Dr Jérémie Sublime
email: jeremie.sublime@isep.fr

Data Analysis -Lecture 5 Data visualization: non-linear methods

Limits of linear methods (2/2) Linear methods such as PCA cannot discover the structure of a data set with a non-linear shape. Figure: Example of a spiral data set that could be modeled in 2D or even 1D, but that PCA and non-linear methods cannot handle.

Plan

ISOMAP: Principle

The Isometric feature mapping (Isomap) [Tenebaum et al. 2000] is a reduction method that can handle non-linear subspaces. It is based on the following principles:

For neighboring samples (close data points), the Euclidian distance provides a good approximation of the geodesic distance.

For distant points, the geodesic distance can be approximated using an Euclidian distance-based neighborhood graph of the data and searching the shortest path between the two points.

1 Build a distance neighborhood graph G using the Euclidian distance in the input space: This can be done using KNN, or by connecting the points within a radius .

2 Approximate the geodesic distance between all data points: Compute the shortest path between all points of the graph using Dijkstra algorithm or Floyd algorithm.

3 Apply the Multi-dimensional scaling (MDS) algorithm to the geodesic distance matrix from Step 2.

Remark

The Isomap algorithm can be seen as a non-linear variant of the MDS algorithm.

ISOMAP: Algorithmic complexity

The main issue of the Isomap algorithm is that it can be quite slow. For a data set of size N, an input space of dimension D, an output space of dimension d, and considering a neighborhood of size k in the first step, we have:

Step

1: K-nearest neighbors O(N 2 D)
Step

2: Djikstra O(N 2 log (N) + N 2 k), Floyd O(N 3)
Step 3: MDS algorithm O(N 2 d)

Isomap

MDS reminders

Multi-dimensional scaling: Algorithm

Choose an objective function J and a step parameter 0 < η < 1.

Compute the distance matrix δ if it is not provided.

Initialize the projected points randomly and compute the corresponding projected distance matrix.

Optimize the position of the projected points until convergence using gradient descent

The "Swiss roll" Example (1/3)

The "swiss roll" data set contains 20000 points.

We will show thereafter the development of the Isomap algorithm on this data set. Locally Linear Embedding: Principle

The locally Linear Embedding algorithm (LLE) [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF] addresses the same problem as Isomap in a different way:

It preserves the local properties of the data by representing each point by a linear combination of its nearest neighbors.

It builds a projection to a linear low dimensional space preserving the neighborhood.

Locally Linear Embedding

Algorithm

Locally Linear Embedding: Principle

The locally Linear Embedding algorithm (LLE) [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF] addresses the same problem as Isomap in a different way:

It preserves the local properties of the data by representing each point by a linear combination of its nearest neighbors.

It builds a projection to a linear low dimensional space preserving the neighborhood.

LLE algorithm

1 Compute the k nearest neighbors

2 Compute the weights needed to reconstruct each point using a linear combination of its neighbors

3 Project the results in a lower dimensional space using the weights

Locally Linear Embedding: Steps Locally Linear Embedding: Computing the weights (1/2)

The local geometry is modeled by linear weights that reconstruct each data point as a linear combination of its nearest neighbors.

Let us note W = (w ij) N×N the weight matrix, where w ij is the weight given to x j in the reconstruction of x i .

Reconstruction error cost function

(W) = N i=1 |x i - j =i w ij x j | 2
The weights w ij are minimized subject to two constraints:

1 Each data point is reconstructed only from its neighbors (i.e. w ij = 0 is x i and x j are not neighbors)

2 Rows of the weight matrix W sum to 1:

∀i j w ij = 1
Locally Linear Embedding: Computing the weights (2/2)

Let us consider a sample x i with its k nearest neighbors η ij . With the constraint j w ij = 1, the weights can be found in 3 steps:

Locally Linear Embedding

Algorithm

Locally Linear Embedding: Computing the weights (2/2)

Let us consider a sample x i with its k nearest neighbors η ij . With the constraint j w ij = 1, the weights can be found in 3 steps:

1 Compute the neighborhood correlation matrices C jk and their inverse:

C jk = (x i -η ij) • (x i -η ik)
Locally Linear Embedding: Computing the weights (2/2)

Let us consider a sample x i with its k nearest neighbors η ij . With the constraint j w ij = 1, the weights can be found in 3 steps:

1 Compute the neighborhood correlation matrices C jk and their inverse:

C jk = (x i -η ij) • (x i -η ik)
2 Compute the lagrangian multiplier λ that enforces the constraint

j w ij = 1: λ = 1 -j,k C -1 jk (x T i η ik) j,k C -1 jk
Locally Linear Embedding: Computing the weights (2/2)

Let us consider a sample x i with its k nearest neighbors η ij . With the constraint j w ij = 1, the weights can be found in 3 steps:

1 Compute the neighborhood correlation matrices C jk and their inverse:

C jk = (x i -η ij) • (x i -η ik)
2 Compute the lagrangian multiplier λ that enforces the constraint

j w ij = 1: λ = 1 -j,k C -1 jk (x T i η ik) j,k C -1 jk 3
Compute the reconstruction weights:

w ij = k C -1 jk (x T i η ik + λ)
Locally Linear Embedding: Mapping the data (1/2)

Once the weights W have been computed, we seek to find the

Y = {y 1 , • • • , y n }, y i ∈ R d the new points in a low dimensional space.
This can be done by searching Y that minimizes an embedding cost function similar to the reconstruction error cost function from the input space.

Embedding error cost function

φ(Y) = N i=1 |y i - j =i w ij y j | 2
Locally Linear Embedding

Algorithm

Locally Linear Embedding: Mapping the data (2/2)

The embedding vectors Y i are found by minimizing the cost function φ(Y).

To make the optimization problem well-posed we introduce two constraints: j y j = 0 and

1 N i Y i Y T i = I
Locally Linear Embedding

Algorithm

Locally Linear Embedding: Mapping the data (2/2)

The embedding vectors Y i are found by minimizing the cost function φ(Y).

To make the optimization problem well-posed we introduce two constraints: j y j = 0 and

1 N i Y i Y T i = I Then, the cost function becomes: φ(Y) = i,j M ij (Y T i Y j) Where M ij = δ ij -W ij -W ji + k w ki w kj δ ij is equal to 1 if i = j and 0 otherwise
Locally Linear Embedding: Mapping the data (2/2)

The embedding vectors Y i are found by minimizing the cost function φ(Y).

To make the optimization problem well-posed we introduce two constraints: j y j = 0 and

1 N i Y i Y T i = I Then, the cost function becomes: φ(Y) = i,j M ij (Y T i Y j) Where M ij = δ ij -W ij -W ji + k w ki w kj δ ij is equal to 1 if i = j and 0 otherwise
The optimal embedding for a d-dimensional space is found by computing the bottom d + 1 eigenvectors of the matrix M.

Locally Linear Embedding

Example

Locally Linear Embedding: Face data set Example

The initial data represent images of faces.

In the 2D space, these images are grouped according to the position, lighting and expression. It is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions.

Stochastic Neighbor Embedding (SNE)

SNE: Basic idea Encoding high dimensional neighborhood information as a distribution

Intuition: Random walk between data points with a high probability to jump to a close point.

Finding low dimensional points such that their neighborhood distribution is similar.

How to measure the distance between distribution ?

The most common measure to do so is the KL divergence SNE: local embedding algorithm (1/4)

Consider the neighborhood around any input data point

x i ∈ R D
Imagine that we have a Gaussian distribution centered around x i Then the probability that x i chooses some other datapoint x j as its neighbor is in proportion with the density under this Gaussian.

A point closer to x i will be more likely than one further away t-distributed stochastic neighbor embedding SNE algorithm SNE: local embedding algorithm (2/4) P j|i the probability that x i chooses x j as neighbor is computed as follows:

P j|i = exp(-||x i -x j || 2 /2σ 2 i) k =i exp(-||x i -x k || 2 /2σ 2 i)
P i|i = 0 σ i the chosen size of the neighborhood:

a low σ i will lead to a smaller local neighborhood with stronger probabilities a high σ i leads to uniform weights σ i can be set up differently for each point.

The final distribution over pairs is symmetrized:

P ij = 1 2N (P j|i + P i|j) t-distributed stochastic neighbor embedding SNE algorithm SNE: local embedding algorithm (3/4) Given a dataset X = {x 1 , • • • , x N } ∈ R D , we define the distribution P ij Goal: Finding a good embedding Y = {y 1 , • • • , y N } ∈ R d , d << D,
and ideally d should be 2 or 3.

Measuring and minimizing the embedding quality

For all point in Y we can define Q in a similar way than P (notice the absence of σ i and the assymetry):

Q ij = exp(-||y i -y j || 2) k =i exp(-||y i -y k || 2)
We optimize Q to be close to P by minimizing the KL-divergence on the parameters

Y = {y 1 , • • • , y N } ! The KL divergence (1/2)
Measuring the distance between two discrete distributions P and Q:

KL(Q||P) = i Q(i) log Q(i) P(i)
It is a metric function as it is not symmetric. We have P and we are looking for

Y = {y 1 , • • • , y N } ∈ R d such that the distribution Q we infer will minimize L(Q) = KL(P||Q) (notice the Q on the right, which is uncommon). Note that KL(P||Q) = ij P ij log P ij Q ij = -ij P ij (Q ij) + const We can show that ∂L ∂y i = j (P ij -Q ij)(y i -y j)
Remarks This is not a convex problem: No convergence guarantees ! Multiple restarts may be needed.

Another issue may arise: crowding problems.

t-distributed stochastic neighbor embedding SNE algorithm

Crowding problems

We have seen at the beginning of this class that in high dimension we have more room: it means that points can have a lot of different neighbors in a given radius.

However, in lower dimension (1D, 2D or 3D), there is a lot less room in the same radius. This is the "crowding problem": we might not have enough room to accommodate all neighbors. This is one of the biggest weakness for LLE and SNE.

t-SNE solution to crowding problems

Change the Gaussian in Q by a heavy tailed distribution : if Q changes slower, we have more "wiggle room" to place points.

(x) ≈ 1 + x 2 v -(v +1)/2 For v = 1, we get: p(x) ≈ 1 1+x 2
The probability of this distribution goes much more slower to zero than a Gaussian. This is convenient for our crowding problem.

We can show that this is equivalent to averaging a Gaussian with some prior over σ 2 . Then, we can redefine Q ij so that:

Q ij = (1 + ||y i -y j || 2) -1 k l =k (1 + ||y i -y k || 2) -1
t-distributed stochastic neighbor embedding t-SNE algorithm

t-SNE gradients

We can show that the gradients of t-SNE objective function are:

∂L ∂y i = j (P ij -Q ij)(y i -y j) 1 + ||y i -y j || 2
Compared with the SNE gradients:

∂L ∂y i = j (P ij -Q ij)(y i -y j)
credit: "Visualizing Data using t-SNE"

Both repulse close dissimilar points and attract far similar points, but the t-SNE has a smaller attraction term that reduces crowding issues. We can define the desired perplexity and set σ i to get that (bisection method): values between 5 and 50 usually work well.

It is an important parameter as it allows to capture different scales in the data.

Neural networks

Neural networks are a variety of algorithms that mimic brain cells:

Each neuron, or each group of neuron specializes in recognizing certain patterns. This incoming information is not only received by a single neural cell, but also influences other cells in its neighborhood.

Self-organizing maps (SOM) [T. Kohonen 1984] are a family of unsupervised neural networks based on this principle:

It learns in an unsupervised way using prototypes that play the role of neurons.

The prototypes follow a given topology so that neighborhood dependencies exist between them.

Groups of neighbor prototypes specialize in recognizing similar groups of data. Self-organizing maps: Architecture (2/2)

C (W) = N i=1 K k=1 K k,χ(x i) ||x i -w k || 2
χ(x i) is the id of the best matching prototype w j so that: χ(x i) = argmin j ||x i -w j || 2 . 0 ≤ K k,j ≤ 1 is the neighborhood topological function (e.g. K k,j = 0 if w j and w k are far on the topological grid).

Self-organizing maps: Topological learning Remark Isomap and LLE try to find a low dimensional manifolds in the data using neighborhood dependencies of the data.

SOM has the opposite approach by trying to wrap a low-dimensional manifold around the data using prototypes neighborhood dependencies.

Self-organizing maps for visualization purposes

Once they are built, SOM can be used in several ways for visualization purposes:

Cluster visualization on the 2D map using the best matching neuron Topological visualization of the data set using colors to project distance matrices between the prototypes on the map.

Component plane analysis by projecting the components on the map.

Data projection and transformation

Self-organizing maps: Visualization Example 3 The initial topology of the map does not matter much: If the map is big enough, it will work.

Limitations of SOM

The learning rate is a critical parameter.

There are plenty of variations of the algorithm each of them with different strengths and weaknesses.

Introduction Isomap

Locally Linear Embedding t-distributed stochastic neighbor embedding Self-organizing maps Bibliography

 Euclidian distance VS Geodesic distanceEuclidian based distances are one of the main problem when dealing with data embedded in a non-linear subspace.Custom distances embedded in the low-dimensional manifold, such as the geodesic distance, can help dealing with such data.

Figure

 Figure: Euclidian distance Figure: Geodesic distance

Figure

 Figure: A 1000 points extract of the Swiss roll data set, with an example of Euclidian and Geodesic distances.

Figure :

 : Figure: LLE algorithm [Roweis and Saul 2000]

Figure :

 : Figure: Images placed at the bottom of the figure correspond to successive points encountered on the line at the top right, sweeping a continuum of facial expression. [Roweis and Saul 2000]

 .02596 -0.12176 + 0.24408 = 0.09637 The KL divergence (2/2) KL properties KL(Q||P) ≥ 0 and is a convex function KL(Q||P) = 0 if and only if Q = P if P(i) = 0 but Q(i) > 0, then KL(Q||P) = ∞ credit: https://timvieira.github.io/blog/post/2014/10/06/kl-divergence-as-an-objective-function/ t-distributed stochastic neighbor embedding SNE algorithm SNE: local embedding algorithm (4/4)

Figure :

 : Figure: Example of a single layer neural network

Figure :

 : Figure: Example of a rectangle grid SOM architecture with 4 neighbors per neuron: Each example activates a winning neuron and also affects its neighbors.

Figure :

 : Figure: Number recognition using SOM [Rogovschi et al. 2008]

 We have seen that σ i is a key neighborhood parameter. For each distribution P j|i (depending on σ i), we define the perplexity:Perp(P j|i) = 2 H(P j|i) where H(P) = -

	t-distributed stochastic neighbor embedding	t-SNE algorithm
	t-SNE: Perplexity (1/2)	
		P i log(P i)
		i
	If P is uniform over k elements -perplexity is k.
	Smooth version of k in kNN	
	Low perplexity means small σ 2	
	High perplexity means large σ 2	

t-SNE algorithm source : "Visualizing Data using t-SNE"

J. SublimeData Analysis -Lecture 5 ISEP 2020/2021

Data Analysis -Lecture 5 ISEP 2020/2021

ISEP 2020ISEP /2021

Self-organizing maps: Algorithm (1/2)

Initialization step

Define the topology of the map Randomly initialize the prototypes for each neuron Define a learning rate function (t)

Competition step

Choose a data x i randomly Determine the winning neuron χ(x i) = argmin 1≤j≤K ||x i -w j || 2 Adaptation step: Update the prototypes

Repeat 2 and 3 until the prototypes updates are insignificant.

Self-organizing maps: Visualization Example 1