply the Multi-dimensional scaling (MDS) algorithm to the
geodesic distance matrix from Step 2.

Remark

The Isomap algorithm can be seen as a non-linear variant of the MDS
algorithm.

J. Sublime Data Analysis - Lecture 5 ISEP 2020/2021 9 / 67



Isomap Principle

ISOMAP: Algorithmic complexity

The main issue of the Isomap algorithm is that it can be quite slow. For a
data set of size N, an input space of dimension D, an output space of
dimension d , and considering a neighborhood of size k in the first step, we
have:

Step 1: K-nearest neighbors O(N2D)

Step 2: Djikstra O(N2log(N) + N2k), Floyd O(N3)

Step 3: MDS algorithm O(N2d)
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Isomap MDS reminders

Multi-dimensional scaling: Algorithm

Choose an objective function J and a step parameter 0 < η < 1.

Compute the distance matrix δ if it is not provided.

Initialize the projected points randomly and compute the
corresponding projected distance matrix.

Optimize the position of the projected points until convergence using
gradient descent
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Isomap Examples

ISOMAP: The “Swiss roll” Example (1/3)

The “swiss roll” data set
contains 20000 points.

We will show thereafter the
development of the Isomap
algorithm on this data set. Figure: A 1000 points extract of the

Swiss roll data set, with an example of
Euclidian and Geodesic distances.
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Isomap Examples

ISOMAP: The “Swiss roll” Example (2/3)

In the figure below, we show 3 illustrations of how the Isomap algorithm
works on the Swiss roll data set with the following parameters:

K-nearest neighbors (K=7)

Approximation of the Geodesic distance: Djikstra algorithm

Figure: A 1000 points extract of the Swiss roll data set: The Euclidian distance is
in dotted blue, the Geodesic distance in solid blue, and the approximated
Geodesic distance is in red. [Tenebaum et al. 2000]
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Isomap Examples

ISOMAP: The “Swiss roll” Example (3/3)

Figure: Final manifold in 2D that preserves pairwise geodesic distances.
[Tenebaum et al. 2000]
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Isomap Examples

ISOMAP: Images Example (1/2)

Figure: For each image we have 64× 64 = 4096 pixels
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Isomap Examples

ISOMAP: Images Example (2/2)

Figure: From D=4096 to d=2
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Isomap Examples

ISOMAP: Hand writing Example
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Isomap Examples

ISOMAP: Another Image Example
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Isomap Examples

ISOMAP: Conclusion

Advantages of Isomap

Handles non-linearity

Is non-iterative

Preserves the global properties of the data

Limitations of Isomap

Sensitive to noise (it may create unwanted shortcut in the
neighborhood graph)

The optimal parameters k for KNN or ε can be difficult to determine:

Small k or ε may lead to linear shortcuts and a poor approximation of
the geodesic distance, or in worst cases a partitioned graph.
Large k or ε slow the search for the shortest path, and may at some
point loose the low-dimensional manifold.

Relatively slow with large data sets ∼ O(N2log(N))
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Principle

The locally Linear Embedding algorithm (LLE) [Roweis and Saul 2000]
addresses the same problem as Isomap in a different way:

It preserves the local properties of the data by representing each point
by a linear combination of its nearest neighbors.

It builds a projection to a linear low dimensional space preserving the
neighborhood.

LLE algorithm

1 Compute the k nearest neighbors

2 Compute the weights needed to reconstruct each point using a linear
combination of its neighbors

3 Project the results in a lower dimensional space using the weights
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Steps

Figure: LLE algorithm [Roweis and Saul 2000]
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Computing the weights (1/2)

The local geometry is modeled by linear weights that reconstruct each
data point as a linear combination of its nearest neighbors.

Let us note W = (wij)N×N the weight matrix, where wij is the weight
given to xj in the reconstruction of xi .

Reconstruction error cost function

ε(W ) =
N∑
i=1

|xi −
∑
j 6=i

wijxj |2

The weights wij are minimized subject to two constraints:

1 Each data point is reconstructed only from its neighbors (i.e. wij = 0
is xi and xj are not neighbors)

2 Rows of the weight matrix W sum to 1: ∀i
∑

j wij = 1
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Computing the weights (2/2)

Let us consider a sample xi with its k nearest neighbors ηij . With the
constraint

∑
j wij = 1, the weights can be found in 3 steps:

1 Compute the neighborhood correlation matrices Cjk and their inverse:
Cjk = (xi − ηij) · (xi − ηik)

2 Compute the lagrangian multiplier λ that enforces the constraint∑
j wij = 1:

λ =
1−

∑
j ,k C

−1
jk (xTi ηik)∑

j ,k C
−1
jk

3 Compute the reconstruction weights:

wij =
∑
k

C−1jk (xTi ηik + λ)
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Mapping the data (1/2)

Once the weights W have been computed, we seek to find the
Y = {y1, · · · , yn}, yi ∈ Rd the new points in a low dimensional space.

This can be done by searching Y that minimizes an embedding cost
function similar to the reconstruction error cost function from the
input space.

Embedding error cost function

φ(Y ) =
N∑
i=1

|yi −
∑
j 6=i

wijyj |2
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Locally Linear Embedding Algorithm

Locally Linear Embedding: Mapping the data (2/2)

The embedding vectors Yi are found by minimizing the cost function φ(Y ).

To make the optimization problem well-posed we introduce two
constraints:

∑
j yj = 0 and 1

N

∑
i YiY

T
i = I

Then, the cost function becomes:

φ(Y ) =
∑
i ,j

Mij(Y
T
i Yj)

Where Mij = δij −Wij −Wji +
∑

k wkiwkj

δij is equal to 1 if i = j and 0 otherwise

The optimal embedding for a d-dimensional space is found by
computing the bottom d + 1 eigenvectors of the matrix M.
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Locally Linear Embedding Example

Locally Linear Embedding: The “Swiss roll” Example
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Locally Linear Embedding Example

Locally Linear Embedding: Face data set Example

The initial
data
represent
images of
faces.

In the 2D
space, these
images are
grouped
according to
the position,
lighting and
expression.

Figure: Images placed at the bottom of the figure correspond to
successive points encountered on the line at the top right,
sweeping a continuum of facial expression. [Roweis and Saul
2000]
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Locally Linear Embedding Example

Locally Linear Embedding: PCA VS LLE (1/2)

Unlike PCA, LLE preserves the local topology

(a) PCA (b) LLE
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Locally Linear Embedding Example

Locally Linear Embedding: PCA VS LLE (2/2)

(c) PCA (d) LLE
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Locally Linear Embedding Example

Locally Linear Embedding: Conclusions

Advantages of LLE

Handles non-linearity

Is non-iterative

Preserves local topologies

Limitations of LLE

Sensitive to noise

The optimal parameters k for KNN can be difficult to determine:

Relatively slow with large data sets due to the large number of
covariance matrices inversions.
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t-distributed stochastic neighbor embedding Evolving LLE

What is t-SNE ?

t-distributed stochastic neighbor embedding (t-SNE) is a machine
learning algorithm for data visualization, proposed in 2008 by van der
Maaten and Hinton.

It is based on the similar idea of neighborhood embedding proposed
for LLE by Roweis and Saul.

It is a nonlinear dimensionality reduction technique well-suited for
embedding high-dimensional data for visualization in a
low-dimensional space of two or three dimensions.
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t-distributed stochastic neighbor embedding Evolving LLE

Stochastic Neighbor Embedding (SNE)

SNE: Basic idea

Encoding high dimensional neighborhood information as a distribution

Intuition: Random walk between data points with a high probability
to jump to a close point.

Finding low dimensional points such that their neighborhood
distribution is similar.

How to measure the distance between distribution ?

The most common measure to do so is the KL divergence
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t-distributed stochastic neighbor embedding SNE algorithm

SNE: local embedding algorithm (1/4)

Consider the neighborhood around any input data point xi ∈ RD

Imagine that we have a Gaussian distribution centered around xi

Then the probability that xi chooses some other datapoint xj as its
neighbor is in proportion with the density under this Gaussian.

A point closer to xi will be more likely than one further away
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t-distributed stochastic neighbor embedding SNE algorithm

SNE: local embedding algorithm (2/4)

Pj |i the probability that xi chooses xj as neighbor is computed as follows:

Pj |i =
exp(−||xi − xj ||2/2σ2i )∑
k 6=i exp(−||xi − xk ||2/2σ2i )

Pi |i = 0

σi the chosen size of the neighborhood:

a low σi will lead to a smaller local neighborhood with stronger
probabilities
a high σi leads to uniform weights
σi can be set up differently for each point.

The final distribution over pairs is symmetrized: Pij = 1
2N (Pj |i + Pi |j)
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t-distributed stochastic neighbor embedding SNE algorithm

SNE: local embedding algorithm (3/4)

Given a dataset X = {x1, · · · , xN} ∈ RD , we define the distribution
Pij

Goal: Finding a good embedding
Y = {y1, · · · , yN} ∈ Rd , d << D, and ideally d should be 2 or 3.

Measuring and minimizing the embedding quality

For all point in Y we can define Q in a similar way than P (notice the
absence of σi and the assymetry):

Qij =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk ||2)

We optimize Q to be close to P by minimizing the KL-divergence on
the parameters Y = {y1, · · · , yN} !
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t-distributed stochastic neighbor embedding SNE algorithm

The KL divergence (1/2)

Measuring the distance between two discrete distributions P and Q:

KL(Q||P) =
∑
i

Q(i) log

(
Q(i)

P(i)

)
It is a metric function as it is not symmetric.

Example:

DL(Q||P) = 0.333 ln(
0.333

0.36
) + 0.333 ln(

0.333

0.48
) + 0.333 ln(

0.333

0.16
)

= −0.02596− 0.12176 + 0.24408 = 0.09637
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t-distributed stochastic neighbor embedding SNE algorithm

The KL divergence (2/2)

KL properties

KL(Q||P) ≥ 0 and is a convex function

KL(Q||P) = 0 if and only if Q = P

if P(i) = 0 but Q(i) > 0, then KL(Q||P) =∞

credit:
https://timvieira.github.io/blog/post/2014/10/06/kl-divergence-as-an-objective-function/
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t-distributed stochastic neighbor embedding SNE algorithm

SNE: local embedding algorithm (4/4)

We have P and we are looking for Y = {y1, · · · , yN} ∈ Rd such that
the distribution Q we infer will minimize L(Q) = KL(P||Q) (notice
the Q on the right, which is uncommon).

Note that KL(P||Q) =
∑

ij Pij log
(

Pij

Qij

)
= −

∑
ij Pij(Qij) + const

We can show that ∂L
∂yi

=
∑

j(Pij − Qij)(yi − yj)

Remarks

This is not a convex problem: No convergence guarantees ! Multiple
restarts may be needed.

Another issue may arise: crowding problems.
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t-distributed stochastic neighbor embedding SNE algorithm

Crowding problems

We have seen at the beginning of this class that in high dimension we
have more room: it means that points can have a lot of different
neighbors in a given radius.

However, in lower dimension (1D, 2D or 3D), there is a lot less room
in the same radius.

This is the ”crowding problem”: we might not have enough room to
accommodate all neighbors.

This is one of the biggest weakness for LLE and SNE.

t-SNE solution to crowding problems

Change the Gaussian in Q by a heavy tailed distribution : if Q
changes slower, we have more ”wiggle room” to place points.
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t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE: what is ”t” by the way ?

Student-t Probability density: p(x) ≈
(

1 + x2

v

)−(v+1)/2

For v = 1, we get: p(x) ≈ 1
1+x2

The probability of this distribution goes much more slower to zero
than a Gaussian.

This is convenient for our crowding problem.

We can show that this is equivalent to averaging a Gaussian with some
prior over σ2. Then, we can redefine Qij so that:

Qij =
(1 + ||yi − yj ||2)−1∑

k

∑
l 6=k(1 + ||yi − yk ||2)−1
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t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE gradients

We can show that the gradients of t-SNE objective function are:

∂L

∂yi
=
∑
j

(Pij − Qij)(yi − yj)

1 + ||yi − yj ||2

Compared with the SNE gradients: ∂L
∂yi

=
∑

j(Pij − Qij)(yi − yj)

credit: ”Visualizing Data using t-SNE”

Both repulse close dissimilar points and attract far similar points, but
the t-SNE has a smaller attraction term that reduces crowding issues.
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t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE algorithm

source : ”Visualizing Data using t-SNE”
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t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE: Perplexity (1/2)

We have seen that σi is a key neighborhood parameter. For each
distribution Pj |i (depending on σi ), we define the perplexity:

Perp(Pj |i ) = 2H(Pj|i ) where H(P) = −
∑
i

Pi log(Pi )

If P is uniform over k elements - perplexity is k.

Smooth version of k in kNN
Low perplexity means small σ2

High perplexity means large σ2

We can define the desired perplexity and set σi to get that (bisection
method): values between 5 and 50 usually work well.

It is an important parameter as it allows to capture different scales in
the data.
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t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE: Perplexity (2/2)

source : https://distill.pub/2016/misread-tsne/
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t-distributed stochastic neighbor embedding t-SNE in practice

Local embedding: PCA vs t-SNE

PCA

PCA tries to find a global structure in a low dimensional subspace

PCA can suffer from local inconsistencies: far away points become
nearest neighbors and vice-versa.

PCA is a projection method: new points can be projected

t-SNE (and LLE)

t-SNE -like LLE- tries to preserve local structures: Low dimensional
neighborhood should be the same as original neighborhood.

The local embedding is approximated and is never perfect.

t-SNE is not a projection method: There is no easy way to embed
new points.
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t-distributed stochastic neighbor embedding t-SNE in practice

t-SNE vs PCA: PCA applied to MNIST
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t-distributed stochastic neighbor embedding t-SNE in practice
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J. Sublime Data Analysis - Lecture 5 ISEP 2020/2021 49 / 67



Self-organizing maps

Outline

1 Introduction

2 Isomap

3 Locally Linear Embedding

4 t-distributed stochastic neighbor embedding

5 Self-organizing maps

6 Bibliography

J. Sublime Data Analysis - Lecture 5 ISEP 2020/2021 50 / 67



Self-organizing maps Introduction

Neural networks

Neural networks are a variety of algorithms that mimic brain cells:

Each neuron, or each group of neuron specializes in recognizing
certain patterns.

(e) Untrained neural network (f) Trained neural network

Figure: Example of a single layer neural network
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Self-organizing maps Introduction

Self-organizing maps: Introduction

Self-organization in brain cells

Brain cells are self organizing themselves in groups according to
incoming information.

This incoming information is not only received by a single neural cell,
but also influences other cells in its neighborhood.

Self-organizing maps (SOM) [T. Kohonen 1984] are a family of
unsupervised neural networks based on this principle:

It learns in an unsupervised way using prototypes that play the role of
neurons.

The prototypes follow a given topology so that neighborhood
dependencies exist between them.

Groups of neighbor prototypes specialize in recognizing similar groups
of data.
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Self-organizing maps Introduction

Self-organizing maps: Architecture (1/2)

Self-organizing maps can have all sorts of 1D, 2D or 3D architecture that
is convenient for visualization:

1D architecture: line of prototypes

2-Dimensional architectures (the most common): square or
rectangular maps with any type of neighborhood (triangular
neighborhood, square neighborhood, hexagonal neighborhood, or
octagonal neighborhood)

3-Dimensional architectures (uncommon): Cubes, spheres.
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Self-organizing maps Introduction

Self-organizing maps: Architecture (2/2)

Figure: Example of a rectangle grid SOM architecture with 4 neighbors per
neuron: Each example activates a winning neuron and also affects its neighbors.
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Self-organizing maps: Cost function

For a data set X = {x1, · · · , xN} and a set of prototypes
W = {w1, · · · ,wK}, the original SOM algorithm tries to minimize the
following cost function:

C (W ) =
N∑
i=1

K∑
k=1

Kk,χ(xi )||xi − wk ||2

χ(xi ) is the id of the best matching prototype wj so that:
χ(xi ) = argminj ||xi − wj ||2.

0 ≤ Kk,j ≤ 1 is the neighborhood topological function (e.g. Kk,j = 0
if wj and wk are far on the topological grid).
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Self-organizing maps: Algorithm (1/2)

1 Initialization step

Define the topology of the map
Randomly initialize the prototypes for each neuron
Define a learning rate function ε(t)

2 Competition step

Choose a data xi randomly
Determine the winning neuron χ(xi ) = argmin1≤j≤K ||xi − wj ||2

3 Adaptation step: Update the prototypes

wk(t + 1) = wk(t) + ε(t)Kk,χ(xi ) (xi − wk(t))

4 Repeat 2 and 3 until the prototypes updates are insignificant.
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Self-organizing maps: Algorithm (2/2)
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Self-organizing maps: Topological learning

Remark

Isomap and LLE try to find a low dimensional manifolds in the data
using neighborhood dependencies of the data.

SOM has the opposite approach by trying to wrap a low-dimensional
manifold around the data using prototypes neighborhood
dependencies.
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Self-organizing maps Algorithm

Self-organizing maps for visualization purposes

Once they are built, SOM can be used in several ways for visualization
purposes:

Cluster visualization on the 2D map using the best matching neuron

Topological visualization of the data set using colors to project
distance matrices between the prototypes on the map.

Component plane analysis by projecting the components on the map.

Data projection and transformation

J. Sublime Data Analysis - Lecture 5 ISEP 2020/2021 59 / 67



Self-organizing maps Example

Self-organizing maps: Visualization Example 1

Figure: Visualizing world countries clusters projected on a topological mal based
on their characteristics from the Worldbank data.
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Self-organizing maps: Visualization Example 2 (1/2)

Figure: U-Matrix (distance) and class repartition for the Iris data set using SOM
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Self-organizing maps: Visualization Example 2 (2/2)

Figure: Feature projection for the Iris data set using SOM
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Self-organizing maps Example

Self-organizing maps: Visualization Example 3

(a) Original SOM (b) Contrast only

Figure: Number recognition using SOM [Rogovschi et al. 2008]
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Self-organizing maps Example

Self-organizing maps: SOM vs PCA

Figure: Projecting the data along a linear SOM network can work better than a
PCA on non-linear data
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Self-organizing maps: Conclusions

Advantages of SOM

Is useful for all kinds of visualizations and does a pre-clustering

Can handle non-linear data

Is fast O(KN)

The initial topology of the map does not matter much: If the map is
big enough, it will work.

Limitations of SOM

The learning rate is a critical parameter.

There are plenty of variations of the algorithm each of them with
different strengths and weaknesses.
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